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Abstract. In the present paper, the authors introduce a generalized Sakaguchi
type non-Bazilevic function class M;*ﬁ (¢, s,t) of analytic functions involving
quasi-subordination and obtain bounds for the Fekete-Szegé functional |as — pa3|
for the functions belonging to the above and associated classes. Some important
and useful special cases of the main results are also pointed out.
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1. Introduction and preliminaries

Let A be the class of analytic functions in the open unit disk:
U:={z€C:|z| <1}

having the normalized power series expansion given by

fR) =2+ anz" (z€U). (1.1)

n=2

A function f(z) € A is said to be univalent in U if f(z) is one-to-one in U. As usual,
we denote by S the subclass of A consisting of univalent functions in U (see [3]).
For two functions f and g in A, we say that f is subordinate to g in U, and write as

f<ginU or f(z)<g(z) (z€0),

if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1,
z € U such that

f(z) = g(w(z)) (z€0). (1.2)
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If the function g is univalent in U, then
f(z) <g(2) (2 €U) <= [(0) =g(0) and f(U) C g(U).
For a brief survey on the concept of subordination, we refer to the works in [3, 10, 13,
27).
Further, a function f(z) is said to be quasi-subordinate to g(z) in the unit disk

U if there exists the functions ¢(z) and w(z) (with constant coefficient zero) which
are analytic and bounded by one in the unit disk U such that

f(z)
<g(z z € U). 1.3
L8 <o) Gew (13)
We denote the quasi-subordination by
f(z) = 9(z) (2€T). (1.4)
Also, we note that quasi-subordination (1.4) is equivalent to
f(2) = ¢(2)g(w(z)) (2 €T). (1.5)

One may observe that when ¢(z) =1 (2 € U), the quasi-subordination <, becomes
the usual subordination <. If we put w(z) = z in (1.5), then the quasi-subordination
(1.5) becomes the majorization. In this case, we have

f(2) =4 9(2) = f(2) = 0(2)9(2) = f(2) <g(2) (2€0).

The concept of majorization is due to MacGreogor [12] and quasi-subordination is
thus a generalization of the usual subordination as well as the majorization. The
work on quasi-subordination is quite extensive which includes some recent expository
investigations in [1, 7, 9, 14, 21, 22].

Recently, Frasin [5] introduced and studied a generalized Sakaguchi type classes
S(ays,t) and T (o, s,t). A function f(z) € A is said to be in the class S(a, s,t) if it

satisfies ( JeF(2)
s—t)zf' (=

R o) > 0
for some o (0<a<1), s teC,|s—t| <1, s#tand z €U.

We also denote by T(q,s,t), the subclass of A consisting of all functions f(z)
such that zf'(z) € S(a,s,t). For s = 1, the class S(«, 1,t) becomes the subclass
S*(a,t) studied by Owa et al. [17, 18]. If ¢ = —1 in S(«,1,¢), then the class
S(a,1,-1) = S,(a) was introduced by Sakaguchi [23] and is called Sakaguchi func-
tion of order « (see [2, 17]), whereas Ss(0) = S is the class of starlike functions with
respect to symmetrical points in U. Further, S(«, 1,0) = S*(«) and T (e, 1,0) = C(«)
are the familiar classes of starlike functions of order o (0 < o < 1) and convex function
of order a (0 < aw < 1), respectively.

Obradovic [16] introduced a class of functions f € A which satisfies the inequality:

R

L\
f(z)<f(2)> ]>O (0< A< 1;2€0), (1.7)

and he calls such functions as functions of non-Bazilevic type.
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By P, we denote the class of functions ¢ analytic in U such that ¢(0) = 1 and
R(¢(2)) > 0.

Ma and Minda [11] unified various subclasses of starlike and convex functions

for which either of the quantity Z}CQS) or 1+ Z;:ég)

is subordinate to a more general
subordination function. They introduced a class S*(¢) defined by

S*(¢) = {f cA: ZJ{(S) < é(2) (z€ U)} : (1.8)

where ¢ € P and ¢(U) is symmetrical about the real axis and ¢'(0) > 0. A function
f € S*(¢) is called a Ma and Minda starlike function with respect to ¢.

