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Sufficient conditions for Janowski starlike
functions

Kanika Sharma and V. Ravichandran

Abstract. Let p be an analytic function defined on the open unit disc D with
p(0) = 1. The conditions on C, D, E, F are derived for p(z) to be subordinate
to (1 + Az)/(1 4+ Bz), (-1 < B < A < 1) when C(2)2*p"(2) + D(2)zp'(2) +
E(2)p(=) + F(z) = 0 or C(2)p() + D(2)2p(2) + E(2)p(2) + F(z) = 0 or
|D(2)zp'(z) + E(2)p(z) + F(z)| < M, (M > 0), where C, D, E, F are complex-
valued functions. Sufficient conditions for confluent (Kummer) hypergeometric
function, generalized and normalized Bessel function of the first kind of complex
order and integral operator to be subordinate to (14 Az)/(1 4+ Bz) are obtained
as applications. Few more applications are discussed.
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1. Introduction

Let #H denote the class of analytic functions in the unit disc D := {z € C: |z| < 1}.
For a fixed positive integer n, let H[a,n| be the subset of H consisting of functions p
of the form p(2) = a + pp2™ + pny12™t + - . Let A, denote the class of analytic
functions in D of the form

f@) =24 Y ah,
k=n+1

and let A := A;. Let S denote the subclass of A consisting of univalent (one-to-one)
functions. For —1 < B < A < 1, the class §*[4, B] defined by

. . Cz2fl(z) 14 Az
S [A,B}._{feA. B <1+Bz}

is the class of Janowski starlike functions [9]. For 0 < 5 < 1, S*[1 — 28, —1] := §*(8)
is the usual class of starlike functions of order ;

S 1—-8,0:=8;={feA:|2f'(2)/f(z) =1] <1 — 3} and




64 Kanika Sharma and V. Ravichandran

S*(B, =B :==S"[B] ={f € At |2f'(2)/f(2) — 1] < Bl=f'(2)/ (=) + 1]}
These classes have been studied, for example, in [2, 3, 14, 16]. The class §* := §*(0)
is the class of starlike functions. Recently, the authors have investigated the sufficient
conditions for a function to belong to various subclasses of S*[A, B] in [20, 19, 15].
A function f € A is said to be close-to-convex of order 8 [13, 8] if Re(zf"(2)/g(z)) > 8
for some g € 8*. More results regarding these classes can be found in [7, 10].
In Theorem 2.1 of this paper, we investigate the conditions on C, D, E, F' so that

C(2)2*p" (2) + D(2)2p (2) + E(2)p(2) + F(2) = 0

implies that p(z) < (1 + Az)/(1 + Bz), (-1 < B < A < 1), where C,D,E, F are
complex-valued functions. Miller and Mocanu [11] have obtained the linear integral
operators that preserve analytic function with positive real part. We extend this result
by investigating the sufficient conditions for integral operator to be subordinate to
(1+ Az)/(1 + Bz) by applying Theorem 2.1. We also apply Theorem 2.1 to obtain
sufficient conditions for generalized and normalized Bessel function of the first kind
of complex order and confluent (Kummer) hypergeometric function to be subordinate
to (14 Az)/(1+ Bz). For A =1, B = —1, all these applications get reduced to some
well-known results. As an application, we also get some conditions on functions f € A,
g € H[1,1] so that their product fg € S*[A, B]. Section 3 deals with the problem of
finding conditions on C, D, E, F so that C(2)p?(2)+ D(2)2p'(2) + E(2)p(2) + F(z) = 0
or |D(2)zp/ (2)+E(2)p(2)+F ()] < M, (M > 0) implies that p(z) < (1+Az)/(1+Bz).

Let @Q be the class of functions ¢ that are analytic and injective in D\ R(q),
where

R(g) = {y € D lim ¢(2) = oo},

and are such that ¢'(y) # 0 for y € D \ R(q). The following results are required in
our investigation.

