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Analysis of a planar differential system arising
from hematology
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Abstract. A complete analysis of a planar dynamic system arising from hema-
tology is provided to confirm the conclusions of computer simulations. Existence
and uniqueness for the Cauchy problem, boundedness of solutions and their as-
ymptotic behavior to infinity are established. Particularly, the global asymptotic
stability of a steady state is proved in each of the following cases related to
leukemia: normal, chronic and accelerated-acute.
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1. Introduction

We discuss a mathematical model introduced in [5], which describes the cell evo-
lution related to chronic myeloid leukemia. This model is given by the two-dimensional
nonlinear differential system

x′ (t) =
ax (t)

1 + b1x (t) + b2y (t)
− cx (t)

y′ (t) =
Ay (t)

1 +B (x (t) + y (t))
− Cy (t) ,

(1.1)

where x(t) and y(t) represent the normal and abnormal cell populations at time t; the
model parameters a and A are the nonrestrictive growth rates of normal and abnormal
cells; b1, b2 and B are the bone marrow microenvironment sensitivities; while c and C
stand for their cell death rates. It is assumed that all parameters are positive, a > c,
A > C and b1 ≥ b2.
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The case when b1 = b2 was considered by Dingli and Michor [3] (see also [2] and
[4]) and was used as a base for a three dimensional model of bone marrow transplan-
tation in [7] and [8].

The steady-states (stationary) solutions of (1.1) and their local asymptotic sta-
bility are studied in [5]. Thus, the stationary solutions of (1.1) are

(0, 0), (d, 0), (0, D) and (x∗, y∗) ,

where

d =
1

b1

(a
c
− 1
)
, D =

1

B

(
A

C
− 1

)
,

and

x∗ =
b1

b1 − b2
d− b2

b1 − b2
D, y∗ =

b1
b1 − b2

(D − d) .

Note that the equilibrium (x∗, y∗) is of biological interest only if its both components
are positive, which happens if

b1 > b2 and d < D < (b1/b2) d.

The following result is about the local asymptotic stability of the stationary
solutions of system (1.1).

Theorem 1.1. (a) If D < d, then (d, 0) is the only steady state which is locally asymp-
totically stable.

(b) If b1 > b2 and d < D < (b1/b2)d, then (x∗, y∗) is the only steady state which
is locally asymptotically stable.

(c) If D > (b1/b2)d, then (0, D) is the only steady state which is locally asymp-
totically stable.

The above theorem allows us to say that the inequality D < d corresponds
to the normal hematopoiesis, the inequality d < D < (b1/b2) d characterizes the
chronic stage of the leukemic disease, while the relation D > (b1/b2) d stands for the
accelerated-acute phase of the disease.

Numerical simulations performed in [5] showed that the solutions (x, y) of (1.1)
with positive initial values at t = 0 are defined, positive and bounded on the whole
semiline R+, and that the asymptotic stability of the stationary solutions is in fact
global, not only local. However, these facts have not been proved yet. They are the
object of the present paper.

2. Main Results

2.1. Existence and Uniqueness

Theorem 2.1. For any t0 ≥ 0 and u0 = (x0, y0) ∈ (0,+∞)
2
, there is a unique

saturated solution u = u (·, t0, u0) = (x, y) of system (1.1) which exists on [t0,+∞),
is of class C∞, with x > 0 and y > 0 on [t0,+∞), and satisfies the initial condition

u (t0) = u0.
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Proof. The result follows from the global existence and uniqueness of the solution
of the Cauchy problem for system (1.1) considered on the open set Ω := (0,∞)

2
,

where the right hand sides of the system are functions of class C1, hence locally
Lipschitz continuous. By the general theory on the Cauchy problem (see. e.g., [1]
and [6]), the domain of the saturated solution u is an open interval (t−, t+) with
−∞ ≤ t− < t0 < t+ ≤ +∞, and any of the limit points of the solution graph as
t↘ t− and t↗ t+ is located either at infinity or on the boundary of Ω. Let (t+, u+)
be any limit point, u+ = (x+, y+) . Then u+ = limk→∞ u (tk) for some sequence (tk)
with tk ↗ t+. If the limit point belongs to the boundary of Ω, then t+, x+ and y+ are
finite and x+ = 0 or y+ = 0. Assume x+ = 0. Using the first equation of the system,
we have for t ∈ [t0, t+] ,

x (t) = −
∫ t+

t

(
ax (s)

1 + b1x (s) + b2y (s)
− cx (s)

)
ds.

By direct computation we can see that∣∣∣∣ a

1 + b1x+ b2y
− c
∣∣∣∣ ≤ max {a− c, c} =: γ (x, y ≥ 0) .