Recently, Sharma and Raina [25] introduced and studied a generalized Sakaguchi type
non-Bazilevic function class G, (¢,b). A function f(z) € A is said to be in the class
Go(,b) if it satisfies the condition that

: 1=z \" .
[f (2) (f(z) — f(bz)) 1] <4 (@(2)=1) (1#£beC, b <1,A>0;z€T). (1.9)
Motivated by aforementioned works, we introduce here a new subclass of A which is
defined as follows:

Definition 1.1. Let ¢ € P be univalent and ¢(U) symmetrical about the real axis and
¢'(0) >0.Fors, teC, s#t, |s—t| <1, A\, §>0,afunction f € A is said to be
in the class Mg"ﬁ (¢, s,t) if it satisfies the condition that

[(1 -~ 8)1/(z) + 1) (1 n J{(()) )} { f(s(j)__t}z(tz)} 1466 - e,
(1.10)

where the powers are considered to be having only principal values.

By specializing the parameters A, 3, s, and t in Definition 1.1 above, we obtain
various subclasses which have been studied recently. To illustrate these subclasses, we
observe the following;:

(i) When 8 = 0,s = 1, then the class M}%(¢,1,t) = G}(¢,t) which was studied
recently by Sharma and Raina [25].

(ii) Next, when f =t =0, A=s=1;8=A=t=0,s=1land A=8=s=1,t = 0;
then the classes M}I’O(qb,l,O), Mg’o(qb,l,O) and ./\/l}]”l(¢,1,0) which, respectively,
reduce to the classes Sy (¢), Rq(¢) and C4(¢) were studied earlier by Mohd and Darus
[14].

From the Definition 1.1, it follows that f € Mé’ﬂ(gb?s,t) if and only if there
exists an analytic function ¢(z) with |¢(z)| <1 (z € U) such that

" A
(-85 + 522 (14255 | [ | -1
o(2)
If we set ¢(z) = 1 (z € U) in (1.11), then the class M)#(¢,s,t) is denoted by
MMB(¢, 5,1) satisfying the condition that

o121+ )] [t o

<(p(z)—1) (z€U). (1.11)
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It may be noted that for 3 = 0, s = A = 1 and for real t, the class M'0(¢,1,t) =
S*(¢,t) which was studied by Goyal and Goswami [6].

It is well-known (see [3]) that for f € S given by (1.1), there holds a sharp
inequality for the functional |az — a3|. Fekete-Szegd [4] obtained sharp upper bounds
for |ag — paj| for f € S when p is real and thus the determination of the sharp upper
bounds for such a nonlinear functional for any compact family F of functions in &
is popularly known as the Fekete-Szegd problem for F. Fekete-Szegd problems for
several subclasses of S have been investigated by many authors including [19, 20, 24];
see also [26].

The aim of this paper is to obtain the coefficient estimates including a Fekete-
Szego inequality of functions belonging to the classes M;"B(qb, s,t) and M>MP (¢, s,t)
and the class involving the majorization. Some consequences of the main results are
also pointed out.

We need the following lemma in our investigations.

Lemma 1.2. ([8, p.10]) Let the Schwarz function w(z) be given by
w(z) = w1z + wez® +wzz® + -+ (2 €U), (1.13)

then
lwi| <1, Jwy — pwF| < 1+ (|p| — 1w |* < max{1, |ul},

where i € C. The result is sharp for the function w(z) = z or w(z) = 22.

2. Main results

Let f € A of the form (1.1), then for s, t € C, |s —t| < 1,5 # t, we may write
that

— f(t e
T I 43 yan, (2.1)
n=2
where n_ g
o = SS:t =s" 145" 24 4" (neN). (2.2)
Therefore for A > 0, we have
A
s—1t)z A+1
[f(é) = J)”(tZ)} oAt {275"3 - “”’“3] S (23

Unless otherwise stated, throughout the sequel, we assume that
X # (n=1)°B +n;

and that for real s, ¢:

Mn < (n—=12%84+n, n=2,3,4,...
Let the function ¢ € P be of the form

#(2) =1+ Biz+ Boz? +--- (By €R,B; >0), (2.4)

and ¢(z) analytic in U be of the form

©(2) =co+crz+ a2+ (co #0). (2.5)
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We now state and prove our first main result.

