Some comments on a linear programming problem

Marcel Bogdan


Besides the very known two exits of the Simplex Algorithm we
consider two more cases when at least a solution exists and to
decide whether or not the solution is unique. This situation
occurred in a linear programming problem, on one hand applying the
Simplex Algorithm and on the other hand using Matlab command {\it
linprog}, that led to the case of unbounded solution set and its
construction. Some necessary conditions on data are given so that
the set of solutions to be boundedless.


linear programming; simplex algorithm; multiple solutions

Full Text:



bibitem{Breckner1} Breckner, E.B., textit{De la poliedre la jocuri matriceale}, Editura Fundac tiei pentru Studii Europene,

Cluj-Napoca, 2007.

bibitem{Breckner2} Breckner, E.B., Popovici, N., emph{Probleme de cercetare operac{t}ionalu{a}}, Editura

Fundac tiei pentru Studii Europene, Cluj-Napoca, 2006.

bibitem{Breckner3} Breckner, W.W., textit{Cercetu{a}ri operac{t}ionale}, curs

litografiat, Cluj-Napoca, 1974.

bibitem{Dantzig1} Dantzig, G.B., textit{Linear Programming and Extensions}, Princeton University Press, 1963.

bibitem{Dantzig2} Dantzig, G.B., textit{Linear Programming}, Oper. Res. textbf{50}(2002), no. 1, 42-47.

bibitem{Griffin1} Griffin, C., Linear Programming: Penn State Math 484

Lecture Notes, 2009-2014,$_{-}V1$.pdf

bibitem{Robere1} Robere, R., Interior Point Methods and Linear


bibitem{e} Excell,

bibitem{m} Matlab,

bibitem{o} Octave,$_{-}125$.html

bibitem{oo} Octave,



  • There are currently no refbacks.