Then

|x (t)| ≤ γ
∫ t+

t

|x (s)| ds (t ∈ [t0, t+]) ,

whence from Gronwall’s inequality, x (t) = 0 for all t ∈ [t0, t+] , which is impossible
since x (t0) = x0 > 0. Similarly, the case y+ = 0 is not possible. Hence the limit point
(t+, u+) does not belong to the boundary of Ω. Next assume that t+ < +∞. Then
we must have x+ = +∞ or y+ = +∞, that is the solution blows up in finite time. If
x+ = +∞, then we may assume that x′ (tk)→ +∞ too, and using the first equation
of the system,

x′ (tk) =
ax (tk)

1 + b1x (tk) + b2y (tk)
− cx (tk) ≤ ax (tk)

1 + b1x (tk)
− cx (tk) ,

and letting k → +∞, we obtain the contradiction+∞ ≤ a

b1
−∞ = −∞.

Similarly, we can derive a contradiction in case that y+ = +∞. Hence the solution
does not blow up in finite time. It remains that t+ = +∞, i.e., the solution exists on
the whole positive semiline [t0,+∞). The fact that the solutions are C∞ comes from
the C∞ smoothness of the right hand sides of the system. �

2.2. Boundedness of Solutions

Theorem 2.2. The solution u = u (·, t0, u0) is bounded on [t0,+∞) for every t0 ≥ 0

and u0 ∈ (0,+∞)
2
.

Proof. First we remark that system (1.1) can be rewritten in the form

x′ = −b2cx
αx+ y − αd
1 + b1x+ b2y

(2.1)

y′ = −BCy x+ y −D
1 +B (x+ y)

,
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where α = b1/b2 ≥ 1. Let u = (x, y) . We consider two cases: (a) D ≤ αd; (b) D > αd.

(a) Assume D ≤ αd. If

x+ y − αd ≥ 0 on [t0,+∞), (2.2)

then αx + y − αd ≥ 0 and x + y − D ≥ 0 on [t0,+∞). Then x′ ≤ 0 and y′ ≤
0, that is x and y are decreasing on [t0,+∞). Being bounded from below by zero,
they are bounded functions on [t0,+∞) as claimed. Assume next that (2.2) does not
hold, i.e., there is a point t1 ≥ t0 with (x+ y − αd) (t1) < 0. We prove that in this
case (x+ y − αd) (t) ≤ 0 for all t ≥ t4 and some t4 ≥ t1, which clearly implies the
boundedness of x and y. Assume the contrary. Then there are points t3 > t2 > t1
with (x+ y − αd) (t2) = 0 and

(x+ y − αd) (t) > 0 on (t2, t3) . (2.3)

Then as above we have αx + y − αd > 0 and x + y − D > 0 on (t2, t3) , which
guarantees that x and y are strictly decreasing on [t2, t3]. Consequently, we should
have x (t) < x (t2) and y (t) < y (t2) for all t ∈ (t2, t3) , whence (x+ y − αd) (t) <
(x+ y − αd) (t2) = 0 on (t2, t3) , which is in contradiction with (2.3).

(b) Assume D > αd. If

x+ y −D ≥ 0 on [t0,+∞), (2.4)

then αx + y − αd ≥ 0 on [t0,+∞), and so x′ ≤ 0 and y′ ≤ 0, that is x and y
are decreasing on [t0,+∞). Being bounded from below by zero, they are bounded
functions on [t0,+∞) as claimed. Assume next that (2.4) does not hold, i.e., there is a
point t1 ≥ t0 with (x+ y −D) (t1) < 0. We prove that in this case (x+ y −D) (t) ≤ 0
for all t ≥ t4 and some t4 ≥ t1, which clearly implies the boundedness of x and y.
Assuming the contrary, there are points t3 > t2 > t1 with (x+ y −D) (t2) = 0 and

(x+ y −D) (t) > 0 on (t2, t3) . (2.5)

Then αx+y−αd > 0 on (t2, t3) , which guarantees that x and y are strictly decreasing
on [t2, t3], and as above we derive a contradiction. �

2.3. Continuous Dependence on Data

In practice, it is important to estimate the error between the solution of a given
system and the solutions of a perturbed system. Let u = (x, y) be the unique saturated
solution of (1.1) satisfying the initial condition u (t0) = u0, where t0 ≥ 0 and u0 =

(x0, y0) ∈ (0,+∞)
2
, and let v = (x, y) be any solution of a Cauchy problem of the

form {
v′ = g (t, v)
v (t0) = v0,

(2.6)

where v0 = (x0, y0) ∈ R2
+, g = (g1, g2) ∈ C

(
[t0, t0 + h]× R2

+;R2
+

)
, and it is assumed

that v exists on the interval [t0, t0 + h] .
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We are interested to estimate the functions x − x and y − y in terms of the
differences x0 − x0, y0 − y0, f1 − g1 and f2 − g2, where

f1 (x, y) =
ax

1 + b1x+ b2y
− cx

f2 (x, y) =
Ay

1 +B (x+ y)
− Cy.

