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Approximation with an arbitrary order
by generalized Kantorovich-type and
Durrmeyer-type operators on [0,+∞)

Sorin Trifa

Abstract. Given an arbitrary sequence λn > 0, n ∈ N, with the property that
limn→∞ λn = 0 as fast we want, in this note we introduce modified/ gene-
ralized Szász-Kantorovich, Baskakov-Kantorovich, Szász-Durrmeyer-Stancu and
Baskakov-Szász-Durrmeyer-Stancu operators in such a way that on each compact
subinterval in [0,+∞) the order of uniform approximation is ω1(f ;

√
λn). These

modified operators uniformly approximate a Lipschitz 1 function, on each com-
pact subinterval of [0,∞) with the arbitrary good order of approximation

√
λn.

The results obtained are of a definitive character (that is are the best possible)
and also have a strong unifying character, in the sense that for various choices
of the nodes λn, one can recapture previous approximation results obtained for
these operators by other authors.
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1. Introduction

It is known that the classical Baskakov operators are given by the formula (see,
e.g., [2])

Vn(f)(x) =

∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
f

(
j

n

)
= (1 + x)−n

∞∑
j=0

(n+ j − 1)!

j!(n− 1)!

xj

(1 + x)j

= (1 + x)−n
∞∑
j=0

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
.
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In the recent paper [9], this operator was modified by replacing n with 1
λn

, where

limn→∞ λn = 0 as fast we want, and the approximation properties (of arbitrary good
order depending on λn) of the new obtained Baskakov operator defined by the formula

Vn(f ;λn)(x) = (1+x)
−1
λn

∞∑
j=0

1

j!

1

λn

(
1+

1

λn

)
. . .

(
j−1 +

1

λn

)(
x

1 + x

)j
f(jλn), x≥ 0,

were obtained. Above by convention,

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)
= 1 for j = 0.

The complex variable case for Vn(f ;λn) was studied in [10]. Also, in [6], the above idea
was applied to the Jakimovski-Leviatan-Ismail kind generalization of Szász-Mirakjan
operators.

The goal of the present paper is that based on the above idea, to introduce modi-
fied/generalized Szász-Kantorovich, Baskakov-Kantorovich, Szász-Durrmeyer-Stancu
and Baskakov-Szász-Durrmeyer-Stancu operators in such a way that on each compact
subinterval in [0,+∞) the order of uniform approximation is ω1(f ;

√
λn). These mod-

ified operators can uniformly approximate a Lipschitz 1 function, on each compact
subinterval of [0,∞) with the arbitrary good order of approximation

√
λn given at

the beginning.
In conclusion, it is worth mentioning for these generalized operators that since

λn ca be chosen with λn ↘ 0 arbitrary fast, in fact it follows that the order of
convergence ω1(f ;

√
λn) is arbitrary good. For this reason, the results obtained by

this paper have a definitive character (that is they are the best possible). In the same
time, the results also have a strong unifying character, in the sense that for various
choices of the nodes λn one can recapture previous approximation results obtained
by other authors.

2. Generalized Baskakov-Kantorovich operators

In this section we deal with the Baskakov-Kantorovich operators.
It is known that the classical Baskakov-Kantorovich operators are defined by

(see, e.g., [3])

Kn(f)(x) =

∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
n

∫ (j+1)/n

j/n

f(v)dv

= (1 + x)−n
∞∑
j=0

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
n

∫ (j+1)/n

j/n

f(v)dv.

If we replace n with 1
λn

, then we obtain the generalized Baskakov-Kantorovich oper-
ators, defined by the formula

Kn(f ;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)
xj

(1 + x)j
1

λn

∫ (j+1)λn

jλn

f(v)dv.
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Denote everywhere in the paper ek(x) = xk, k = 0, 1, 2, . . .
This section deals with the approximation properties of the operator

Kn(f ;λn)(x). For our purpose, firstly we need the following auxiliary result.
Lemma 2.1. We have:

(i) Kn(e0;λn)(x) = 1; Kn(e1;λn)(x) = x+ 1
2 · λn;

Kn(e2;λn)(x) = x2 + 2λnx+ λnx
2 +

1

3
· λ2n;

(ii) Kn((t− x)2;λn)(x) = λn
(
x2 + x+ 1

3 · λn
)
.