Lemma 1.1. [13, Theorem 2.2d, p.24] Let p € H|a,n] and g € Q with p(z) Z a and
q(0) = a. If p £ q, then there points zo € D, (o € ID\ R(q) and an m > n > 1 such
that p({z : 2] < |z0l}) < g(D),

(i) p(20) = a(o),

(i) zop'(20) = mGoq'(Co),

fiii) Re((z0p" (0) /' (20)) + 1) > mRe((206" (20) /4 (20)) + 1).

Lemma 1.2. [13, Theorem 2.3i, p.35] Let Q C C and suppose that ¢ : C3 x D — C
satisfies the condition ¥(ip, o, u+iv;z) ¢ Q whenever p, o, p and v are real numbers,
o< —n(l+p%)/2, u+o<0.Ifp e H[l,n] and ¥(p(2),2p'(2),2%p"(2);2) € Q for
z €D, then Rep(z) > 0 in D.

2. Main results

Theorem 2.1. Let n be a positive integer, —1 < B < A < 1,C(z) = C > 0. Suppose
that the functions D, E, F : D — C satisfy

(i) Re D(z) > C,

(i) Either Re E(z) > 0 and Re F'(z) > 0 or more generally,

(A—=B)(ReD(2) — C)n+ (1+ A)(1+ B)Re E(2) + (1 + B)?Re F(z) > 0,
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(iii) (AB —1)Im E(z) — (B2 — 1) Im F(2))?
< ((A=B)(ReD(2) = C)n+ (1+ A)(1+ B)Re E(z) + (1 + B)*Re F(2))
((A=B)(ReD(z) — C)n— (1 — A)(1 — B)Re E(2) — (1 — B)?Re F(2)).
If p € H[1,n], (1 + B)p(z) # (1 + A) and satisfy
C22p"(2) 4+ D(2)2p'(2) + E(2)p(z) + F(2) = 0, (2.1)
then p(2) < (14 Az)/(1 + Bz).
Proof. For p € H[1,n], define the function ¢ : D — C by
—(1-4)+ (1 - B)p(z)

LS Sy gz s (22)
Then ¢ is analytic in D and ¢(0) = 1. A simple computation shows that

- o

¥ = (=5 (14 R 24
ani,,(z) _2A=B)((1=B)+ (14 B2 (2) ~ A= B)1 + BYG ),

(1= B)+(1+ B)g(2))?

Using (2.3), (2.4) and (2.5) in (2.1), a calculation shows that g satisfies the following
equation

2C(1+ B)

BI04 A)( (Zf);‘) B+0+84)
F(2)((1 - B) + (1+ B)q(2))?
+ 24— B) =0.
Let 9 : C?> x D — C be defined by
L 2C(1+ B)
P(r, s, t;2) = Ct — i-DB i+t B)r52 + D(2)s
n Ez)((1-4)+(1 ;—(j)j)é()l—B)-i-(l-i-B)T) @27)
F(2)((1 = B) + (1+ B)r)?

+ 2(A—B) '

Then the condition (2.6) is equivalent to 1(q(2), 2¢'(2), 22¢" (2); z) € Q = {0}.
To show that Regq(z) > 0 for z € D, from Lemma 1.2, it is sufficient to prove that
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Re ) (ip, o, i +iv;z) < 0 in D for any real p, o, u and v satisfying o < —n(1+ p?)/2,
n+ o <0.For z €D, it follows from (2.7) that

20(1 — B?)o?
(1 - B)2+ (1 + B)2p?
ReE(z)((l ~A)(1-B) - (1+A)(1+ B)p2>

Rey(ip,o,p+iv;z) = Cu —

+oReD(z)

" 2(A-B) (2.8)
L (0=B? (14 B2 ReF(2)
2(A—-B)
(B2 —1)pIm F(2) N (AB — 1)pIm E(z)
A-B A-B ’

