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Abstract. In this paper, we study the common solution problem of split general-
ized equilibrium problem, monotone inclusion problem and common fixed point
problem for a countable family of strict pseudo-contractive multivalued mappings.
We propose a modified shrinking projection algorithm of inertial form with self-
adaptive step sizes for finding a common solution of the aforementioned problem.
The self-adaptive step size eliminates the difficulty of computing the operator
norm while the inertial term accelerates the rate of convergence of the proposed
algorithm. Moreover, unlike several of the existing results in the literature, the
monotone inclusion problem considered is a more general problem involving the
sum of Lipschitz continuous monotone operators and maximal monotone opera-
tors, and knowledge of the Lipschitz constant is not required to implement our
algorithm. Under some mild conditions, we establish strong convergence result
for the proposed method. Finally, we present some applications and numerical
experiments to illustrate the usefulness and applicability of our algorithm as well
as comparing it with some related methods. Our results improve and extend
corresponding results in the literature.
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


666 A.O.-E. Owolabi, T.O. Alakoya and O.T. Mewomo

1. Introduction

Let H be a real Hilbert space with induced norm ‖ · ‖ and inner product 〈·, ·〉. Let C
be a nonempty closed convex subset of a real Hilbert space and let F : C × C → R
be A bifunction. The equilibrium problem (shortly, (EP)) in the sense of Blum and
Oettli [8] is to find x̂ ∈ C such that

F (x̂, y) ≥ 0, ∀ y ∈ C. (1.1)

The set of all solutions of EP (1.1) is denoted by EP (F ). The EP attracts consider-
able research efforts and serves as a unifying framework for studying many well-known
problems, such as the Nonlinear Complementarity Problems (NCPs), Optimization
Problems (OPs), Variational Inequality Problems (VIPs), Saddle Point Problems
(SPPs), the Fixed Point Problem (FPP), the Nash equilibria and many others, and
has many applications in physics and economics, (see, for example [1, 11, 12, 34, 33, 48]
and the references therein).
On the other hand, the generalized equilibrium problem (GEP) is defined as finding a
point x ∈ C such that

F (x, y) + φ(x, y) ≥ 0,∀y ∈ C, (1.2)

where F, φ : C × C → R are bifunctions. We denote the solution set of GEP (1.2) by
GEP (F, φ). If φ = 0, then the GEP (1.2) reduces to the equilibrium problem (1.1).
Let C ⊆ H1 and Q ⊆ H2 where H1 and H2 are real Hilbert spaces. Let F1, φ1 :
C ×C → R and F2, φ2 : Q×Q→ R be nonlinear bifunctions, and A : H1 → H2 be a
bounded linear operator. The split generalized equilibrium problem (SGEP) introduced
by Kazmi and Rizvi [23] is defined as follows: Find x̄ ∈ C such that

F1(x̄, x) + φ1(x̄, x) ≥ 0,∀x ∈ C, (1.3)

and such that

ȳ = Ax̄ ∈ Q solves F2(ȳ, y) + φ2(ȳ, y) ≥ 0, ∀y ∈ Q. (1.4)

The solution set of the split generalized equilibrium problem is denoted by

SGEP (F1, φ1, F2, φ2) = {x̄ ∈ C : x̄ ∈ GEP (F1, φ1) and Ax̄ ∈ GEP (F2, φ2)}. (1.5)

If φ1 = 0 and φ2 = 0, we obtain a special case of the split generalized equilibrium
problem (1.3)-(1.4) called the split equilibrium problem (SEP) which is defined as
follows:

F1(x̄, x) ≥ 0,∀x ∈ C, (1.6)

and such that

ȳ = Ax̄ ∈ Q solves F2(ȳ, y) ≥ 0, ∀y ∈ Q. (1.7)

We denote the solution set of the SEP (1.6)-(1.7) by Ω := {x̄ ∈ EP (F1) : Ax̄ ∈
EP (F2)}. The split generalized equilibrium problem has been studied by numerous
authors and several iterative algorithms have been proposed by many authors for
solving the problem (see, [39, 42]).
Another important problem that we consider is the monotone inclusion problem
(MIP), which is defined as finding a point z ∈ H such that

0 ∈ (B +D)z, (1.8)
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where B : H → H is a nonlinear operator and D : H → 2H is a set-valued operator.
We denote the set of solutions of (1.8) by (B +D)−1(0). The MIP (1.8) and related
optimization problems have been studied by several authors with various iterative
algorithms proposed for approximating their solutions in Hilbert spaces and Banach
spaces (see, for instance [3, 31, 32, 47, 50, 49]). One of the most efficient methods for
solving the MIP is the forward-backward splitting method (see [6, 9, 14, 17, 18, 26]).

Martinez [29] first introduced the Proximal Point Algorithm (PPA) for finding the
zero point of a maximal monotone operator B. The sequence generated by PPA is
defined as follows:

xn+1 = JDrnxn,

where 0 < rn < ∞, JDrn = (I + rnD)−1 is the resolvent operator of D and I is the
identity mapping. This algorithm was eventually modified by Rockafellar [40] to the
following PPA with errors:

xn+1 = JDrnxn + en,

where {en} is an error sequence. It was proved that if en → 0 such that

∞∑
n=1

‖en‖ < +∞,

and the solution set D−1(0) 6= ∅ and lim inf
n→∞

rn > 0, then the sequence {xn} converges

weakly to a zero point of D.

Also, Moudafi and Théra [31] introduced the following iterative algorithm for solving
MIP (1.8): {

xn = JDr vn,

vn+1 = tvn + (1− t)xn − µ(1− t)Bxn,
(1.9)

where t ∈ (0, 1), r > 0, B is Lipschitz continuous and strongly monotone and D is
maximal monotone. They proved that the sequence {xn} generated by the iterative
algorithm converges weakly to an element in (B +D)−1(0).

Alvarez and Attouch [5] proposed the following modified PPA of inertial form:{
yn = xn + µn(xn − xn−1),

xn+1 = JDλnyn, n ≥ 1,
(1.10)

where {µn} ⊂ [0, 1), {λn} is non-decreasing and

∞∑
n=1

µn‖xn − xn−1‖2 <∞, ∀µn <
1

3
. (1.11)

It was proved that Algorithm (1.10) converges weakly to a zero of D.