Proof. By using the formulas in Corollary 2.1 in [9],

Vn(e0;λn)(x) = 1, Vn(e1;λn)(x) = x

and
Vn(e2;λn)(x) = x2 + λnx(1 + x),

we will calculate Kn(e0;λn)(x), Kn(e1;λn)(x), Kn(e2;λn)(x), Kn((t− x)2;λn)(x).
(i) Therefore,
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∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
(jλn + λn − jλn)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
= Vn(e0;λn)(x) = 1.

Also,
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= Vn(e1;λn)(x) +
1

2
λnVn(e0;λn)(x) = x+

1

2
λn.

Then,
Kn(e2;λn)(x)

= (1 + x)−
1
λn

∞∑
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1
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1
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(ii) Finally, we get

Kn((t− x)2;λn)(x) = Kn(t2 − 2tx+ x2;λn)(x)

= Kn(t2;λn)(x)−Kn(2tx;λn)(x) +Kn(x2;λn)(x)

= Kn(e2;λn)(x)− 2xKn(e1;λn)(x) + x2Kn(e0;λn)(x)

= x2 + 2λnx+ λnx
2 +

1

3
λ2n − 2x2 − xλn + x2 = λn(x+ x2 +

1

3
λn). �

The main result of this section is the following.
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Theorem 2.2. Let λn ↘ 0 (with n → ∞) as fast we want and suppose that f :
[0,+∞)→ R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we
have

|Kn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x2 + x+ λn/3),

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ R, |x − y| ≤ δ} denotes the modulus of
continuity of f with the step δ.
Proof. By the classical theory (see, e.g., Shisha-Mond [14] or, e.g., [1], Proposition
1.6.3) (where although the result is proved for continuous functions on compact inter-
vals, the reasonings are similar for uniformly continuous functions on [0,+∞)), for any
positive and linear operator L defined on the set of uniformly continuous functions
UC[0,+∞), we obtain

|L(f)(x)− f(x)| ≤ (1 + δ−1
√
L(ϕ2

x)(x))ω(f ; δ),

for all f ∈ UC[0,+∞), x ∈ [0,+∞), δ > 0, where ϕx(t) = |t− x|.
Replacing above L by Kn and taking into account that by Lemma 2.1, (ii) we have√

Kn((t− x)2;λn)(x) =

√
λn(x+ x2 +

1

3
λn) =

√
λn ·

√
x+ x2 +

1

3
λn,

this implies

|Kn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
λn ·

√
x+ x2 + λn/3)ω1(f ; δ).

Choosing now here δ =
√
λn ·

√
x2 + x+ λn/3 we get

|Kn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn
√
x+ x2 + λn/3),

which proves the estimate in the statement. �
As an immediate consequence of Theorem 2.2 we get the following.

Corollary 2.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Kn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ x2 + λn/3.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
x+ x2 + λn/3 and applying Theorem 2.2, we

get the desired estimate. �
Remarks. 1) Since f ∈ UC[0,+∞), it is well-known that we get limδ↘0 ω1(f ; δ) = 0.
Therefore, since λn ↘ 0, passing to limit with n→∞ in the estimate in Theorem 2.2,
it follows that Kn(f ;λn)(x)→ f(x), pointwise for any x ∈ [0,+∞). Now, in order to

get uniform convergence in the above results, the expression
√
x+ x2 + λn/3 must

be bounded, fact which holds when x belongs to a compact subinterval of [0,+∞).
2) If f ∈ UC[0,+∞), then Kn(f ;λn)(x) is well defined (that is |Kn(f ;λn)(x)| <