By direct computation we can show that f1, f2 satisfy the Lipschitz conditions

|f1 (w1, w2)− f1 (w1, w2)| ≤ l11 |w1 − w1|+ l12 |w2 − w2|
|f2 (w1, w2)− f2 (w1, w2)| ≤ l21 |w1 − w1|+ l22 |w2 − w2|

(2.7)

for w1, w2, w1, w2 ∈ R+, where

l11 = max {a− c, c} , l12 = ab2
4b1

l21 = A
4 , l22 = max {A− C,C} .

Denote
l = max{l11, l12}+ max{l21, l22}.

Theorem 2.3. Assume that

|f1(w1, w2)− g1(t, w1, w2)| ≤ η1 (2.8)

|f2(w1, w2)− g2(t, w1, w2)| ≤ η2

for all w1, w2 ∈ R+, t ∈ [t0, t0 + h] , and some numbers η1, η2 ≥ 0. Then

|x(t)− x(t)|+ |y(t)− y(t)| ≤ (|x0 − x0|+ |y0 − y0|+ (η1 + η2)h) ehl (2.9)

for all t ∈ [t0, t0 + h] .

Proof. The solutions u = (x, y) and v = (x, y) satisfy on the interval [t0, t0 + h] the
following integral equations

x(t) = x0 +

∫ t

t0

f1 (x(s), y(s)) ds, y(t) = y0 +

∫ t

t0

f2 (x(s), y(s)) ds

and

x(t) = x0 +

∫ t

t0

g1 (s, x(s), y(s)) ds, y(t) = y0 +

∫ t

t0

g2 (s, x(s), y(s)) ds.

Subtracting and using (2.7) and (2.8) give

|x(t)− x(t)| (2.10)

≤ |x0 − x0|+
∫ t

t0

|f1 (x(s) , y (s))− g1 (s, x (s) , y (s))| ds

≤ |x0 − x0|+
∫ t

t0

|f1 (x (s) , y (s))− f1 (x (s) , y (s))| ds

+

∫ t

t0

|f1 (x (s) , y (s))− g1 (s, x(s) , y (s)| ds

≤ |x0 − x0|+ η1h+ l11

∫ t

t0

|x (s)− x (s)| ds+ l12

∫ t

t0

|y (s)− y (s)| ds.
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Hence

|x(t)− x(t)| (2.11)

≤ |x0 − x0|+ η1h+ max {l11, l12}
∫ t

t0

(|x (s)− x (s)|+ |y (s)− y (s)|) ds.

Similarly for |y (t)− y (t)| , we have

|y(t)− y(t)| (2.12)

≤ |y0 − y0|+ η2h+ l21

∫ t

t0

|x (s)− x (s)| ds+ l22

∫ t

t0

|y (s)− y (s)| ds,

whence

|y(t)− y(t)| (2.13)

≤ |y0 − y0|+ η2h+ max {l21, l22}
∫ t

t0

(|x (s)− x (s)|+ |y (s)− y (s)|) ds.

Summing up (2.11) and (2.13) gives

|x(t)− x(t)|+ |y(t)− y(t)| ≤ |x0 − x0|+ |y0 − y0|+ (η1 + η2)h

+l

∫ t

t0

(|x (s)− x (s)|+ |y (s)− y (s)|) ds.

Now Gronwall’s inequality yields the result. �

Note that estimation (2.9) is given in terms of the norm

‖(x, y)‖ = |x|+ |y| on R2.

With respect to the corresponding norm

‖u‖∞ = max
t∈[t0,t0+h]

‖u (t)‖ on C
(
[t0, t0 + h] ,R2

)
it gives

‖u− v‖∞ ≤ (‖u0 − v0‖+ ‖η‖h) ehl. (2.14)

Similar estimations hold with respect to other norms on R2. For example, if we
consider the norms ‖(x, y)‖ = max {|x| , |y|} on R2 and the corresponding norm on
C
(
[t0, t0 + h] ,R2

)
, ‖u‖∞ = maxt∈[t0,t0+h] ‖u (t)‖ , we easily obtain (2.14), this time

with l = max {l11 + l12, l21 + l22} . An estimation independent of the norm on R2 can
be given in terms of vector-valued norms and matrices.