Recently, Moudafi and Oliny [30] introduced the following inertial PPA for approxi-
mating the zero point problem of the sum of two monotone operators:{

yn = xn + µn(xn − xn−1),

xn+1 = JDλn(yn − λnBxn), n ≥ 1,
(1.12)



668 A.O.-E. Owolabi, T.O. Alakoya and O.T. Mewomo

where D : H → 2H is maximal monotone and B is Lipschitz continuous. They proved
that the sequence generated by Algorithm (1.12) converges weakly if λn <

2
L , where

L is the Lipschitz constant of B.
Moreover, the following inertial forward-backward algorithm was introduced by
Lorenz and Pock [26]: {

yn = xn + µn(xn − xn−1),

xn+1 = JDλn(yn − λnByn), n ≥ 1,
(1.13)

where {λn} is a positive real sequence. Algorithm (1.13) differs from Algorithm (1.12)
since the operator B is evaluated as the inertial extrapolate yn. The proposed algo-
rithm was also proved to converge weakly to a solution of the MIP (1.8).
In 2016, Deepho [16] introduced the general Cesáro mean iterative method for approxi-
mating a common solution of split generalized equilibrium, fixed point of nonexpansive
mappings Tj and variational inequality problems:

zn = T
(F1,φ1)
rn (xn + γA∗(T

(F2,φ2)
rn − I)Axn),

un = PC(zn − λnGzn),

xn+1 = αnηf(xn) + βxn + ((1− βn)I − αnK) 1
n+1

∑n
j=0 Tjun, ∀n ≥ 0,

(1.14)

where {αn}, {βn} ⊂ (0, 1), {λn} ∈ [a, b] ⊂ (0, 2β) and {rn} ⊂ (0, α) and γ ∈
(
0, 1

L

)
,

L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Under the
following conditions:

(C1) lim
n→∞

αn = 0,
∑∞
n=0 αn =∞;

(C2) 0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(C3) lim
n→∞

|λn+1 − λn| = 0;

(C4) lim inf
n→∞

rn > 0, lim
n→∞

|rn+1 − rn| = 0.

the authors proved that the sequence {xn} converges strongly to an element q in the
solution set Ω, where q = PΩ(I −K + γf)(q) is the unique solution of the variational
inequality problem

〈(K − γf)q, x− q〉 ≥ 0, ∀x ∈ Ω.

Also, in 2017, Sitthithakerngkiet [42] proposed and studied the following iterative
method for approximating a common solution of split generalized equilibrium, varia-
tional inequality for an inverse-strongly monotone mapping and fixed point problems
of nonexpansive mappings in Hilbert spaces:{

zn = T
(F1,φ1)
rn (xn + γA∗(T

(F2,φ2)
rn − I)Axn),

xn+1 = αnf(xn) + βnxn + ξnT [σnv + (1− σn)PC(zn − λnGzn)],
(1.15)

where v ∈ C is a fixed point, rn ∈ (0,∞), µ ∈
(
0, 1

L

)
, L is the spectral radius of the

operator A∗A, A∗ is the adjoint of A, sequences {αn}, {βn}, {ξn} and {σn} are in
(0, 1) and satisfy αn + βn + ξn = 1, λn ∈ [a, b] for some a, b with 0 < a < b < 2βn and
{γn} ⊂ [c, 1] for some c ∈ (0, 1). Assume that the following conditions are satisfied:
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(C1) lim
n→∞

αn = 0,
∑∞
n=0 αn =∞;

(C2) lim
n→∞

σn = 0;

(C3) 0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(C4) lim
n→∞

|λn+1 − λn| = 0;

(C5) lim inf
n→∞

rn > 0, lim
n→∞

|rn+1 − rn| = 0,

the authors proved that the sequence {xn} converges strongly to z ∈ Ω, where

z = PΩf(z).

Recently, Phuengrattana and Lerkchaiyaphum [39] introduced the following shrinking
projection method for solving SGEP and FPP for a countable family of nonexpansive
multivalued mappings: For x1 ∈ C and C1 = C, then

zn = T
(F1,φ1)
rn (I − γA∗(I − T (F2,φ2)

rn )A)xn,

yn = δn,0xn +
∑n
j=1 δn,jun,j , un,j ∈ Pjzn,

Cn+1 = {p ∈ Cn : ‖yn − p‖2 ≤ ‖xn − p‖2},
xn+1 = PCn+1

x1, n ∈ N.

(1.16)

They proved that if

(i) lim inf
n→∞

rn > 0,

(ii) The limits lim
n→∞

δn,j ∈ (0, 1) exist for all j ≥ 0,

then the sequence {xn} generated by (1.16) converges strongly to PΓx1, where

Γ =

∞⋂
j=1

F (Pj) ∩ SGEP (F1, φ1, F2, φ2) 6= ∅,

F (Pj) is the set of fixed points of Pj and Pj is a countable family of nonexpansive
multivalued mappings.
In 2021, Olona et al. [37] proposed an inertial shrinking projection defined as follows
for split generalized equilibrium and fixed point problems for a countable family of
nonexpansive multivalued mappings : for x0, x1 ∈ C with C1 = C, then

wn = xn + θn(xn − xn−1),

un = T
(F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn,

zn = δn,0un +
∑n
i=1 δn,jyn,j , yn,j ∈ Pjun,

Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2

−2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2},

xn+1 = PCn+1x1, n ∈ N,

(1.17)

γn =


τn‖(I−T (F2,φ2)

rn
)Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number),
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where A : H1 → H2 is a bounded linear operator, 0 < a ≤ τn ≤ b < 1, {θn} ⊂ R,
{δn,j} ⊂ (0, 1), such that

∑n
j=0 δn,j = 1, and {rn} ⊂ (0,∞). {Pj} is a countable family

of nonexpansive multivalued mappings, F1, φ1 : C × C → R, F2, φ2 : Q × Q → R
are bifunctions. Under some appropriate conditions, it was proved that the sequence
{xn} converges strongly to PΩx1, where Ω =

⋂∞
j=1 F (Pj)∩SGEP (F1, φ1, F2, φ2) 6= ∅.