+∞ for all x ∈ [0,+∞) and n ∈ N). Indeed, if f is uniformly continuous on [0,+∞)
then it is well known that its growth on [0,+∞) is linear, i.e. there exist α, β > 0
such that |f(x)| ≤ αx+ β, for all x ∈ [0,+∞) (see e.g. [4], p. 48, Problème 4, or [5]).
This immediately implies

|Kn(f ;λn)(x)| ≤ Kn(|f |;λn)(x) ≤ α ·Kn(e1;λn)(x) + β = α(x+ λn/2) + β,



484 Sorin Trifa

for all x ∈ [0,+∞), n ∈ N.
3) The optimality of the estimates in Theorem 2.2 and Corollary 2.3 consists

in the fact that given an arbitrary sequence of strictly positive numbers (γn)n, with
limn→∞ γn = 0, we always can find a sequence λn satisfying

2ω1(f ;
√
λn ·

√
x+ x2 + λn/3) ≤ γn

for all n ∈ N and x belonging to a compact subinterval of [0,+∞) in the case of

Theorem 2.2 and
√
λn ·

√
x+ x2 + λn/3) ≤ γn for all n ∈ N and x in a compact

subinterval of [0,+∞), in the case of Corollary 2.3.

3. Generalized Szász-Kantorovich operators

The formula for the classic, linear and positive Szász-Kantorovich operators is
given by (see, e.g., [16])

Sn(f)(x) = e−nx
∞∑
j=0

(nx)j

j!
n

∫ j+1
n

j
n

f(v)dv = e−nx
∞∑
j=0

(nx)j

j!

∫ 1

0

f(
t+ j

n
)dt.

Replacing above n with 1
λn

, we obtain the generalized Szász-Kantorovich operators,
defined by the formula

Sn(f ;λn)(x) = e−
x
λn

∞∑
j=0

xj

λjnj!

1

λn

∫ (j+1)λn

jλn

f(v)dv

= e−
x
λn

∞∑
j=0

xj

λjnj!

∫ 1

0

f(λn(t+ j))dt.

In this section we study the approximation properties of the operator Sn(f ;λn)(x).
Firstly we need the following lemma.
Lemma 3.1. We have:

(i) Sn(e0;λn)(x) = 1; Sn(e1;λn)(x) = x+ 1
2 · λn;

Sn(e2;λn)(x) = x2 + 2λnx+
1

3
· λ2n;

(ii) Sn((t− x)2;λn)(x) = λn
(
x+ 1

3 · λn
)
.

Proof. (i) We have

Sn(e0;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn
= 1,

for all x ≥ 0 and n ∈ N. Then,

Sn(e1;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn

1

λn
· 1

2

{
[(j + 1)λn]2 − (jλn)2

}
= e−x/λn

∞∑
j=0

xj

j!λjn

1

2λn
·
(
2λ2nj + λ2n

)
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= e−x/λn
∞∑
j=0

xj

j!λjn

λn
2

+ λn · e−x/λn
∞∑
j=0

xj · j
j!λjn

=
λn
2

+ x · e−x/λn
∞∑
j=1

xj−1

(j − 1)!λj−1n

=
λn
2

+ x · e−x/λn
∞∑
k=0

xk

k!λkn
=
λn
2

+ x.

Also,

Sn(e2;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn

1

λn
· 1

3

{
[(j + 1)λn]3 − (jλn)3

}
= e−x/λn

∞∑
j=0

xj

j!λjn

1

3λn
·
{

(3j2 + 3j + 1)λ3n
}

=
λ2n
3

+ e−x/λn
∞∑
j=1

xjj2λ2n

j!λjn
+ e−x/λn

∞∑
j=1

xjjλ2n

j!λjn

=
λ2n
3

+ e−x/λn
∞∑
j=1

xjj(j − 1)λ2n

j!λjn
+ 2e−x/λn

∞∑
j=1

xjjλ2n

j!λjn
= x2 + 2xλn +

λ2n
3
.