Using conditions Re D(2) > C >0, p+ o0 <0 and o < —n(1 + p?)/2, we get
Cpu+oReD(z) < —Co +oReD(z) < —n(1 + p*)(Re D(z) — C)/2

and
2C(1 — B?)o? <0
(1-B)2+(1+B)2p2 —

Thus from (2.8), we have
(AB —1)pIm E(z2)

Rei(ip, 0,1+ ivi2) < —-(1+ p*) (Re D(z) — C) +

A-B
Re B(:)((1— A)(1— B) — (1 + A)(1 + B)p?)
+ 2(A— B)
((1=B)> = (1+B)*p*)Re F(2)
+ 2(A— B)
(B —li)_pI;nF(z) =:ap® +bp+ec,
where
1
a= _Q(T—B)((A — B)(ReD(z) —C)n+ (1+ A)(1+ B)Re E(2)
+(1+ B)?Re F(2)),
1 2
b= “3AB) (2(AB — 1)Im E(2) — 2(B* — 1) Im F(=2)),

1
" 2(A-B)
— (1= B)’ReF(z)).

CcC =

(A= B)(ReD(z) — C)n — (1 — A)(1 — B)Re E(z)

In view of the conditions (i) and (4ii) of Theorem 2.1, we see that a < 0 and b*>—4ac <
0 respectively. So, Re(ip, o, u + iv;z) < 0 in D. Hence by Lemma 1.2, we deduce
that Reg(z) > 0, that is, by using (2.2), we get

—(1-A)+(1Q-B)p(z) 1+=z

(1+A)—(1+ B)p(z) 1—2
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Therefore, there exist an analytic function w in D with w(0) = 0 and |w(z)| < 1 such
that
-1-A)+(1- B)p(z) 1 —|— w(z)
(1+A) = (1+ B)p(2) w(z)
which gives that p(z) = (1 + Aw)/(1 + Bw) and thus, p( ) <

(1+Az)/(1+ Bz). O

By taking A =1 and B = —1 in Theorem 2.1, we get the following result.

Corollary 2.2. Let n be a positive integer, C(z) = C > 0. Suppose that the functions
D,E F :D — C satisfy
(i) Re D(z) > C,
(i) Im E(z))? < ((Re D(z) — C)n)((Re D(z) — C)n — 2Re F(2)).
If p € H[1,n] and satisfy C2?p"(z) + D(2)2p/'(2) + E(2)p(2) + F(2) = 0, then

Rep(z) > 0.

By taking C(z) = 0 and F(z) = 0 in Theorem 2.1, we get the following result
for first order differential subordination.

Corollary 2.3. Letn be a positive integer, —1 < B < A < 1. Suppose that the functions
D, E :D — C satisfy

(i) Re D(z) > 0,

(ii) Re E(z) > (—n(A— B)Re D(2))/((1 + A)(1 + B)),

(iii) (AB —1)Im E(2))? < ((A— B)nRe D(2) + (1 + A)(1 + B) Re E(z))

(A= B)nReD(z) — (1 — A)(1 — B)Re E(2)).

If p € H[1,n], 1+ B)p(2) # (1 + A) and satisfy D(2)zp'(z) + E(z)p(z) = 0, then
p(z) < (1+ Az)/(1+ Bz).

Next, we study the confluent (Kummer) hypergeometric function ®(a,¢; z) given by

(c) I(a+n) = (@), 2"
P = — 2.9
(0.62) = 505 2 et ot 2(%”!7 (29)

where a,c € C,c#0,—1,-2,---, and ()\)n denotes the Pochhammer symbol given by
MNo =1, (N)n =AA+1)p—1. The function ® € H[1,1] is a solution of the differential
equation

20" (a,¢;2) + (¢ — 2)®(a,¢;2) — a®P(a,c;2) =0 (2.10)
introduced by Kummer in 1837 [21]. The function ®(a,c;z) satisfies the following

recursive relation
c® (a;c;2) = a®(a+ 1;¢ + 15 2).
When Rec > Rea > 0, ® can be expressed in the integral form

I'(c)

b(a;c;2) = m/o 1 =) e dt.