To this end, let us consider the vector-valued norm on R2,

‖‖‖ (x, y)‖‖‖ = (|x| , |y|)tr

and the corresponding vector-valued norm on C
(
[t0, t0 + h] ,R2

)
,

‖‖‖u‖‖‖∞ = (‖x‖∞ , ‖y‖∞)
tr
, u = (x, y) .

If we let f = (f1, f2) , the condition (2.7) can be written in the vector form

‖‖‖f (w)− f (w)‖‖‖ ≤ L‖‖‖w − w‖‖‖
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for all w,w ∈ R2
+, where L is the square matrix

L =

[
max {a− c, c} ab2

4b1
A
4 max {A− C,C}

]
.

Also condition (2.8) has the vector form

‖‖‖f (w)− g (t, w)‖‖‖ ≤ η

for all w ∈ R2
+, t ∈ [t0, t0 + h] , where η = (η1, η2)

tr
. Furthermore, the inequalities

(2.10) and (2.12) can be put together under the vector inequality

‖‖‖u (t)− v (t)‖‖‖ ≤ ‖‖‖u0 − v0‖‖‖+ hη + L

∫ t

t0

‖‖‖u (s)− v (s)‖‖‖ds,

which from the vector version of Gronwall’s inequality (see [6], p. 166) gives

‖‖‖u (t)− v (t)‖‖‖ ≤ ehL (‖‖‖u0 − v0‖‖‖+ hη) ,

where ehL is a matrix exponential. Taking the maximum for t ∈ [t0, t0 + h] finally
yields the following conclusion.

Theorem 2.4. Under the above conditions, the following vector inequality holds:

‖‖‖u− v‖‖‖∞ ≤ e
hLγ,

where γ is the column vector ‖‖‖u0 − v0‖‖‖+ hη.

2.4. Global Asymptotic Stability

Theorem 2.5. For any positive saturated solution u = (x, y) of system (1.1) one has:

(i) u (t) → (d, 0) as t→ +∞, in case D < d;

(ii) u (t) → (x∗, y∗) as t→ +∞, in case d < D < (b1/b2) d;

(iii) u (t) → (0, D) as t→ +∞, in case (b1/b2) d < D.

Proof. (i) Assume the normal state: D < d.

(a) First consider the case where αx+ y − αd ≥ 0 on a positive semiline. Then since
αx+ y − αd = α (x+ y − d)− (α− 1) y, we also have x+ y − d ≥ 0 and furthermore
x+ y−D ≥ 0. Hence both x and y are decreasing on that semiline. Thus their limits
Lx, Ly to +∞ exists, are finite and satisfy

αLx + Ly − αd ≥ 0. (2.15)

The monotonicity also implies that x′ (t) → 0 and y′ (t) → 0 as t → +∞. Passing to
the limit into (2.1) gives

0 = −b2c
Lx (αLx + Ly − αd)

1 + b1Lx + b2Ly

0 = −BCLy (Lx + Ly −D)

1 +B (Lx + Ly)
.

Hence

Lx = 0 or αLx + Ly − αd = 0; and

Ly = 0 or Lx + Ly −D = 0.
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The case Lx = Ly = 0 is excluded by (2.15). If Lx = 0, then Ly = D and from (2.15),
Ly ≥ αd, so D ≥ αd, which is false because D < d. Hence Lx > 0. If Ly > 0 too, then
from

αLx + Ly − αd = 0, Lx + Ly −D = 0, (2.16)

we obtain
(1− α)Ly = α (d−D) , (2.17)

which is also false since 1−α < 0 and d−D > 0. It remains that Ly = 0, when from
αLx + Ly − αd = 0 we have Lx = d and the proof of (i) is finished in this case.

(b) Next assume that (αx+ y − αd) (t1) < 0 for some t1. Then, as in the proof of
Theorem 2.2, we can show that αx + y − αd ≤ 0 on a positive semiline. Then x is
increasing on that semiline and being bounded has a finite limit Lx and x′ (t)→ 0 as
t → +∞. Clearly Lx > 0 (otherwise x would be zero, which is excluded). From the
first equation of system (2.1) we deduce that the limit Ly of y (t) as t → +∞ also
exists and

αLx + Ly − αd = 0. (2.18)

Then for some sequence (tn) going to +∞, y′ (tn)→ 0 and from the second equation
of (2.1),

Ly (Lx + Ly −D) = 0.