Motivated by the above results and the current research interest in this direction, in
this paper, we propose a new iterative algorithm of inertial type with self-adaptive step
size for approximating the common solution of SGEP (1.3)-(1.4), MIP (1.8) and FPP
of strictly pseudo-contractive multivalued mappings. We prove that the sequence gen-
erated by our algorithm converges strongly to a solution of the investigated problem.
Finally, we present some applications and numerical examples to illustrate the useful-
ness and efficiency of the proposed method in comparison with some related methods.
Our proposed method uses self-adaptive step size and employs inertial technique to
accelerate the rate of convergence of the proposed method. The implementation of our
proposed algorithm does not require a prior knowledge of the norm of the bounded
linear operator.
Subsequent sections of this paper are organised as follows: In Section 2, we recall
some basic definitions and lemmas that are relevant in establishing our main results.
In Section 3, we present our proposed algorithm and highlight some of its features. In
Section 4, we prove some lemmas that are useful in establishing the strong convergence
of our proposed algorithm and also prove the strong convergence theorem for the
algorithm. In Section 5, we apply our result to study some optimization problems while
in Section 6, we present some numerical experiments to illustrate the performance of
our method and compare it with some related methods in the literature. Finally, in
Section 7 we give a concluding remark.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and norm ‖·‖. We denote xn → x to mean that sequence {xn} converges
strongly to x and xn ⇀ x to indicate that the sequence {xn} converges weakly to x.
We write wω(xn) to denote set of weak limits of {xn}, that is,

ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}}.
The nearest point projection of H onto C denoted by PC is defined for each x ∈ H,
as the unique element PCx ∈ C such that

‖x− PCx‖ ≤ ‖x− y‖, ∀ y ∈ C. (2.1)

It is well known that PC is nonexpansive and has the following characteristics (see
[4, 21]:

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉, ∀ x, y ∈ H1, (2.2)

〈x− PCx, y − PCx〉 ≤ 0, (2.3)

‖x− y‖2 ≤ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C, (2.4)

‖(x− y)− (PCx− PCy)‖2 ≥ ‖x− y‖2 − ‖PCx− PCy‖2, x, y ∈ H. (2.5)
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A mapping B : C → H is said to be monotone if

〈Bu−Bv, u− v〉 ≥ 0, ∀u, v ∈ C. (2.6)

Moreover, if B satisfies

〈Bu−Bv, u− v〉 ≥ α‖Bu−Bv‖2, ∀u, v ∈ C, (2.7)

for some positive real number α. Then, B is called an α-inverse-strongly monotone
mapping. It is clear that every inverse-strongly monotone mapping is monotone.

Lemma 2.1. [37, 28] Let H be a real Hilbert space, λ ∈ R, then ∀x, y ∈ H, we have

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;
(ii) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2;
(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(iv) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.2. [32] Let C be a nonempty closed convex subset of a real Hilbert space H,
and let PC : H → C be the metric projection. Then

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H, y ∈ C.

Lemma 2.3. [?] Let xi ∈ H, (1 ≤ i ≤ m),
∑m
i=1 αi = 1, where {αi} ⊆ (0, 1). Then∥∥∥∥ m∑

i=1

αixi

∥∥∥∥2

=

m∑
i=1

αi‖xi‖2 −
∑

1≤i<j≤m

αiαj‖xi − xj‖2.

Lemma 2.4. [24] Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Given x, y, z ∈ H and a ∈ (R), the set D = {v ∈ C : ‖y−v‖2 ≤ ‖x−v‖2+〈z, v〉+a}
is convex and closed.

Assumption 2.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let
F1 : C × C → R and φ1 : C × C → R be two bifunctions that satisfy the following
conditions:

(A1) F1(x, x) = 0 for all x ∈ C,
(A2) F is monotone, that is, F1(x, y) + F1(y, x) ≤ 0 for all x, y ∈ C,
(A3) F is upper hemicontinuous, that is, for all x, y, z ∈ C,

lim
t↓0

F
(
tz + (1− t)x, y

)
≤ F (x, y),

(A4) for each x ∈ C, y 7→ F1(x, y) is convex and lower semicontinuous,
(A5) φ1(x, x) ≥ 0, for all x ∈ C,
(A6) for each y ∈ C, x 7→ φ1(x, y) is upper semicontinuous,
(A7) for each x ∈ C, y 7→ φ1(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a nonempty compact convex
subset K of H1 and x ∈ C ∩K such that

F1(y, x) + φ1(y, x) +
1

r
〈y − x, x− z〉 < 0, ∀y ∈ C \K.
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Lemma 2.6. [27] Let C be a nonempty closed convex subset of a Hilbert space H. Let
F : C × C → R and φ1 : C × C → R be two bifunctions that satisfy Assumption 2.5.

Assume that φ is monotone. For r > 0 and and x ∈ H. Define mapping T
(F,φ)
r : H →

C as follows:

T (F,φ)
r (x) =

{
z ∈ C : F (z, y) + φ(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
for all x ∈ H1. Then

(1) for each x ∈ H1, T
(F,φ)
r 6= ∅,

(2) T
(F,φ)
r is single-valued,

(3) T
(F,φ)
r is firmly nonexpansive, that is, for any x, y ∈ H1,

‖T (F,φ)
r x− T (F,φ)

r y‖2 ≤ 〈T (F,φ)
r x− T (F,φ)

r y, x− y〉,

(4) F (T
(F,φ)
r ) = GEP (F, φ),

(5) GEP(F, φ) is closed and convex.

Lemma 2.7. [44] Let X be a Banach space space satisfying Opial’s condition and let
{xn} be a sequence in X. Let u, v ∈ X be such that

lim
n→∞

‖xn − u‖ and lim
n→∞

‖xn − v‖ exist.

If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and v,
respectively, then u = v.

Lemma 2.8. [10] Let B : H → 2H be a maximal monotone mapping and A : H → H
be a Lipschitz continuous and monotone mapping. Then, the mapping A + B is a
maximal monotone mapping.

Lemma 2.9. [20] Let B : H → 2H be a maximal monotone operator and A : H → H
be a mapping on H. Define Tλ := (I + λB)−1(I − λA), λ > 0. Then, we have the
following

Fix(Tλ) = (A+B)−1(0), ∀λ > 0. (2.8)

Let D be a nonempty subset of H. D is said to be proximal if there exists y ∈ D such
that

‖x− y‖ = d(x,D), x ∈ H.
Let CC(C), CB(C) and P (C) be the family of nonempty closed convex subset of H,
nonempty closed bounded subsets of H and nonempty proximal bounded subsets of
H respectively. The Hausdorff metric on CB(C) is defined as follows:

H(A,B) := max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A), ∀A,B ∈ CB(C)

}
.