68 Kanika Sharma and V. Ravichandran

There has been several works [1, 11, 17, 18] studying geometric properties of the
function ®(a;c;z), such as on its close-to-convexity, starlikeness and convexity. By
the use of Theorem 2.1, we obtain the following sufficient conditions for

D(a,c;z) < (1+ Az)/(1 + Bz).

Corollary 2.4. Let n be a positive integer and —1 < B < A < 1.
If (14 B)®(a,c;2) # (1+ A) and a,c € R satisfy
(i) (A= B)(c—2)—(1+ A)(1+ B)|a] > 0,
(ii) (a —1)°B — (1 +a)?A <0,
(iii) a®>(A—B)(AB—1)?+2a(A+B)(AB—1)?>+(A—B)(AB(AB+4c?—8c+2)+1) < 0,
then ®(a;c;2) < (14 Az)/(1 + Bz).
Proof. To begin with, note that in view of (2.10), the function ®(a, ¢; z) satisfies (2.1)
with C(z) =1, D(2) = ¢—z, E(z) = —az and F(z) = 0. Since by the given condition
(i), ¢ > 2, we get Re D(z) = ¢—a > C for z € D. The given condition (i) yields
(A—B)(ReD(z) —C)n+ (1 + A)(1+ B)Re E(2) + (1 + B)*Re F(2)
>(A-B)(c—2)—(1+A)(1+ B)ax
>(A-B)(c—2)—(1+A)(1+ B)lal >0.
For z = z 4+ 1y € D, we have
(AB-1)ImE(z) — (B> = 1) Im F(2))> — (A — B)(Re D(2) — C)n
+(1+ A)(1+ B)ReE(2) + (1+ B)*Re F(2)) ((A — B)
(ReD(z) = C)n— (1 — A)(1 — B)Re E(z) — (1 — B)’Re F(2))
= (AB —1)%a*y* — (A= B)(c—x —1) — (1+ A)(1 + B)ax)
(A=B)(c—z—-1)+(1—-A)(1 - B)ax)
< (AB - 1)%a*(1 —2*) — (A= B)(c—x — 1)
—(14+A)(1+B)az)((A—B)(c—x—1)
+(1 — A)(1 — B)ax) =: G(x) = px® + qx +,
where
p=(A-B)((a—1)’B - (a+1)*4),
q=2(c—=1)(A=B)((a+1)A+ (a—1)B)
and
r=a?*(AB - 1) — (c—1)*(A - B)%
Using (i4) and (4ii), we get p < 0 and ¢? — 4pr < 0 respectively. So, G(x) < 0 and

thus, all the conditions of the Theorem 2.1 are satisfied.
Hence, ®(a;c;2) < (14 Az)/(1 + Bz). O

Remark 2.5. Taking A = 1 and B = —1 in Corollary 2.4, we get the following well
known result:
If a,c € R such that ¢ > 1+ /1 + a2, then Re ®(a;c; z) > 0.
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Miller and Mocanu [11] have obtained the linear integral operators I such that
I[P,] C Py, where P,, = {f € H[1,n] : Re f(z) > 0 for z € D}. We extend this result
by investigating the sufficient conditions for I[f](z) < (1 + Az)/(1 + Bz) for f € P,.

