### Radii of harmonic mapping with fixed second coefficients in the plane

#### Abstract

stable starlikness, stable convexity, fully starlikness and fully convexity of order $\alpha$ for these type of functions. All results are sharp.

Also these results generalize and improve some results in the literature

#### Keywords

#### Full Text:

PDF#### References

J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Shlodowska, sect. A textbf{59}(2) (1998), 57-66.

Press, Cambridge, 2004.

=========================================

J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. textbf{235}(2) (1999), 470-477.

=========================================

H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mapping, Bull. Amer. Math. Soc,

textbf{24}(10) (1936), 689-692.

=========================================

B. Y. Long and H. Hang, Radii of harmonic mapping in the plane, J. Aust. Math. Soc. (2016), 1-7.

=========================================

A. Gangadharan, V. Ravichandran and T.

N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions. Journal of mathematical analysis and applications. textbf{211}(1) (1997), 301-313.

=========================================

R. Hernandez and M. J.Martín, Stable geometric properties of analytic and harmonic functions, Math. Pro. of the Cambridge Philosophical Soc. textbf{155} (2013), no. 02, 343-359.

DOI: http://dx.doi.org/10.24193/subbmath.2018.2.03

### Refbacks

- There are currently no refbacks.