(ii) Concluding, we get

Sn((· − x)2;λn)(x) = Kn(λn; e2)(x)− 2x ·Kn(λn; e1)(x) + x2

= xλn + λ2n/3 = λn(x+ λn/3). �

The main result of this section is the following.
Theorem 3.2. Let λn ↘ 0 (with n → ∞) as fast we want and suppose that f :
[0,+∞)→ R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we
have

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x+ λn/3),

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ R, |x − y| ≤ δ} denotes the modulus of
continuity of f with the step δ.
Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|Sn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
Sn(ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =
√
Sn(ϕ2

x;λn)(x) an using Lemma 3.1, (ii), we obtain

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1

(
f ;
√
λn ·

√
x+

1

3
λn

)
≤ 2ω1

(
f ;
√
λn ·

√
x+

1

3
λn

)
,

which proves the theorem. �
As an immediate consequence of Theorem 3.2 we get the following.

Corollary 3.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Sn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ λn/3.
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Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
x+ λn/3 and applying Theorem 3.2, we get the

desired estimate. �
Remark. All the Remarks 1)-3) made at the end of the previous section remain valid
for the generalized Szász-Kantorovich operators too.

4. Generalized Szász-Durrmeyer-type operators

Let us recall that the classical Szász-Durrmeyer operators are given by the for-
mula (see, e.g., [13])

SDn(f)(x) = n

∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f(t)dt,

where sn,j(x) = e−nx (nx)j

j! .

If we replace n with 1
λn

, then we obtain the generalized Szász-Durrmeyer oper-
ators, defined by the formula

SDn(f ;λn)(x) =
1

λn

∞∑
j=0

e−
x
λn · x

j

λjnj!

∫ ∞
0

e−
t
λn · tj

λjnj!
f(t)dt.

In the first part of this section we study the approximation properties of the operator
SDn(f ;λn)(x). Firstly we need the following lemma.
Lemma 4.1. We have:

(i) SDn(e0;λn)(x) = 1; SDn(e1;λn)(x) = x+ λn;

SDn(e2;λn)(x) = x2 + 4λnx+ 2λ2n;

(ii) SDn((t− x)2;λn)(x) = λn (2x+ 2λn).
Proof. (i) Denoting

Ij(f) =

∫ ∞
0

e−
t
λn

( t
λn

)j

j!
f(t)dt,

we can write

SDn(f ;λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
· Ij(f).

Now, taking f(t) = tp and making the change of variable v = t
λn

it follows

Ij(ep) = λn

∫ ∞
0

e−v · v
j

j!
· λpn · vpdv =

λp+1
n

j!
·
∫ ∞
0

e−vvp+jdv

=
λp+1
n

j!
· Γ(p+ j + 1− 1) =

λp+1
n

j!
· (p+ j)!,

where Γ is the Euler’s gamma function.
So, for p = 0, we have Ij(e0) = λn

j! j! = λn, which implies

SDn(e0, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
λn =

1

λn
λn = 1.
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Now, for p = 1 we have Ij(e1) = (λn)
2

j! (j + 1)! = (j + 1)λ2n, which implies

SDn(e1, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
(j + 1)λ2n

=
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
jλ2n +

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
λ2n = x+ λn.

Finally, for p = 2, we have Ij(e2) = (λn)
3

j! (j + 2)! = (j + 1)(j + 2)λ3n, which implies

SDn(e2, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
(j2 + 3j + 2)λ3n

=
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
j2λ3n +

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
3jλ3n

+
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
2λ3n = (x2 + λnx) + 3λnx+ 2λ2n = x2 + 4λnx+ 2λ2n.

(ii) Concluding, we get

SDn((t− x)2;λn)(x) = SDn(t2, λn)(x)− SDn(2tx, λn)(x) + SDn(x2, λn)(x)

= x2 + 4λnx+ 2λ2n − 2x(x+ λn) + x2 = 2λnx+ 2λ2n,

which proves the lemma. �
The first main result of this section is the following.

Theorem 4.2. Let λn ↘ 0 as fast we want and suppose that f : [0,+∞) → R is
uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|SDn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn).

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|SDn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
SDn(ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =
√
SDn(ϕ2

x;λn)(x) and using Lemma 4.1, (ii), we obtain

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn),

which proves the theorem. �
As an immediate consequence of Theorem 4.2 we get the following.