Corollary 2.6. Let v € C\ {0} such that Rey > 0, n be a positive integer, —1 < B <
A < 1. Suppose that ¢, ¥ € H[1,n] such that ¢(z) # 0 and ¥ (z) # 0 for z € D. Define
the integral operator I as

I1f](z) = —2 / T Ot

Z1P(2)
If for f € P,, the following conditions hold:
P(2)
Re (So) 2° o
n(4-B)Re (Lurs) + L+ AL+ BRe (FETEES)
— (14 B)?Re f(z) >0,
(14 - m (FETEE) 4.8 - 1 100)
B . ?(2) o 79(2) + 2¢'(2)
<(na-BR (W(z)) +(1+ A)(1+ B)Re ) ) o1y
~ 1+ 5 Ref(9) (104~ B Re (7))

19(2) + 2¢'(2)

—(1—A)(1—B)Re( e

)+ (1= B Re f(2)),
then I[f](z) < (1+ Az)/(1+ Bz).

Proof. Suppose that the function f € P, satisfy (2.11)— (2.13). Define the function
p:D— C by

_ Y c ~v—1
p(z) = z"ng(z)/O FOO ™ p(t)dt. (2.14)

Result [13, Lemma 1.2¢, p. 11] together with some calculations show that p is well
defined and p € H[1,n]. On differentiating (2.14), we see that p satisfies the differential
equation

D(2)zp'(2) + E(2)p(2) — f(2) = 0,

where D(z) = ¢(2)/v(z) and E(z) = (vé(z) + 2¢'(2)) /v (2). Tt is easy to verify
that (2.11), (2.12) and (2.13) respectively shows that the conditions (4), (i) and (4i7)
of Theorem 2.1 are satisfied with C' = 0, F(z) = —f(z). Therefore, by Theorem 2.1,
it follows that p(z) < (1 + Az)/(1 + Bz). U

Taking A =1 and B = —1 in Corollary 2.6, we get the following result.
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Corollary 2.7. Let v € C\ {0} such that Revy > 0, n be a positive integer. Suppose
that ¢, ¥ € H[1,n] such that ¢(z) # 0 and ¥ (z) # 0 for z € D. Define the integral
operator I as

f1e) = s | f0tvioa

If for f € P,, the following conditions hold:
(Im (’yqﬁ(zfiz;(j)(b (Z)))2 < (nRe (j;b((zz)))) (n Re (’YQ;((ZZ))) + 2Re f(z)), (2.15)
then Re(I[f](z)) > 0.

Remark 2.8. [13, Lemma 4.2a, p. 202] proves that if
(A< o (249,
then I[P,] C P,. Since for any f € P,,, we have
(nRe (7‘1’52))) < (nRe (7‘258)) +2Re f(2)).

Therefore, Corollary 2.7 can be regarded as one of the particular case of [13, Lemma
4.2a, p. 202].

Next, we study the generalized and normalized Bessel function of the first kind
of order p, upy(2) = upp(2) given by the power series

> (—e/4) 2
Z( /4" 2"

n=0

where b,p,¢ € C such that kK = p+ (b+1)/2 and k # 0,—1,-2,---. The function
up € H[1,1] is a solution of the differential equation

42%u) (2) 4 4kzus,(2) + czup(z) = 0. (2.16)
The function u,(z) also satisfy the following recursive relation
thup(2) = cupin (2),

which is useful for studying its various geometric properties. More results regarding
this function can be found in [6, 5, 4]. By the use of Theorem 2.1, we obtain the
following sufficient conditions for u,(z) < (1 + Az)/(1 + Bz).

Corollary 2.9. Suppose that -1 < B < A<1 and (1+ B)uy(z) #1+A. Ifb,p,ce R
satisfy the following conditions

(i) 4(A=B)(k—1)— (1+ A)(1+ B)|¢| > 0,

(ii) ¢ < AB((2 — AB)c? — 64(k — 1)?),

then u,(2) < (1+ Az)/(1+ Bz).
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Proof. In view of (2.16), the function u,(z) satisfies (2.1) with C(z) =4, D(z) = 4k,
E(z) = cz and F(z) = 0. Since by the given condition (i), k > 1, we get Re D(z) =
4k > C. The given condition (7) yields