Let S : C → 2C be a multivalued mapping. An element x ∈ H is said to be a fixed
point of S if x ∈ Sx. We say that S satisfies the endpoint condition if Sp = {p} for all
p ∈ F (S). For multivalued mappings Si : H → 2H (i ∈ N) with ∩∞i=1F (Si) 6= ∅, we say
Si satisfies the common endpoint condition if Si(p) = {p} for all i ∈ N, p ∈ ∩∞i=1F (Si).

Definition 2.10. Let A : H → H be a nonlinear operator. Then A is called
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(i) Lipschitz continuous if for all L > 0

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H;

if 0 ≤ L < 1, then A is a contraction mapping,
(ii) β−strongly monotone if for all β > 0

〈Ax−Ay, x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ H.

Definition 2.11. Let S : C → CB(C) be a multivalued mapping. S is said to be

(i) nonexpansive if
H(Sx, Sy) ≤ ‖x− y‖, ∀x, y ∈ C,

(ii) quasi-nonexpansive if F (S) 6= ∅ such that

H(Sx, Sp) ≤ ‖x− p‖, ∀x ∈ C, p ∈ F (S),

(iii) k- strictly pseudo-contractive if there exists a constant k ∈ [0, 1) such that

(H(Sx, Sy))2 ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, ∀u ∈ Sx, v ∈ Sy (2.9)

If k = 1 in (2.9), then the mapping S is said to be pseudo-contractive.

Clearly, the class of k-strict pseudo-contractive mappings properly contains the class of
nonexpansive mappings. That is, S is nonexpansive if and only if S is 0-strict pseudo-
contractive. It is known that if S is a k-strict pseudo-contraction and F (S) 6= ∅,
then F (S) is a closed convex subset of H (see [51]). Strict pseudo-contractions have
many applications, due to their ties with inverse strongly monotone operators. It is
known that, if B is a strongly monotone operator, then S = I −B is a strict pseudo-
contraction, and so we can recast a problem of zeros for B as a fixed point problem
for S, and vice versa (see e.g. [13, 41]).
Let S : H → CB(H) be a multivalued mapping. The multivalued mapping I − S is
said to be demiclosed at zero if for any sequence {xn} ⊂ H which converges weakly
to p and the sequence {‖xn − un‖} converges strongly to 0, where un ∈ Sxn, then
p ∈ F (S).

3. Proposed method

In this section, we present our proposed algorithm.
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}mi=1 be
a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C) such that I − Si is demiclosed at zero for each i = 1, 2, . . . ,m, Sip = {p}
for each p ∈ ∩mi=1F (Si) and k = max{ki}. Let F1, φ1 : C × C → R, F2, φ2 : Q ×
Q→ be bifunctions satisfying Assumptions 2.5. Let φ1, φ2 be monotone, φ1 be upper
hemicontinuous, and F2 and φ2 be upper semicontinuous in the first argument. Let
B : H1 → H1 be L-Lipschitz continuous and monotone and D : H1 → 2H1 be a
maximal monotone operator such that Γ = SGEP (F1, φ1, F2, φ2)∩∩mi=1F (Si)∩ (B+
D)−1(0) 6= ∅. We establish the convergence of our algorithm under the following
conditions on the control parameters:

(C1) 0 < a ≤ τn ≤ b < 2, {rn} ⊂ (0,∞), lim inf
n→∞

rn > 0,
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(C2) lim inf
n

αn,i(αn,0 − k) > 0 and lim
n→∞

αn,i ∈ (0, 1) exists for all i ≥ 0.

Now, we present our proposed algorithm as follows:

Algorithm 3.1.
Initialization: Select x0, x1 ∈ H1, s1 > 0, µ ∈ (0, 1), θn ∈ [−θ, θ] for some θ > 0 and
C1 = C.
Iterative Step: Given the current iterate xn, calculate the next iterate as follows:
Step 1 : Compute

wn = xn + θn(xn − xn−1).

Step 2 : Compute

zn = T (F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn.

Step 3 : Compute

yn = αn,0zn +

m∑
i=1

αn,iun,i, un,i ∈ Sizn.

Step 4 : Compute

vn = (I + snD)−1(I − snB)yn = JDsn(I − snB)yn

tn = vn − sn(Bvn −Byn)

Cn+1 = {p ∈ Cn : ‖tn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 s2n
s2n+1

)
‖yn − vn‖2}

xn+1 = PCn+1
x0,

Step 5 : Compute

sn+1 =

min

{
µ‖yn−vn‖
‖Byn−Bvn‖ , sn

}
if Byn −Bvn 6= 0.

sn otherwise,
(3.1)

Set n := n+ 1 and return to Step 1,

where

γn =

τn
||(I−T (F2,φ2)

rn
)Awn||2

||A∗(I−T (F2,φ2)
rn )Awn||2

If Awn 6= T
(F2,φ2)
rn Awn

γ otherwise (γ being any non-negative real number).

Remark 3.2. We observe that

(i) The implementation of our proposed algorithm does not require prior knowledge
of the operator norm. Hence, this makes our method easily implementable.

(ii) We employ the inertial technique to accelerate the rate of convergence.
(iii) The underlying single-valued operator B : H1 → H1 for most of the results

on monotone inclusion problem in the literature are either strongly monotone
or inverse strongly monotone while the single-valued operator in our proposed
algorithm is only required to be monotone and Lipschitz continuous. Moreover,
knowledge of the Lipschitz constant of the operator is not required to implement
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our proposed algorithm. Thus, our method is more applicable than several of the
existing methods in the literature.

(iv) Our result extends and improves on the results of Deepho et al. [16], Sitthithak-
erngkiet et al. [42], Phuengrattana and Lerkchaiyaphum [39], Olona et al. [37]
and several other results in the current literature in this direction.

4. Convergence analysis

In this section, we analyze the convergence of our proposed algorithm.