Corollary 4.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Sn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
2x+ 2λn.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for
all δ > 0. Choosing now δ =

√
λn ·
√

2x+ 2λn and applying Theorem 4.2, we get the
desired estimate. �
Remark. All the Remarks 1)-3) made at the end of Section 2 remain valid for the
generalized Szász-Durrmeyer, SDn(f ;λn), operators too.
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In what follows we will introduce and study the generalized Szász-Durrmeyer-
Stancu operators. Thus it is well-known that the classical Szász-Durrmeyer-Stancu
operators are given by the formula (see, e.g., [8])

SD(α,β)
n (f)(x) = n

∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f

(
nt+ α

n+ β

)
dt,

where 0 ≤ α ≤ β and sn,j(x) = e−nx (nx)j

j! .

If we replace n with 1
λn

, we obtain:

SD(α,β)
n (f ;λn)(x) =

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!

∫ ∞
0

e−
x
λn

( x
λn

)j

j!
f

(
t
λn

+ α
1

λn+β

)
dt.

Firstly we prove the following lemma.
Lemma 4.4. We have:

(i) SD
(α,β)
n (e0;λn)(x) = 1; SD

(α,β)
n (e1;λn)(x) = x

1+λnβ
+ λn(α+1)

1+λnβ
;

SD(α,β)
n (e2;λn)(x) =

x2

(1 + λnβ)2
+
λn(2α+ 3)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
;

(ii) SD
(α,β)
n ((t− x)2;λn)(x)

=
λ2nβ

2

(1 + λNβ)2
x2 +

λn(1− 2β(α+ 1)λn)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
.

Proof. (i) Firstly, we calculate T
(α,β)
n,k (x) := SD

(α,β)
n (ek)(x), k = 0, 1, 2. For this pur-

pose, we will use the following formula in Lemma 2.1 in [8]

T
(α,β)
n,k =

k∑
j=0

(
k

j

)
njαk−j

(n+ β)k
Tn,j(x), (4.1)

where Tn,k(x) = SDn(ek)(x).
Therefore, before that we need to calculate Tn,k(x). For the calculation of

Tn,k(x), we use the recurrence formula in Lemma 2.2 in [7]

T ′n,k(x) =
n

x
Tn,k+1(x)−

(
n+

k + 1

x

)
Tn,k(x), (4.2)

taking into account that Tn,0(x) = 1.
Thus, taking in (4.2) k = 0 we immediately get

0 =
n

x
Tn,1(x)− (n+ 1/x)Tn,0(x),

which implies

Tn,1(x) = (n+ 1/x) · x
n

= x+ 1/n.

Taking in (4.2) k = 1, it follows

1 =
n

x
Tn,2(x)−

(
n+

2

x

)(
x+

1

n

)
,
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which implies

Tn,2(x) =

(
nx+ 3 +

2

nx

)(
x+

1

n

)
= x2 +

3x

n
+

2

n2
.

Returning now to the formula (4.1), for k = 0 we obtain T
(α,β)
n,0 (x) = 1, for k = 1 we

obtain

T
(α,β)
n,1 =

1∑
j=0

(
1

j

)
njα1−j

(n+ β)1
Tn,j(x) =

α

n+ β
+

n

n+ β

(
x+

1

n

)
=

n

n+ β
x+

α+ 1

n+ β
,

while for k = 1 we get

T
(α,β)
n,2 (x) =

2∑
j=0

(
2

j

)
njα2−j

(n+ β)2
Tn,j(x)

=
α2

(n+ β)2
+

2nα

(n+ β)2

(
x+

1

n

)
+

n2

(n+ β)2

(
x2 +

3x

n
+

2

n2

)
=

n2

(n+ β)2
x2 +

n(2α+ 3)

(n+ β)2
x+

α2 + 2α+ 2

(n+ β)2
.

Now, if we replace n with 1
λn

we easily obtain

SD(α,β)
n (e0;λn)(x) = 1,

SD(α,β)
n (e1;λn)(x) =

x

1 + λnβ
+
λn(α+ 1)

1 + λnβ
,

SD(α,β)
n (e2;λn)(x) =

x2

(1 + λnβ)2
+
λn(2α+ 3)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
.

