Hermite-Hadamard type inequalities for product of GA-convex functions via Hadamard fractional integrals
DOI:
https://doi.org/10.24193/subbmath.2017.4.04Keywords:
Hermite-Hadamard inequality, GA-convex functions, Hadamard fractional integral.Abstract
In this paper, some Hermite-Hadamard type inequalities for products of two GA-convex functions via Hadamard fractional integrals are established. Our results about GA-convex functions are analogous generalizations for some other results proved by Pachpette for convex functions.References
M. K. Bakula, M. E. Özdemir, and J. Peµcari´ c, Hadamard type inequalities form m-convex
and (;m)-convex functions, Journal of Inequalities in Pure and Applied Mathematics, vol.
, no. 4, article 96, 2008.
S-P Bai, S-H Wang and F. Qi , Some HermiteHadamard type inequalities for n-time di¤er-
entiable (;m)-convex functions, J. Inequal. Appl. (2012) 267, 2012, 11 pages.
F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals
via two kinds of convexity, Chinese Journal of Mathematics, Volume 2014, Article ID:173293,
F. Chen, A note on Hermite-Hadamard inequalities for Products of convex functions, Journal
of Applied Mathematics, Volume 2013, Article ID:935020, 2013.
F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via
Riemann-Liouville fractional integrals, Italian Journal of Pure and Applied Mathematics, N.
(299-306), 2014.
F. Chen, S. Wu, Some Hermite-Hadamard type inequalities for harmonically s-convex func-
tions, The Scienti c World Journal, Volume 2014, Article ID:279158, 2014.
S. S. Dragomir, Re nements of the Hermite-Hadamard integral inequality for log-convex
functions . Aust. Math. Soc. Gaz. 28(3), 129134, 2001.
J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier dune fonction
considérée par Riemann, J. Math. Pures Appl., 58, 171-215, 1893.
·I. ·I¸scan, New general integral inequalities for quasi-geometrically convex functions via frac-
tional integrals, J. Inequal. Appl., 2013(491) (2013), 15 pages.
·I. ·I¸scan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J.
Math. Stat., 43 (6), 935-942, 2014.
U. S. K¬rmac¬, M. K. Bakula, M. E. Özdemir, and J. Peµcari´ c, Hadamard-type inequalities
for s-convex functions, Applied Mathematics and Computation, vol. 193, no. 1, pp. 2635,
M. Kunt, ·I. ·I¸scan, On new inequalities of Hermite-Hadamard-Fejer type for GA-convex func-
tions via fractional integrals, RGMIA Research Report Collection, 18(2015), Article 108, 12
pp.
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional di¤erential
equations. Elsevier, Amsterdam (2006).
C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2),
-167, 2000. Available online at http://dx.doi.org/10.7153/mia-03-19.
C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4), 571-579, 2003.
Available online at http://dx.doi.org/10.7153/mia-06-53.
B. G. Pachpatte, On some inequalities for convex functions, RGMIA Research Report Col-
lection E, vol. 6, 2003.
B. G. Pachpatte, A note on integral inequalities involving two log-convex functions, Mathe-
matical Inequalities and Applications, vol. 7, no. 4, pp. 511515, 2004.
A.M. Rubinov, J. Dutta, Hadamard inequality for quasi-convex functions in higher dimen-
sions, J. Math. Anal. Appl., 270, pp. 8091, 2002.
M. Z. Sar¬kaya, A. Sa¼glam, and H. Y¬ld¬r¬m, On some Hadamard-type inequalities for h-
convex functions, Journal of Mathematical Inequalities, vol. 2, no. 3, pp. 335341, 2008.
G. S. Yang, Re nements of Hadamard inequality for r-convex functions . Indian J. Pure Appl.
Math.. 32(10), 15711579, 2001.
H.-P. Yin, F. Qi, Hermite-Hadamard type inequalities for the product of (;m)-convex func-
tions, Journal of Nonlinear Science and Applications, 8 (231-236), 2015.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.