(A= B)(ReD(z) — C)n+ (1+ A)(1+ B)Re E(z) + (1 + B)*Re F(z)
>4(A-B)(k—1)—(14+ A)(1+ B)lc| > 0.
For z =z 4+ i1y € D, we have
(AB-1)ImE(z) — (B> = 1) Im F(2))> — (A — B)(Re D(2) — C)n
+(1+A)(1+ B)ReE(2) + (1 + B)*Re F(2)) (A — B)
(ReD(z) = C)n— (1 — A)(1 — B)Re E(z) — (1 — B)’Re F(2))
=(AB-1)’c*y* — (4(A- B)(k— 1)+ (1 + A)(1 + B)cz)
(4(A=B)(k—1) = (1= A)(1 = B)cx)
<(AB-1>*(1—-2*) - 4A-B)(k—1)
+(1+4+ A1+ B)ex)(4(A—-B)(k—1)— (1 — A)(1 — B)cz)
= H(z) = pz® +qx+,
where
—(A-B)*c*, q=—8c(k—1)(A* - B?)
and
r=c*(AB -1)*> - 16(k — 1)*(A — B)*.
From the hypothesis, we obtain p < 0 and
¢* —4pr = 4¢*(A — B)? (AB (*(AB — 2) + 64(k — 1)%) + ¢*) < 0.
So, H(z) < 0. Therefore, by applying Theorem 2.1, we conclude that
up(z) < (1+ Az)/(1 + Bz). O

Remark 2.10. If A =1 and B = —1, then Corollary 2.9 reduces to [4, Theorem 2.2,
p. 29]. So, Corollary 2.9 generalises [4, Theorem 2.2, p. 29].

The following result gives the sufficient conditions for functions i € A,, to belong
to the class of Janowski starlike functions.

Corollary 2.11. Let n be a positive integer, —1 < B < A < 1,C(z) = C > 0. Suppose
that the functions D, E, F : D — C satisfy
(i) ReD(z) > C,
(ii) Either Re E(z) > 0 and Re F(z) > 0, or more generally,
(A—B)(ReD(2) — C)n+ (1+ A)(1+ B)Re E(2) + (1 + B)?Re F(z) > 0,
(iii) ((AB —1)Im E(z2) — (B? — 1) Im F(2))?
< ((A=B)(ReD(z) = C)n+ (1 + A)(1 + B)Re E(2)
+(14 B)*Re F(z))((A— B)(Re D(2) — C)n
—(1—A)(1 - B)ReE(z) — (1— B)?Re F(2)).
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Ifhe A, (14 B)zh'(z)/h(z) # (1 + A) and satisfy

e (2(5)" - e+ B8 4 o b))

250 - () + 0@ + BT + e =0

then h € S*[A, B.

Proof. Let the function p : D — C be defined by p(z) = zh/(z)/h(z). Then p is
analytic in D with p(0) = 1. A calculation shows that

2p'(z) L+ zh"(z)  2W(2)

p(2) W(z)  h(z)

The result now follows from Theorem 2.1.

O

We obtain our next application by taking n = 1, C(z) = F(2) =0, D(z) = 1,
h(z) = f(2)g(z) with f € A, g € H[1,1] and E(2) = =1 —zh"(2) /W (2) + zh/(2) /h(2)
in Corollary 2.11.

Corollary 2.12. Let —1 < B < A < 1. Suppose that the functions f € A, g € H[1,1]

and K(z) = 2f'(2)/f(2) + 29'(2)/9(2) = (229" + 2f"g + 29" )/ (f'9 + 9'f)) satisfy

(i) (1+ B)2(f'(2)9(2) + () f(2)) # (1 + A f(2)g(2),

(1) ReK(z) >1—(A—B)/((1+ A)(1 + B)),

(iii) (AB —1)(ImK(2) —1))* < (A= B)+ (1+ A)(1+ B)(Re K(z) — 1))
(A-B)—(1-A4)(1-B)(ReK(z) — 1))

then fg € S*[A, B].