(ii) We have

SD(α,β)
n ((t− x)2;λn)(x)

= SD(α,β)
n (e2;λn)(x)− 2xSD(α,β)

n (e1;λn)(x) + x2SD(α,β)
n (e0;λn)(x)

= x2
[

1

(1 + λnβ)2
− 2

1 + λnβ
+ 1

]
+ x

[
λn(2α+ 3)

(1 + λnβ)2
− 2λn(α+ 1)

1 + λnβ

]
+
λ2n(α2 + 2α+ 2)

(1 + λnβ)2
=

λ2nβ
2

(1 + λnβ)2
x2 +

λn(1− 2β(α+ 1)λn)

(1 + λnβ)2
x

+
λ2n(α2 + 2α+ 2)

(1 + λnβ)2
,

which proves the lemma. �
The second main result of this section is the following.

Theorem 4.5. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f : [0,+∞)→
R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
E

(α,β)
n (x)),
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where

E(α,β)
n (x) =

λnβ
2

(1 + λnβ)2
x2 +

1− 2β(α+ 1)λn
(1 + λnβ)2

x+
λn(α2 + 2α+ 2)

(1 + λnβ)2
.

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ (1 + δ−1

√
SD

(α,β)
n (ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =

√
SD

(α,β)
n (ϕ2

x;λn)(x) and using Lemma 4.1, (ii), we obtain

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
E

(α,β)
n (x)),

which proves the theorem. �
As an immediate consequence of Theorem 4.5 we get the following.

Corollary 4.6. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f is a
Lipschitz function, that is there exists M > 0 such that |f(x)− f(y)| ≤M |x− y|, for
all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
E

(α,β)
n (x).

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
E

(α,β)
n (x) and applying Theorem 4.5, we get the

desired estimate. �
Remark. All the Remarks 1)-3) made at the end of Section 2 remain valid for the

generalized Szász-Durrmeyer-Stancu, SD
(α,β)
n (f ;λn), operators too.

5. Generalized Baskakov-Szász-Durrmeyer-Stancu operators

For 0 ≤ α ≤ β, the classical Baskakov- Szász-Durrmeyer-Stancu operators are
given by the formula (see, e.g., [12])

V (α,β)
n (f)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)f(
nt+ α

n+ β
dt,

where, sn,j(x) = e−nx (nx)j

j! and

bn,j(x) =

(
n+ j − 1

j

)
xj

(1 + x)n+j
= (1 + x)−n

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
.

If we replace n with 1
λn

we obtain the formula:

V (α,β)
n (f ;λn)(x) =

1

λn

∞∑
j=0

(1 + x)−
1
λn

1
λn

( 1
λn

+ 1) . . . ( 1
λn

+ j − 1)

j!

xj

(1 + x)j

·
∫ ∞
0

e−
t
λn ·

( t
λn

)j

j!
f(

t
λn

+ α
1
λn

+ β
)dt.

Firstly we need the following auxiliary result.



Approximation by Kantorovich and Durrmeyer type operators 491

Lemma 5.1. We have:
(i) V

(α,β)
n (e0;λn)(x) = 1; V

(α,β)
n (e1;λn)(x) = 1

1+λnβ
x+ λn+λnα

1+λnβ
;

V (α,β)
n (e2;λn)(x) =

1 + λn
(1 + λnβ)2

x2 +
4λn + 2λnα

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

;

(ii) V
(α,β)
n ((t− x)2;λn)(x)

=
λn + λ2nβ

2

(1 + λnβ)2
x2 +

2λn − 2λ2nβ − 2λ2nαβ

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

.

Proof. (i) We will make the calculations in three steps:

Step 1. We calculate U
(0,0)
n,k (x) := V

(0,0)
n (ek)(x), k = 1, 2 by using the recurrence

formula (see, e.g., Lemma 2 in [11])

U
(0,0)
n,k (x) =

x(1 + x)

n
·
[
U

(0,0)
n,k (x)

]′
+
nx+ k + 1

n
U

(0,0)
n,k (x), (5.1)

and by taking into account that U
(0,0)
n,0 (x) = 1. Taking k = 0 in (5.1), we obtain

U
(0,0)
n,1 (x) =

x(1 + x)

n
· (1)′ +

nx+ 1

n
· 1 =

nx+ 1

n
= x+

1

n
.