Theorem 2.1. Let the function f € A of the form (1.1) be in the class Mé’ﬁ(qﬁ,s,t),
then

B,
< 2.6
92l < B (26)
and for any p € C:
B B
s pad| < — 12—33} 2.7
o ] < g {1, |2 - B} 1)
where 3+48— A AA+28—(1+A 4
po BH48—)n  A(A+26 - (1+AN)72)72 +468 2.8)

(248 = A2)? 22+ B8 = Mp)?
and v, (n € N) is given by (2.2). The result is sharp.

Proof. Let f € Mé’ﬂ (¢, s,t). In view of Definition 1.1, there exists then a Schwarz
function w(z) given by (1.13) and an analytic function ¢(z) given by (2.5) such that

"(z s—1)z g
-5+ 672 (14 2LEN] | BB — oot - .
(2.9)

which can be expressed as
p(2)(P(w(2)) = 1) = (co + 1z + 22" + -+ (Brwiz + (Biwg + Bouw?)z® + -+ )
= cOBlwlz + {Co(Bl’lUQ + BQ’U}%) + clBlwl} 22 + e (210)

Using now the series expansions for f/'(z) and f”(z) from (1.1), we obtain that

(1=5)f'(2)+ ﬁf(;) {1 - ZJ{,/;S)} =1+ (2+ B)asz + ((3+4B)az — 2Ba3) 2> + - --
(2.11)
Thus, it follows from (2.3) and (2.11) that
PN (O N A O Y E
a-ore+ 2 (1 58] | 75T
= (2+8—Ay2)azz+ [(3 +48 — Ayz)ag — A (2 + 8- s /\72) 203 — 2@3} L
(2.12)

Making use of (2.10) and (2.12) in (2.9) and equating the coefficients of 2 and 2% in
the resulting expression, we get

(24 B8 = Ay2)az = coBrwy (2.13)
and
14+ A 9 9 9

(B+48 —Ayz)as — A |2+ 8 — Ve | V203 — 2Ba; = co(Biwz + Bowy) + c1 Biws.
(2.14)

Now (2.13) yields that

B

ap = 0101 (2.15)

T 2482
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From (2.14), we have

a2 = L [C w
BT AB Ay
CO)\ (1 + 2+ﬁ:’¥2 ),7231
teo dwy + 2+8—Av2 2ﬁCOBl ~ % w% . (2]_6)
22+ 8-X2)  (2+B8-Xp)? B
Hence, for any complex number p, we have
ag — paz = S [crwq
3448 — A3
A4 +28 = (14 N)y2)y2 +48 BQ> 2” 2 B2w?
+ + By + = P el el
0 {“’2 < 22+ B — Ay)? OB ) TR B )2
Bl Bg
= m [cwn + (wz + Blwf) co — BlcgwfR} , (2.17)

where R is given by (2.8).
Since (z) given by (2.5) is analytic and bounded in the open unit disk U, hence upon
using [15, p. 172], we have for some y (|y| < 1):

lco] <1 and ¢; = (1 —c2)y. (2.18)
Putting the value of ¢; from (2.18) into (2.17), we finally get
B B
2 1 2 2 2 2
az — pa; = ————— |ywy + | we + =—wi | cg — (BiwiR +w1y)cs| . (2.19
s = gt v (et ) o - (BrudR+ )] (219
If ¢y = 0, then (2.19) gives
B
2 1
as — pay| < ———. 2.20
On the other hand, if ¢y # 0, then we consider
B
T(co) = ywy + <w2 + B2wf> co — (BiwiR + wly)cg. (2.21)
1

The expression (2.21) is a quadratic polynomial in ¢y and hence analytic in |cg| < 1.
The maximum value of [T(co)] is attained at co = €? (0 < 6 < 27) , and hence, we
have

max [T(co)| = max |T(e'?| = |T(1)|

0<o<27
By
= ‘UJQ — (BlR— &> w% .
Thus from (2.19), we get
B B
—pad| < ———wy — ( BLR — 22 | w? 2.22
] < g e = (3R 52 )t (222)
and in view of Lemma 1.2, we obtain that
B B
s—padl < — L 1,|BiR— 22|} . 2.23
laz — paz| < 3145 — M| max{ y |1 B, ( )
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The desired assertion (2.7) follows now from (2.20) and ( 2.23).
The result is sharp for the function f(z) given by

[(1 —8)7/() +p 1 (1 ; J{(()))] [ f(s(j)‘_t}jtz)} "o

or

-7+ sl 8 (14 LN Lo ”Zw)r = 5(2%).

z f'(2) sz) — f(

This completes the proof of Theorem 2.1.

