Subclasses of p-valent meromorphic functions involving certain operator

Adela O. Moustafa, Mohamed K . Aouf


In this paper we investigate some inclusion relationships of two new
subclassses of meromorphically p-valent functions, dened by means
of a linear operator. We also study some integral preserving properties
and convolution properties of these classes.


Analytic, p-valent, meromorphic, linear operator, dif- ferential subordination inclusion relationships.

Full Text:



E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators

applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003),



T. Bulboaca, Di¤erential Subordinations and Superordinations, Recent

Results, House of Scienti c Book Publ., Cluj-Napoca, 2005.


P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On Briot-

Bouquet di¤erential subordination, Gen. Inequal., 3 (1983), 339-348.


V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent

meromorphic functions, Bull. Aust. Math. Soc., 25(1982), 85-97.


S. S. Miller and P. T. Mocanu, Di¤erential Subordination : Theory and

Applications, Series on Monographs and Textbooks in Pure and Applied

Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.


S. S. Miller and P. T. Mocanu, Di¤erential subordinations and univalent

functions, Michigan Math. J., 28 (1981), no. 2, 157-171.


S. S. Miller and P. T. Mocanu, Di¤erential subordinations and inequali-

ties in the complex plane, J. Di¤erential Equations, 67 (1987), 199-211.


A. O. Mostafa, Inclusion results for certain subcasses of p-valent mero-

morphic functions associated with a new operator, J. Ineq. Appl.,

(2012), 1-14.


St. Ruscheweyh, Convolutions in Geometric Function Theory,

Se´minaire de Mathe´matiques Supe´rieures, vol. 83, Les Presses de

Universite´ de Montre´al, Montreal, Quebec, 1982.


B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic

multivalent functions, Tamkang J. Math. 23 (1992), 223231.


D. -G. Yang, Certain convolution operators for meromorphic functions,

South. Asian Bull. Math., 25 (2001), 175-186.



  • There are currently no refbacks.