Lemma 4.1. Let {sn} be a sequence generated by (3.1). Then, {sn} is a nonincreasing
sequence and

lim
n→∞

sn = s ≥ min

{
s1,

µ

L

}
. (4.1)

Proof.
From (3.1), it is clear that {sn} is a nonincreasing sequence. Moreover, observe that
if Byn −Bvn 6= 0, then

µ‖yn − vn‖
‖Byn −Bvn‖

≥ µ

L
. (4.2)

Hence, the sequence {sn} has the lower bound min

{
s1,

µ
L

}
. �

Lemma 4.2. [20] Let {xn} be a sequence generated by Algorithm 3.1. Then the follow-
ing inequality holds for all p ∈ Γ :

‖tn − p‖2 ≤ ‖yn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2, p ∈ Γ, (4.3)

and

‖tn − vn‖ ≤ µ
sn
sn+1

‖yn − vn‖. (4.4)

Proof. By the definition of sn, we have

‖Byn −Bvn‖ ≤
µ

sn+1
‖yn − vn‖ ∀ n ∈ N. (4.5)

Clearly, if Byn = Bvn, then (4.5) holds. Otherwise , we have

sn+1 = min

{
µ‖yn − vn‖
‖Byn −Bvn‖

, sn

}
≤ µ‖yn − vn‖
‖Byn −Bvn‖

.

This implies that

‖Byn −Bvn‖ ≤
µ

sn+1
‖yn − vn‖.
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Thus, (4.5) holds when Byn = Bvn and Byn 6= Bvn. Let p ∈ Γ, then by Lemma 2.1,
we have

‖tn − p‖2 = ‖vn − sn(Bvn −Byn)− p‖2

= ‖vn − p‖2 + s2
n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉

= ‖yn − p‖2 + ‖yn − vn‖2 + 2〈vn − yn, yn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 + ‖yn − vn‖2 − 2〈vn − yn, vn − yn〉+ 2〈vn − yn, vn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 − ‖yn − vn‖2 + 2〈vn − yn, yn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 − ‖yn − vn‖2 − 2〈yn − vn − sn(Byn −Bvn), vn − p〉
+ s2

n‖Bvn −Byn‖2. (4.6)

By applying (4.5) in (4.6), we obtain

‖tn−p‖2 ≤ ‖yn−p‖2−
(

1−µ2 s2
n

s2
n+1

)
‖yn−vn‖2−2〈yn−vn−sn(Byn−Bvn), vn−p〉.

(4.7)
We now prove that 〈yn − vn − sn(Byn −Bvn), vn − p〉 ≥ 0. Since

vn = (I + snD)−1(I − snB)yn,

then we have (I − snB)yn ∈ (I + snD)vn. Recall that D is maximal monotone. Then
there exists un ∈ Dyn such that

(I − snB)yn = vn + snun,

from which we obtain

un =
1

sn
(yn − vn − snByn). (4.8)

Moreover, we have 0 ∈ (B+D)p and Bvn+un ∈ (B+D)vn. Since B+D is maximal
monotone, we get

〈Bvn + un, vn − p〉 ≥ 0. (4.9)

By substituting (4.8) into (4.9), we obtain

1

sn
〈yn − vn − snByn + snBvn, vn − p〉 ≥ 0.

This implies that

〈yn − vn − sn(Byn −Bvn), vn − p〉 ≥ 0. (4.10)

By applying (4.10) in (4.7), we have

‖tn − p‖2 ≤ ‖yn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2. (4.11)

On the other hand, one can see that (4.4) follows from (4.5). �
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Remark 4.3. By Lemma 4.1 and µ ∈ (0, 1), there exists n0 ∈ N such that

1− µ2 s2
n

s2
n+1

> ε > 0

for all n ≥ n0. Consequently, it follows from (4.3) that for all p ∈ Γ and n ≥ n0

‖tn − p‖2 ≤ ‖yn − p‖2 − ε‖yn − vn‖2.

Theorem 4.4. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}
be a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C). Let F1, φ1 : C×C → R, F2, φ2 : Q×Q→ R be bifunctions satisfying Assump-
tions 2.5. Suppose φ1, φ2 are monotone, φ1 is upper hemicontinuous, and F2 and φ2

are upper semicontinuous in the first argument. Let B : H1 → H1 be an L−Lipschitz
continuous monotone mapping and D : H1 → 2H1 be a maximal monotone operator
such that Γ = SGEP (F1, φ1, F2, φ2) ∩

⋂m
i=1 F (Si) ∩ Ω 6= ∅, where Ω = (B +D)−1(0)

and Sip = {p} for each p ∈ ∩mi=1F (Si). Let {xn} be a sequence generated by Algo-
rithm 3.1 such that conditions (C1) and (C2) hold. Then, the sequence {xn} converges
strongly to q = PΓx0.

Proof. We divide the proof of the strong convergence Theorem 4.4 into various steps
as follows:

Step 1: We show that sequence {xn} generated by Algorithm 3.1 is bounded and well
defined.

Let p ∈ Γ, then we have p = T
(F1,φ1)
rn p and Ap = T

(F1,φ1)
rn Ap, Sip = p, for all

i = 1, 2, ...,m.

Since T
(F1,φ1)
rn is nonexpansive, then by Lemma 2.1 we have

‖zn − p‖2 = ‖T (F1,φ1)
rn (wn − γnA∗(I − T (F2,φ2)

rn )Awn)− p‖2

≤ ‖wn − γnA∗(I − T (F2,φ2)
rn )Awn − p‖2

= ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2

− 2γn〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉. (4.12)

By the firmly nonexpansivity of I − T (F2,φ2)
rn , we get

〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉 = 〈Awn −Ap, (I − T (F2,φ2)

rn )Awn〉

= 〈Awn −Ap, (I − T (F2,φ2)
rn )Awn

− (I − T (F2,φ2)
rn )Ap〉

≥ ‖(I − T (F2,φ2)
rn )Awn‖2. (4.13)
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By substituting (4.13) in (4.12) and applying the condition on τn, we have

‖zn − p‖2 ≤ ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2

− 2γn‖(I − T (F2,φ2)
rn )Awn‖2

= ‖wn − p‖2 − γn
[
2‖(I − T (F2,φ2)

rn )Awn‖2

− γn‖A∗(I − T (F2,φ2)
rn )Awn‖2

]
= ‖wn − p‖2 − γn(2− τn)‖(I − T (F2,φ2)

rn )Awn‖2 (4.14)

≤ ‖wn − p‖2. (4.15)

By Lemma 2.3 and applying the fact that Si, i = 1, 2, . . . ,m is strictly pseudo-
contractive together with condition (C2), we get