If Ly > 0, then Lx + Ly − D = 0 which together with (2.18) implies (α− 1)Ly =
α (D − d) which is false since α−1 > 0 and D−d < 0. Hence Ly = 0 and consequently
Lx = d as desired.

(ii) Assume the chronic state: d < D < (b1/b2) d.

In this situation again we are in case (a) from the proof of Theorem 2.2. Since
x, y are positive and bounded, the lower and upper limits Lx, Ly, Lx, Ly of x and y
at +∞ are finite. First assume that both limits Lx and Ly are strictly positive. We
may find a sequence (tn) with tn → +∞ and

x (tn)→ Lx, x′ (tn)→ 0 and y (tn)→ ly

for some number ly. Then the first equation in (2.1) yields αLx + ly−αd = 0, whence

since ly ≤ Ly,

αLx + Ly − αd ≥ 0. (2.19)

Similarly, using a sequence (tn) tending to +∞ and with the properties

y (tn)→ Ly, y′ (tn)→ 0 and x (tn)→ lx

for some number lx, from the second equation from (2.1) we deduce lx +Ly−D = 0,
which in view of lx ≥ Lx yields

Lx + Ly −D ≤ 0.

The last two inequalities imply

(α− 1)Lx ≥ αd−D, (α− 1)Ly ≤ α (D − d) .

Since
αd−D
α− 1

= x∗,
α (D − d)

α− 1
= y∗,
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we then have
Lx ≥ x∗, Ly ≤ y∗.

Repeating the same reasoning for the upper limit of x and lower limit of y, i.e., using
first a sequence (tn) with tn → +∞ and

x (tn)→ Lx, x′ (tn)→ 0 and y (tn)→ ly,

and then a sequence satisfying

y (tn)→ Ly, y′ (tn)→ 0 and x (tn)→ lx

we obtain
αLx + Ly − αd ≤ 0 (2.20)

and
Lx + Ly −D ≥ 0,

and finally
Lx ≤ x∗, Ly ≥ y∗.

Consequently
Lx = Lx = x∗, Ly = Ly = y∗,

as wished. Next assume that 0 = Lx. Then either x approaches 0 at +∞ as a decreas-
ing function on a positive semiline, or x changes monotonicity infinitely many times
(oscillates towards infinity). In the first case, when in fact one has Lx = Lx = Lx = 0,
x is decreasing on a positive semiline and thus αx+y−αd ≥ 0, and inequality (2.19)
immediately follows. In the second case, we may find a sequence (tn) (of local minima
of x) tending to +∞ with

x′ (tn) = 0, x (tn)→ Lx = 0 and y (tn)→ ly.

Since the values of x and y are strictly positive, hence x (tn) > 0, from the first
equation in (2.1) we have

αx (tn) + y (tn)− αd = 0,

which implies
Ly − αd ≥ 0,

that is inequality (2.19) still holds. Similarly, if 0 = Ly, inequality (2.20) is still valid.

(iii) Assume the accelerated-acute case: D > (b1/b2) d.

(a) If x+ y ≥ D on a positive semiline, then αx+ y−αd ≥ 0 too and consequently x
and y are decreasing on that semiline. Hence their limits Lx and Ly at infinity exist,
are finite and x′ (t) , y′ (t)→ 0 as t→ +∞. Also Lx+Ly ≥ D, which makes impossible
the case Lx = Ly = 0. If Ly = 0, then Lx > 0 and so αLx + Ly − αd = 0. Then
Lx = d making false the inequality Lx +Ly ≥ D. If Lx > 0 and Ly > 0, then from the
system αLx +Ly −αd = 0, Lx +Ly −D = 0 we derive (α− 1)Lx = αd−D, which is
impossible since the signs of the two sides are opposite. It remains that Lx = 0 and
Ly > 0. Then from Lx + Ly = D we obtain Ly = D and we are finished.

(b) If (x+ y −D) (t1) < 0 for some t1, then as above we can prove that x+y−D ≤ 0
on an whole positive semiline. Then y is increasing on that semiline and being also
bounded its limit Ly to +∞ exists, is finite and y′ (t) → 0 as t → +∞. If Ly = 0,
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then y ≡ 0 which is excluded from the beginning. Hence Ly > 0. Then from the
second equation in (2.1) we find that the limit Lx also exists and Lx + Ly −D = 0.
Then Lx (αLx + Ly − αd) = 0. If Lx > 0, then αLx + Ly − αd = 0 and we derive
(α− 1)Lx = αd−D, which is impossible. It remains that Lx = 0, and so Ly = D as
wished. �
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