For k = 1 in (5.1), we get

U
(0,0)
n,2 (x) =

x(1 + x)

n
·
(
nx+ 1

n

)′
+
nx+ 2

n
· nx+ 1

n
=
x(1 + x)

n
+

(nx+ 2)(nx+ 1)

n2

=
nx(1 + x) + (nx+ 1)(nx+ 2)

n2
= x2 +

x2 + 4x

n
+

2

n2
.

Step 2. By direct calculation and based on the results obtained at Step 1, we will

obtain the values for V
(α,β)
n (ek)(x) := U

(α,β)
n,k (x), k = 0, 1, 2. Indeed, based on the

formulas

nt+ α

n+ β
=

n

n+ β
t+

α

n+ β
, U

(α,β)
n,k (x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)f(
nt+ α

n+ β
)dt, (5.2)

for k = 0 in (5.2) we obtain

U
(α,β)
n,0 (x) = V (α,β)

n (e0)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt = U
(0,0)
n,0 (x) = 1.

Then, for k = 1 in (5.2) it follows

U
(α,β)
n,1 (x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)
nt+ α

n+ β
dt

= n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)
n

n+ β
tdt+

α

n+ β
n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt

=
n

n+ β

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)tdt

+
α

n+ β
· U (0,0)

n,0 (x)
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=
n

n+ β
· U (0,0)

n,1 (x) +
α

n+ β
=

n

n+ β

nx+ 1

n
+

α

n+ β
=

n

n+ β
x+

α+ 1

n+ β
.

Finally, for k = 2 in (5.2) we obtain

U
(α,β)
n,2 (x) = V (α,β)

n (e2)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)(
nt+ α

n+ β
)2dt

=
n2

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)t
2dt


+

2nα

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)tdt


+

α2

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt


=

n2

(n+ β)2
· U (0,0)

n,2 (x) +
2nα

(n+ β)2
· U (0,0)

n,1 (x) +
α2

(n+ β)2
· U (0,0)

n,0 (x)

=
n2

(n+ β)2
nx(1 + x) + (nx+ 1)(nx+ 2)

n2
+

2nα

(n+ β)2
nx+ 1

n
+

α2

(n+ β)2

=
nx(1 + x) + (nx+ 1)(nx+ 2) + 2α(nx+ 1) + α2

(n+ β)2

=
n2 + n

(n+ β)2
x2 +

4n+ 2αn

(n+ β)2
x+

α2 + 2α+ 2

(n+ β)2
.

Step 3. We calculate U
(α,β)
n,k (x), k = 0, 1, 2, by replacing at Step 2, n with 1

λn
.

It immediately follows

V (α,β
n (e0;λn)(x) = U

(α,β)
n,0 (x;λn) = 1,

V (α,β)
n (e1;λn)(x) = U

(α,β)
n,1 (x;λn) =

1

1 + λnβ
x+

λn + λnα

1 + λnβ
,

V (α,β)
n (e2;λn)(x)=U

(α,β)
n,2 (x;λn)=

1 + λn
(1+λnβ)2

x2 +
4λn+2λnα

(1 + λnβ)2
x+

λ2nα
2+2λ2nα+2λ2n
(1 + λnβ)2

.

(ii) We have V
(α,β)
n ((t− x)2;λn)(x)

= V (α,β)
n (e2;λn)(x)− 2xV (α,β)

n (e1;λn)(x) + x2V (α,β)
n (e0;λn)(x)

=
1 + λn

(1 + λnβ)2
x2 +

4λn + 2λnα

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

−2x

(
1

1 + λnβ
x+

λn + λnα

1 + λnβ

)
+ x2

=
λn + λ2nβ

2

(1 + λnβ)2
x2 +

2λn − 2λ2nβ − 2λ2nαβ

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

,

which proves the lemma. �
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The main result of this section is the following.
Theorem 5.2. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f : [0,+∞)→
R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
F

(α,β)
n (x)),

where

F (α,β)
n (x) =

1 + λnβ
2

(1 + λnβ)2
x2 +

2− 2λnβ − 2λnαβ

(1 + λnβ)2
x+

λnα
2 + 2λnα+ 2λn
(1 + λnβ)2

.