‖yn − p‖2 = ‖αn,0zn +

m∑
i=1

αn,iun,i − p‖2

= αn,0‖zn − p‖2 +

m∑
i=1

αn,i‖un,i − p‖2

−
m∑
i=1

αn,0αn,i‖un,i − zn‖2 −
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ αn,0‖zn − p‖2 +

m∑
i=1

αn,i
(
H(Sizn, Sip)

)2
−

m∑
i=1

αn,0αn,i‖un,i − zn‖2 −
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ αn,0‖zn − p‖2 +

m∑
i=1

αn,i
(
‖zn − p‖2 + ki‖un,i − zn‖2

)
−

m∑
i=1

αn,0αn,i‖un,i − zn‖2

−
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ ‖zn − p‖2 −
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2 (4.16)

≤ ‖zn − p‖2, (4.17)

which implies that

‖yn − p‖ ≤ ‖zn − p‖. (4.18)

By applying (4.17) and (4.15) into (4.11), we get

‖tn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2,∀p ∈ Γ. (4.19)
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By Lemma 2.4, we have that Cn+1 is closed and convex. Furthermore, from (4.19) it
follows that p ∈ Cn+1. Hence, we have Γ ⊂ Cn+1 ⊂ Cn for all n and thus xn+1 =
PCn+1

x0 is well defined. Therefore, {xn} is well defined.
We now show that {xn} is bounded. It is known that Γ is a nonempty closed convex
subset of H1, then there exists a unique q ∈ Γ such that q = PΓx0. From xn = PCnx0

and xn+1 ∈ Cn+1 for all n ∈ N, we obtain

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀ n ∈ N.

On the other hand, since Γ ⊂ Cn, we get

‖xn − x0‖ ≤ ‖q − x0‖, ∀ n ∈ N.

This implies that {‖xn − x0‖} is bounded. Hence, {xn} is bounded. Consequently
{wn}, {tn}, {zn} and {yn} are bounded. Thus, lim

n→∞
‖xn − x0‖ exists.

Step 2: We claim that lim
n→∞

xn = q, for some q ∈ C.
It is clear from the definition of Cn that xm = PCmx0 ∈ Cm ⊂ Cn, m > n ≥ 1. By
Lemma 2.2, we obtain

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (4.20)

Since lim
n→∞

‖xn−x0‖ exists, then it follows from (4.20) that ‖xm−xn‖ → 0 as n→∞.
Thus, {xn} is a Cauchy sequence. Since H1 is complete and C is closed, there exists
q ∈ C such that xn → q as n→∞.
Step 3: We now show that q ∈ Γ.

From (4.20), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (4.21)

From the definition of wn and by applying (4.21), we get

‖wn − xn‖ = |θn|‖xn − xn−1‖ ≤ |θ|‖xn − xn−1‖ → 0, n→∞. (4.22)

From (4.21) and (4.22), we obtain

‖wn − xn+1‖ → 0, n→∞. (4.23)

We known that xn+1 ∈ Cn+1. Then, from the definition of Cn+1 we obtain

‖tn − xn+1‖2 ≤ ‖wn − xn+1‖2.
Combining this with (4.23) gives

lim
n→∞

‖tn − xn+1‖ = 0. (4.24)

From (4.21) and (4.24), we obtain

lim
n→∞

‖tn − xn‖ = 0. (4.25)

From (4.22) and (4.25), we obtain

lim
n→∞

‖tn − wn‖ = 0. (4.26)

By applying (4.17) and (4.15) into Remark 4.3, we have

‖tn − p‖2 ≤ ‖wn − p‖2 − ε‖yn − vn‖2.
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From which we get

ε‖yn − vn‖2 ≤ ‖wn − p‖2 − ‖tn − p‖2

≤ ‖wn − tn‖(‖wn − p‖+ ‖tn − p‖),

which together with (4.26) implies that

‖yn − vn‖ → 0, n→∞. (4.27)

Applying Lemma 4.1 together with (4.27) to (4.4), we have

‖tn − vn‖ → 0, n→∞. (4.28)

From (4.26)-(4.28), we obtain

‖yn − wn‖ → 0, n→∞. (4.29)

From (4.15) and (4.16), we obtain

‖yn − p‖2 ≤ ‖wn − p‖2 −
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2.

From this we have

αn,i(αn,0 − ki)‖un,i − zn‖2 ≤
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2

≤ ‖wn − p‖2 − ‖yn − p‖2

≤ (‖wn − yn‖)(‖wn − p‖+ ‖yn − p‖).

By applying Condition (C2) and (4.29), we get

‖un,i − zn‖ → 0, n→∞. (4.30)

From the definition of yn and by applying (4.30), we get

‖yn − zn‖ ≤ αn,0‖zn − zn‖+

m∑
i=1

αn,i‖un,i − zn‖ → 0, n→∞. (4.31)

Also, by applying (4.22), (4.29) and (4.31), we obtain

lim
n→∞

‖wn − zn‖ = 0; lim
n→∞

‖zn − xn‖ = 0. (4.32)

From (4.14), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − γn(2− γn)‖(I − T (F2,φ2)
rn )Awn‖2,

which implies that

γn(2− γn)‖(I − T (F2,φ2)
rn )Awn‖2 ≤ ‖wn − p‖2 − ‖zn − p‖2

≤ ‖wn − zn‖(‖wn − p‖+ ‖zn − p‖).

Using the definition of γn, the condition on τn and applying (4.32), it follows that

τn(2− τn)‖(I − T (F2,φ2)
rn )Awn‖4

‖A∗(I − T (F2,φ2)Awn
rn )Awn‖2

→ 0 as n→∞.
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From which we get

‖(I − T (F2,φ2)
rn )Awn‖2

‖A∗(I − T (F2,φ2)
rn )Awn‖

→ 0 as n→∞.

Since ‖A∗(I − T (F2,φ2)
rn )Awn‖ is bounded, then it follows that

‖(I − T (F2,φ2)
rn )Awn‖ → 0, n→∞. (4.33)

Consequently, we have

‖A∗(I − T (F2,φ2)
rn )Awn)‖ ≤ ‖A∗‖‖(I − T (F2,φ2)

rn )Awn)‖

= ‖A‖‖(I − T (F2,φ2)
rn )Awn)‖ → 0 as n→∞. (4.34)

Since tn = vn−sn(Bvn−Byn) and B is Lipschitz continuous, then by applying (4.27)
we have

‖tn − vn‖ = ‖vn − sn(Bvn −Byn)− vn‖ = sn‖Byn −Bvn‖ → 0, n→∞.

