Overiteration of d-variate tensor product Bernstein operators: a quantitative result
DOI:
https://doi.org/10.24193/subbmath.2024.4.13Keywords:
positive linear operators, Bernstein operators, second order moduli, d-variate approximation, tensor product approximation, product of parametric extensionsAbstract
Extending an earlier estimate for the degree of approximation of overiterated univariate Bernstein operators towards the same operator of degree one, it is shown that an analogous result holds in the d-variate case. The method employed can be carried over to many other cases and is not restricted to Bernstein-type or similar methods.
References
Agratini, O., Rus, I., Iterates of a class of discrete linear operators via contraction
principle, Commentat. Math. Univ. Carol., 44(2003), no. 3, 555-563.
Agratini, O., Rus, I., Iterates of some bivariate approximation process via weakly Picard
operators, Nonlinear Anal. Forum, 8(2003), no. 2 , 159-168.
Albu, M., Asupra convergent ei iteratelor unor operatori liniari si m arginit i, Sem. Itin.
Ec. Fun. Approx. Convex., Cluj-Napoca, (1979), 6-16.
Gonska, H., Quantitative Aussagen zur Approximation durch positive lineare Operatoren,
Dissertation, Universitat Duisburg 1979.
Gonska, H., Products of parametric extensions: Re ned estimates, In: Proc. 2nd Int.
Conf. on "Symmetry and Antisymmetry" in Mathematics, Formal Languages and Computer
Science (ed. by G.V. Orman and D. Bocu), 1-15. Brasov, Editura Universit at ii
"Transilvania", 2000.
Gonska, H., Kacs o, D., Pitul, P., The degree of convergence of over-iterated positive
linear operators, J. of Applied Functional Analysis, 1(2006), 403-423.
Gonska, H., Kovacheva, R., The second order modulus revisited: Remarks, applications,
problems, Confer. Sem. Mat. Univ. Bari, 257(1994), 1-32.
Jachymski, J., Convergence of iterates of linear operators and the Kelisky-Rivlin type
theorems, Studia Math., 195(2009), no. 2, 99-112.
Karlin, S., Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory,
(1970), 310-339.
Kelisky, R.P. Rivlin, T.J., Iterates of Bernstein polynomials, Paci c J. Math., 21(1967),
-520.
Nagel, J., Satze Korovkinschen Typs fur die Approximation linearer positiver Operatoren,
Dissertation, Universitat Essen, 1978.
Popoviciu, T., Problem posed on Dec. 6, In: Caietul de Probleme al Catedrei de analiz a,
(1955), no. 58.
Precup, R., On the iterates of uni- and multidimensional operators, Bull. Transilv. Univ.
Bra sov Ser. III. Math. Comput. Sci., 3(65)(2023), No. 2, 143-152.
Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal.
Appl., 292(2004), 259-261.
Sikkema, P.C., Uber Potenzen von verallgemeinerten Bernstein-Operatoren, Mathematica,
Cluj, 8(31)(1966), 173-180.
Wenz, H.-J., On the limits of (linear combinations of ) iterates of linear operators, J.
Approx. Theory, 89(1997), no. 2, 219-237.
Wikipedia (German), https://de.wikipedia.org/wiki/Hyperwurfel (Jan. 19, 2024).
Zhuk, V.V., Functions of the Lip 1 class and S. N. Bernstein's polynomials (Russian),
Vestn. Leningr. Univ., Math., 22 (1989), no. 1, 38-44; translation of Vestn. Leningr.
Univ., Ser. I(1989), no. 1, 25-30.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.