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ (1 + δ−1

√
V

(α,β)
n (ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =

√
V

(α,β)
n (ϕ2

x;λn)(x) and using Lemma 5.1, (ii), we obtain

|S(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
F

(α,β)
n (x)),

which proves the theorem. �
As an immediate consequence of Theorem 5.2 we get the following.

Corollary 5.3. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f is a
Lipschitz function, that is there exists M > 0 such that |f(x)− f(y)| ≤M |x− y|, for
all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
F

(α,β)
n (x).

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
F

(α,β)
n (x) and applying Theorem 5.2 we get the

desired estimate. �
Remarks. 1) All the Remarks 1)-3) made at the end of Section 2 remain valid for the

generalized Baskakov-Szász-Durrmeyer-Stancu, V
(α,β)
n (f ;λn), operators too.

2) Note that in Theorems 2.2, 3.2, 4.2 and 5.2, for any δ > 0 and f : [0,+∞)→ R
uniformly continuous, the modulus of continuity ω1(f ; δ) is finite. For the reader’s
convenience, we present below the proof. Indeed, for a fixed ε0, from the definition
of the uniform continuity of f , there exists a δ0 > 0, such that |f(x) − f(y)| < ε0,
for all x, y ∈ [0,+∞) with |x − y| ≤ δ0. Passing here to supremum after these x, y,
it immediately follows that ω1(f ; δ0) ≤ ε0 < +∞. Let now δ > δ0 be arbitrary.
Evidently that there exists a sufficiently large p ∈ N, such that δ ≤ p · δ0. Using now
the monotonicity and the subadditivity of ω1(f ; δ) as function of δ, we get

ω1(f ; δ) ≤ ω1(f ; pδ0) ≤ p · ω1(f ; δ0) < +∞.

Finally, we may conclude that the approximation results obtained for all the
operators in this paper are of a definitive character, i.e. they furnish arbitrary good
orders of approximation. It is also worth noting that the method in this paper does
not work for the positive and linear operators expressed by finite sums (like Bernstein
polynomials, Kantorovich polynomials, etc).
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[4] Dieudonné, J., Éléments dAnalyse; 1. Fondements de l’Analyse Moderne, Gauthiers
Villars, Paris, 1968.

[5] Djebali, S., Uniform continuity and growth of real continuous functions, Int. J. Math.
Education in Science and Technology, 32(2001), no. 5, 677-689.

[6] Gal, S.G., Approximation with an arbitrary order by generalized Szász-Mirakjan opera-
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[10] Gal, S.G., Opriş, D.B., Approximation of analytic functions with an arbitrary order by
generalized Baskakov-Faber operators in compact sets, Complex Anal. Oper. Theory,
10(2016), no. 2, 369-377.

[11] Gupta, V., Complex Baskakov-Szász operators in compact semi-disks, Lobachevskii J.
Math., 35(2014), no. 2, 65-73.

[12] Gupta, V., Overconvergence of complex Baskakov-Szász-Stancu operators, Mediterr. J.
Math., 12(2015), no. 2, 455-470.

[13] Mazhar, S.M., Totik V., Approximation by modified Szász operators, Acta Sci. Math.,
49(1985), 257-269.

[14] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat.
Acad. Sci. U.S.A., 60(1968), 1196-1200.

[15] Totik, V., Approximation by Szász-Mirakjan-Kantorovich operators in Lp (p > 1) (Rus-
sian), Analysis Math., 9(1983), no. 2, 147-167.

[16] Walczak, Z., On approximation by modified Szász-Mirakjan operators, Glasnik Mat.,
37(2002), no. 2, 303-319.

Sorin Trifa
Faculty of Mathematics and Computer Science
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