Since {xn} is bounded, then wω(xn) is nonempty. Let q ∈ wω(xn) be an arbitrary
element. Then there exists a subsequence {xnk} of {xn} such that xnk ⇀ q as k →∞.
Let z ∈ wω(xn) and {xnj} ⊂ {xn} be such that xnj ⇀ z as j →∞. From (4.32), we
get znk ⇀ q and znj ⇀ z. Since I − Si is demiclosed at zero for each i = 1, 2, . . . ,m,
then it follows from (4.30) that q, z ∈ F (Si) for all i = 1, 2, . . . ,m, which implies that
q, z ∈ ∩mi=1F (Si).
Next, let (g, h) ∈ Graph(B +D), that is h−Bg ∈ Dg. Since

vnk = (I + snkD)−1(I − snkB)ynk ,

we have

(I − snkB)ynk ∈ (I + snkD)vnk ,

which implies that
1

snk
(ynk − vnk − snkBynk) ∈ Dvnk .

Since D is maximal monotone, we get〈
g − vnk , h−Bg −

1

snk
(ynk − vnk − snkBynk)

〉
≥ 0.

From this we obtain

〈g − vnk , h〉 ≥
〈
g − vnk , Bg +

1

snk
(ynk − vnk − snkBynk)

〉
= 〈g − vnk , Bg −Bynk〉+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
= 〈g − vnk , Bg −Bvnk〉+ 〈g − vnk , Bvnk −Bynk〉

+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
≥ 〈g − vnk , Bvnk −Bynk〉+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
.
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Since B is Lipschitz continuous and lim
n→∞

‖vn − yn‖ = 0, we have

lim
n→∞

‖Bvnk −Bynk‖ = 0.

Applying this together with lim
n→∞

sn = s ≥ min

{
s1,

µ
L

}
, we get

〈g − q, h〉 = lim
k→∞

〈g − vnk , h〉 ≥ 0. (4.35)

Following similar argument, we obtain

〈g − z, h〉 = lim
j→∞
〈g − vnj , h〉 ≥ 0. (4.36)

By the maximal monotonicity of (B + D), it follows from (4.35) and (4.36) that
q, z ∈ (B +D)−1(0).

Next, since znk = T
(F1,φ1)
rnk

(I−γnkA∗(I−TF2,φ2
rnk

)A)wnk , then by applying Lemma 2.6,
we get

F1(znk , y) + φ1(znk , y)

+
1

rnk
〈y − znk , znk − wnk − γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ 0, ∀y ∈ C,

which implies that

F1(znk , y) + φ1(znk , y)

+
1

rnk
〈y − znk , znk − wnk〉

− 1

rnk
〈y − znk , γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ 0, ∀y ∈ C.

From the monotonicity of F1 and φ1, it follows that

1

rnk
〈y − znk , znk − wnk〉

− 1

rnk
〈y − znk , γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ F1(y, znk) + φ1(y, znk), ∀y ∈ C.

By (4.32) and xnk ⇀ q, we obtain znk ⇀ q. Applying condition (C1), (4.32), (4.34)
and Assumption 2.5 (A1)-(A7), we obtain

0 ≥ F1(y, q) + φ1(y, q), ∀y ∈ C.

Suppose yt = ty + (1− t)q,∀t ∈ (0, 1] and y ∈ C.
Then, yt ∈ C and F1(yt, q) + φ1(yt, q) ≤ 0. Therefore, by Assumption 2.5 (A1)-(A7),
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we get

0 ≤ F1(yt, yt) + φ1(yt, yt)

≤ t
(
F1(yt, y) + φ1(yt, y)

)
+ (1− t)

(
F1(yt, q) + φ1(yt, q)

)
≤ t
(
F1(yt, y) + φ1(yt, y)

)
.

Thus, we have
F1(yt, y) + φ1(yt, y) ≥ 0, ∀y ∈ C.

Letting t → 0, and applying condition (A3) together with the upper hemicontinuity
of φ1, we have

F1(q, y) + φ1(q, y) ≥ 0, ∀y ∈ C. (4.37)

By similar argument, we have

F1(z, y) + φ1(z, y) ≥ 0, ∀y ∈ C. (4.38)

It follows from (4.37) and (4.38) that q, z ∈ GEP (F1, φ1).
Next, we show that Aq,Az ∈ GEP (F2, φ2). Since A is a bounded linear operator,
then by (4.22) we have Awnk ⇀ Aq. Hence, from (4.33), we obtain

T (F2,φ2)
rnk

Awnk ⇀ Aq, k →∞. (4.39)

By the definition of T
(F2,φ2)
rnk

Awnk , we have

F2(T (F2,φ2)
rnk

Awnk , y)

+ φ2(T (F2,φ2)
rnk

Awnk , y)

+
1

rnk
〈y − T (F2,φ2)

rnk
Awnk , T

(F2,φ2)
rnk

Awnk −Awnk〉

≥ 0, ∀y ∈ Q.
Since F2 and φ2 are upper semicontinuous in the first argument, then by (4.33), (4.39)
and lim inf

k→∞
rnk > 0, we have

F2(Aq, y) + φ2(Aq, y) ≥ 0, ∀y ∈ Q. (4.40)

Following similar argument, we have

F2(Az, y) + φ2(Az, y) ≥ 0, ∀y ∈ Q. (4.41)

From (4.40) and (4.41), it follows that Aq,Az ∈ GEP (F2, φ2).
Therefore q, z ∈ SGEP (F1, φ1, F2, φ2). By Invoking Lemma 2.7, we get q = z. Hence,
we have that q ∈ Γ.
Step 4. Lastly, we show that q = PΓx0.
Since xn = PCnx0 and Γ ⊂ Cn, we have 〈x0−xn, xn− p〉 ≥ 0 for all p ∈ Γ. By taking
limit as n→∞, we have 〈x0 − q, q − p〉 ≥ 0 for all p ∈ Γ. This shows that q = PΓx0.
Therefore, we can conclude by the steps above that {xn} converges strongly to q =
PΓx0. This completes the proof. �

If φ1 = φ2 = 0 in (1.3)-(1.4), then the split generalized equilibrium problem reduces
to split equilibrium problem. Hence from Theorem 3.1 , we obtain the following con-
sequent result.