335

O

By setting 8 =t =0, A = s = 1 in the Theorem 2.1, we obtain the following

sharp results for the subclass S; ().

Corollary 2.2. Let f € A of the form (1.1) be in the class S;(¢), then
lag| < By,

and for any p € C:

B B
las — pad| < = max {1, | =2 + (1 —2u)B;
2 By

The result is sharp.

Next, putting S =X =s =1 and t = 0 in Theorem 2.1, we obtain the following

sharp results for the class Cq(9).
Corollary 2.3. Let f € A of the form (1.1) belong to the class Cy(¢), then

By

las| < 5

and for any p € C:

B B 3
lag — pa3| < (;max{l,’BZ + <1 - 2’“) B;
1

b

The result is sharp.

Further, by putting 8 = A =t = 0 and s = 1 in Theorem 2.1, we get the

following sharp results for the class R4(¢).
Corollary 2.4. Let f € A of the form (1.1) belong to the class Rq(¢), then

B
lag| < 71,

and for any p € C:

By s

B
|a3ua§|§31max{l, B, 4

b

The result is sharp.

Remark 2.5. The Fekete-Szegd type inequalities mentioned above for the classes

S;(#), Cq(¢) and R,4(¢) improve similar results obtained earlier in [14].

The next theorem gives the result for the class M*?(¢, s, 1).
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Theorem 2.6. Let f € A of the form (1.1) belong to the class MNP (¢, s, 1), then

and for any p € C:

By By }
Pt a1 |22 - BiR|L,
3448 — A3 X{ B, !

where R is given by (2.8) and v, (n € N) is given by (2.2). The result is sharp.

Proof. The proof is similar to Theorem 2.1. Let f € M*?(¢,s,t). If p(z) = 1, then
(2.5) gives ¢g = 1 and ¢, = 0 (n € N). Therefore, in view of (2.15), (2.17) and by an
application of Lemma 1.2, we obtain the desired assertion. The result is sharp for the
function f(z) given by

a-pre+ s (14 TN [0 J7_

las — pa3| <

. - 7 )| |61
a-mr @+ (14555 [féfff}?mr = 9.

The next theorem gives the result based on majorization.

Theorem 2.7. Let s,t € C, s #1t, |s—t] < 1.

If a function f € A of the form (1.1) satisfies

1-B)f() +pLE (1+ Zf”(z))] [f( (S_t)zt )]A—1<< é(z)—1 (z€U),

z f'(2) sz) = f(tz
(2.24)
then
|a|<$
DI PPN
and for any p € C:
B B
S IRt S— 1,|=2 — BiR
o ’“‘a2'—|3+4/3mg|max{’31 e

where R is given by (2.8) and v, (n € N) is defined as (2.2). The result is sharp.

Proof. Assume that (2.24) holds true. Hence, by the definition of majorization there
exists an analytic function ¢(z) given by (2.5) such that for z € U we have

e o g f @) (1L A1) =02 1 e
(= p) )+ 678 (14 LN | B8 o o-1). 225)

Following similar steps as in the proof of Theorem 2.1 and by setting w(z) = 1, so
that wy = 1 and w,, = 0, n > 2, we obtain
coB1

g = ———,
2T 2% B— My
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so that
By
laz| <
24 8 — A
and
B B
2 1 2 2
_ = —~c¢y— B . 2.2
a3 — pag = 3 15 s {01 + B Co 1COR:| (2.26)
On putting the value of ¢; from (2.18) in (2.26), we get
B B
2 1 2 2
— =— —co— (B1R . 2.27
as — paj 3148 — Ays [y+Blco (B1 +y)00} (2.27)

If ¢g = 0, then (2.27) yields
By

2
as — pay| < . 2.28
g = 03] < (228)
But if ¢g # 0, then we define the function
B
H(co) :=y + —2co — (BiR +y)c2. (2.29)

B
The expression (2.29) is a polynomial in ¢y and hence analytic in |¢p] < 1. The

maximum value of |H (cg)| occurs at ¢y = € (0 < 0 < 27), and we have

0\ _
olax H(e™) = |H(1)].

From (2.27), we get
B B
=t BiR — 22
3448 — Ay By

Thus, the assertion of Theorem 2.7 follows from (2.28) and (2.30). The result is sharp
for the function given by

n-re s (1 ) [ o ¢ev.