3. Two more sufficient conditions for Janowski starlikeness

For p € H[1,n], Miller and Mocanu [13, Example 2.4m, p. 43] obtained the
conditions on C, D, FE, F' so that

Re(C(2)p*(2) + D(2)2p'(2) + E(2)p(2) + F(2)) > 0 = Rep(z) > 0,z € D.
In contrast to the above result, in this section, for —1 < B < A < 1, we investigate
conditions on C, D, E, F' so that for z € D,
C(2)p*(2) + D(2)2p' (2) + E(2)p(2) + F(2) =0 = p(2) < (1 + A2)/(1 + Bz)

and then give an application.

Theorem 3.1. Let n be a positive integer, —1 < B < A < 1. Suppose that the functions
C,D,E,F :D — C satisfy

(i) Re D(z) > 0,

(ii) (A—=B)nRe D(2)+(1+A)(1+B) Re E(2)+(1+B)? Re F(2)+(1+A)2Re C(z) > 0
(iii) (1 — AB)Im E(2) + (1 — B>)Im F(2) + (1 — A%2) Im C(2))?

< ((A ~ B)nReD(z) + (1 + A)(1 + B)Re E(2) + (1 + B)?Re F(2)
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F(1+ A)? ReC(z)) ((A — B)nReD(2)
—(1—-A)(1-B)ReE(z) — (1 - B)*Re F(z) — (1 — A)? ReC(z)).
Ifpe H[1,n|, 1+ B)p(z) # (1 4+ A) and satisfy
C(2)p*(2) + D(2)2p'(2) + E(2)p(2) + F(z) = 0, (3.1)
then p(z) < (1+ Az)/(1 + Bz).
Proof. For p € H[1,n], define the function ¢ : D — C by

o) — —0= A+ (1= B)p(z)

(1+A)— (14 B)p(2)
Then ¢ is analytic in D and ¢(0) = 1. Proceeding as in Theorem 2.1, the differential
equation (3.1) takes the following form

C(2)((1 = A) + (1 + A)g())?

(3.2)

D(2)zq'(2) +

2(A—B)
NECILED EIESVELESJEILER VI R
F(z)((1 - B) + (14 B)q(2))* _
+ 2(A—B) =0
Let 9 : C2 x D — C be defined by
P(r,s;2) = D(2)s + cl)d ;(i)+3(1 +Ar)
L B -A) 1 ;j)f)g)l ~B)+(1+B)r) )
n F(z)((1 = B)+ (1+ B)r)?
24— B) ‘

It follows from (3.3) that ¥(q(2), 2¢'(2); z) € & = {0}. Now to ensure that Reg(z) > 0
for z € D, from Lemma 1.2, it is enough to establish that Re(ip,0;2) < 0 in D for
any real p, o, satisfying 0 < —n(1 + p?)/2. For z € D in (3.4), a computation using
condition (4) yields that
(1—-4)2—(1+A4)%?)ReC(2)

2(A - B)

(A2 —1)pIm C(2) n (AB — 1)pIm E(2)
A-B A-B
ReE(z)((l —A)(1-B) - (1+A)1+ B)pQ)
2(A - B)

(1= B)? - (1+ B)?*p*)Re F(2) n (B? —1)pIm F(z)

2(A— B) A-B
(1= 4)° = (1+ AP ReC(2)

2(A - B)

Re(ip,0;2) =ocReD(z) +

+

+

< —g(1+p2)ReD(z)+
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Re B(2)((1 = A)(1 - B) = (1+ A)(1+ B)*)
2(A - B)
(1-B)?—-(1+B)?2?p*)ReF(z) (B?>-1)pImF(z)
2(A-B) A-B
(A2 —1)pImC(z) (AB —1)pIm E(2)
A—-B A—-B

+

+

=ap® +bp+c, (3.5)
where
1
2(A—B) ((
+ (14 B)*ReF(z) + (1 + A)’Re C(2)),
1
- (A— B) ((
1
2(A—B) ((
— (1= B)?ReF(z) — (1 — A)*ReC(2)).
In view of the conditions (i) and (4ii), we see that a < 0 and b*> —4ac < 0 respectively.
So, Re ¢ (ip, o, u+iv;z) < 0in D. Hence, by Lemma 1.2, we deduce that Reg(z) > 0,
that is, by using (3.2), we get
-(1-A)+ (1 -B)p(z) - 1+2
0T A) -(+Bpi) 1-2
Therefore, there exist an analytic function w in D with w(0) = 0 and |w(z)| < 1 such
that

A—B)nReD(z)+ (1+ A)(1+ B)Re E(z)

1—AB)ImE(2) + (1 - B*)Im F(z) + (1 — A%)Im C(2)),

A—B)nReD(z) — (1 - A)(1 — B)Re E(z)

—(1—A)+ (1 - B)p(z) 1+w(z)
(1+4) = (1+ B)p(2) w(z)
which gives that p(z) = (1 + Aw)/(1 + Bw) and thus p(z) (14 Az)/(1+ Bz). O

The next result follows by taking p(z) = zf'(2)/f(z) in Theorem 3.1.

Corollary 3.2. Let n be a positive integer, —1 < B < A < 1,C(z) = C > 0. Suppose
that the functions D, E, F : D — C satisfy

(i) Re D(2) = 0,

(ii) (A—=B)nRe D(2)+(1+A)(1+B) Re E(2)+(1+B)? Re F(2)+(1+A)?Re C(z) > 0
(iii) (1 — AB)Im E(2) + (1 — B>)Im F(2) + (1 — A%2) Im C(2))?

< ((A — B)nReD(2) + (1+ A)(1+ B)Re E(z) + (1 + B)?Re F(z)
(14 A)? ReC(z)) ((A ~ BnReD(2) — (1 — A)(1 — B)Re E(2)
—(1—B)?ReF(z) — (1 — A)?Re C(z)).
I € Au, (L4 B)f!(2)/1(2) # (1+ A) and satisfy

C(z) (Z]J:(i? )2 +D()(1+ ZJ{(S) - ZJ{(S)) ZJ{(;) +E(2) (Zf/(z)) Y F(z) =0,
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then f € S*[A, B].

We close this section by finding conditions on D, E, F' so that p(z) < (14+Az)/(14+Bz)
when |D(z)zp'(z) + E(2)p(z) + F(z)| < M, (M > 0).

Theorem 3.3. Let n be a positive integer, M > 0 and —1 < B < A < 1. Suppose that
the functions D, E, F : D — C satisfy

n(A = B)|D(2)| — (1 + AN+ |B)|E(2)| = (1 + |B)*(M + |F(2)]). (3.6)
If p € H[1,n] and satisfy
|D(2)zp'(2) + E(2)p(2) + F(2)| < M, (3.7)

then p(z) < (1 + Az)/(1 + Bz).

Proof. In view of condition (3.7), we must have |E(0) + F(0)] < M. Suppose that
G(z) = D(2)zp'(2) + E(2)p(2) + F(2). If we assume that p is not subordinate to
(14 Az)/(1 + Bz) =: q(z), then by Lemma 1.1, there exist points zg € D, {y € ID
and an m > n such that

. . 1+ A
p(z0) = al60) = 110 (338)
and 1B
200 (20) = mCoq' (o) = m. (3.9)
Using (3.8), (3.9) , (3.6) and the fact that |(o] = 1 and m > n, we get
> T (A = BIDGo)] = |1+ AG1+ Bl (o) = 1+ BG | (z0))
1
=z W(”(A — B)|[D(20)| = (1 + A (L + |B)|E(20)| = (|1 + |B])*|F(20)]) = M.
Since this contradicts (3.7), we get our required result. 0
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