This completes the proof of Theorem 2.7. O

|as — pa3| < (2.30)

Next, we determine the bounds for the functional |ag — pa3| for real p, s and t
for the class M2’5(¢, 5, 1).

Corollary 2.8. Let the function f € A given by (1.1) be in the class M{I\’B((;S,&t),
then (for real values of u, s, t):
B B
T [31Q+Bﬂ psa,
;Hzﬁii)\% ar < p< o+ 2p, (2.31)
B By
34— [BIQ + ?1} p=ar+2p,

lag — pa3| <

where

B, B?

_AAF28- 1L+ N)re+48 (24 8- p)? ( 1 Bg>

o= 203+ 45— Aya) BT 48— ) (2.32)
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(248 = Ip)?
P =B+ 48—xm)B (23
Q= M4+28 = (1+Mv2}ye +48 —2u(3 + 48 — Ays)
N 2(2 + 8- )\’72)2
and v, (n € N) is given by (2.2). Each of the estimates in (2.31) is sharp.

Proof. For s, t, u € R, the above bounds can be obtained from (2.7), respectively,
under the following cases:

BQ B2 BQ
- =< = -1 < — =<K — >
BiR B, = 1, -1 <BiR B, = 1 and B3R 2 1,

where R is given by (2.8). We also note the following:

(i) When p < o or > g + 2p, then the equality holds if and only if w(z) = z or
one of its rotations.

(i) When a1 < p < aq + 2p, then the inequality holds if and only if w(z) = 22 or one
of its rotation.

(iii) Equality holds for 1 = ay if and only if w(z) = 2259 (0 < ¢ < 1) or one of its

1+ez
rotations, while for u = a3 + 2p, the equality holds if and only if w(z) = —%
(0 < €< 1), or one of its rotations. O

The second part of assertion in (2.31) can be improved further.

Theorem 2.9. Let f € A of the form (1.1) belong to the class M;"B(qb,s,t), then (for
Syt € R (al < o <o +2p))

B
2 2 1
as na + n— a < —— ap < <« + 2.34
| 2| ( 1)| 2| =3 ],8 /\73 (1 1% 1 p) ( 3)
and
B
2 2 1
as — pas| + (o 2—/ta < — o1 + , < <« —|—2 2.35
‘3 #2| (1+,0 )|2‘_3 13— A3 (1 1% ) 1 p) ( )

where a; and p are given by (2.32) and (2.33), respectively, and s is given by (2.2).

Proof. Let f € M;"ﬁ(gb,s,t). For s,;t,p € R and oy < p < a1 + p, and in view of
(2.15) and (2.22), we get

B
2 2 1
— 4+ (u— < - -
|az — paz| + (p — a1)laz|” < 3745 s
By (3448 — Ay3) s Bi(3+48 — M) 2
— — — _|_ — .
‘wQ‘ (2 +ﬂ . )\72)2 (:u Qg p)‘w1| (2 ¥ 6 . )\72)2 (:u a1)|w1|
Hence, by virtue of Lemma 1.2, we have
B
2 _ I S P 2 2
laz — paz| + (p — ar)laz]” < 3715 v, (1= Jwi]? + |wi[*]

which yields the assertion (2.34).
If a1 + p < p < ay +2p, then again from (2.15) and (2.22) and Lemma 1.2, we obtain

B
2 2 1
az — pas| + (o +2p — a < —
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Bi1(3 448 — \y3) Bi(3+48 = \3)

wa| + — g — p)|wr]? + a1+ 2p — p)|w|?
| 2| (2+5_>\72)2 (:U’ 1 p)' 1| (2+B_A72)2 ( 1 P /1’)‘ 1|
B 9 9
<t n-
which gives the estimate (2.35). O

We conclude this paper by remarking that the above theorems include several
previously established results for particular values of the parameters A,s,¢ and (.
Thus, if we set § = 0,s =1 in Theorems 2.1 and 2.6 above, we arrive at the Fekete-
Szegd type inequalities for the classes grj(¢7t) and G*(¢, 1), respectively, studied by
Sharma and Raina [25]. Further, the majorization result and improvement of bounds
given by Theorems 2.7 and 2.9 provide extensions of similar results due to Sharma
and Raina [25].
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