684 A.O.-E. Owolabi, T.O. Alakoya and O.T. Mewomo

Corollary 4.5. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}mi=1

be a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C) such that I − Si is demiclosed at zero for each i = 1, 2, . . . ,m, Sip = {p}
for each p ∈ ∩mi=1F (Si) and k = max{ki}. Let F1 : C × C → R, F2 : Q × Q → R
be bifunctions satisfying Assumptions 2.5 such that F2 is upper semicontinuous in
the first argument. Let B : H1 → H1 be L-Lipschitz continuous and monotone and
D : H1 → 2H1 be a maximal monotone operator such that Γ = SGEP (F1, F2) ∩mi=1

F (Si)
⋂

(B +D)−1(0) 6= ∅. Let {xn} be a sequence generated as follows:

Algorithm 4.6.
Initialization: Select x0, x1 ∈ H1, µ ∈ (0, 1), θn ∈ [−θ, θ] for some θ > 0 and C1 = C.

Iterative Step: Given the current iterate xn, calculate the next iterate as follows:

Step 1 : Compute

wn = xn + θn(xn − xn−1).

Step 2 : Compute

zn = TF1
rn (I − γnA∗(I − TF2

rn )A)wn.

Step 3 : Compute

yn = αn,0zn +

m∑
i=1

αn,iun,i, un,i ∈ Sizn.

Step 4 : Compute

vn = (I + snD)−1(I − snB)yn

tn = vn − sn(Bvn −Byn)

Cn+1 = {p ∈ Cn : ‖tn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉
+θ2

n‖xn−1 − xn‖2}
xn+1 = PCn+1

x0,

Step 5 : Compute

sn+1 =

min

{
µ‖yn−vn‖
‖Byn−Bvn‖ , sn

}
if Byn −Bvn 6= 0.

sn otherwise,
(4.42)

Set n := n+ 1 and return to Step 1. where

γn =

τn
||(I−T (F2

rn
)Awn||2

||A∗(I−T (F2
rn )Awn||2

If Awn 6= T
(F2
rn Awn

γ otherwise (γ being any non-negative real number.)

Suppose other conditions of Theorem 3.1 hold. Then, the sequence {xn} converges
strongly to q = PΓx0.
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5. Applications

5.1. Split minimization problem

Let H1, H2 be two real Hilbert spaces, and let C ⊂ H1 and Q ⊂ H2 be nonempty,
closed, and convex subsets. Let f : C → R, g : Q → R be two operators and
A : H1 → H2 be a bounded linear operator. The split minimization problem (SMP)
is formulated as finding

x∗ ∈ C such that f(x∗) ≤ f(x), ∀x ∈ C, (5.1)

and

y∗ = Ax∗ such that g(y∗) ≤ g(y), y ∈ Q. (5.2)

Let Ω denote the set of solution of SMP (5.1)-(5.2), and we assume Ω 6= ∅. Let
φ1 = φ2 = 0, and

F1(x, y) := f(y)− f(x) for all x, y ∈ C;

and

F2(u, v) := g(v)− g(u) for all u, v ∈ Q.

Suppose f and g are convex and lower semi-continuous on C andQ, respectively. Then,
F1, F2, φ1 and φ2 satisfy all the conditions of Assumption 2.5. Consequently, from
Theorem 3.1 we obtain a strong convergence theorem for approximating a common
solution of split minimization problem, monotone variational inclusion problem and
fixed point problem for a countable family of strict pseudo-contractive multivalued
mappings in Hilbert spaces.

5.2. Split variational inequality problem

Let C be a nonempty closed convex subset of a real Hilbert space H, and f : H → H
be a single-valued mapping. The variational inequality problem (VIP) introduced
independently by Fichera [19] and Stampacchia [43] is formulated as follows:

find x∗ ∈ C such that 〈y − x∗, fx∗〉 ≥ 0, ∀ y ∈ C. (5.3)

The VIP can be modelled to solve several optimization problems and has vast ap-
plications in different fields, such as in physics, engineering, economics, etc, (see
[3, 8, 12, 16, 34, 36, 42]).

The split variational inequality problem (SVIP), which was first introduced by Censor
et al. [12] is defined as finding a point:

x∗ ∈ C such that 〈x− x∗, f(x∗)〉 ≥ 0 ∀ x ∈ C, (5.4)

and

y∗ = Ax∗ ∈ Q solves 〈y − y∗, g(y∗)〉 ≥ 0 ∀ y ∈ Q, (5.5)

where C and Q are nonempty, closed, convex subsets of real Hilbert spaces H1 and
H2, respectively, f : H1 → H1 and g : H2 → H2 are monotone mappings, and
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A : H1 → H2 is a bounded linear operator, see [25]. Let Ω 6= ∅ denote the set of
solution of SVIP (5.4)-(5.5). By setting φ1 = φ2 = 0, and

F1(x, y) := 〈y − x, f(x)〉 for all x, y ∈ C;

and

F2(u, v) := 〈v − u, g(u)〉 for all u, v ∈ Q.

Then, F1, F2, φ1 and φ2 satisfy all the conditions of Assumption 2.5. Hence, from
Theorem 3.1, we obtain a strong convergence theorem for approximating a com-
mon solution of split variational inequality problem, monotone variational inclusion
problem and fixed point problem for a countable family of strict pseudo-contractive
multivalued mappings in Hilbert spaces.

6. Numerical examples

In this section, we present a numerical experiments to illustrate the performance of
our Algorithm 3.1 as well as comparing it with Algorithm (1.14), Algorithm (1.15),
Algorithm (1.16) and Algorithm (1.17) in the literature.

In our computation, we choose αn,0 = n
2n+1 , αn,i = n+1

5(2n+1) , i = 1, 2, . . . , 5, τn =

1.5, θn = 1.9, rn = 2.0, s0 = 0.1 and µ = 0.7 in our Algorithm 3.1. Gx = 1
3x, fx =

2
3x,Kx = 2

5x, λn = 2n
5n+1 , αn = 2

2n+3 , βn = n+1
2n+3 , η = 2

5 , γ = 0.2, Tjx = 2
(3+j)x

in Algorithm (1.14),βn = ξn = 1
2 (1 − αn), σn = 2

2n+1 in Algorithm (1.15) while in

Algorithm (1.16) and Algorithm (1.17). Let the sequences {δn,j} be defined as follows
for each j ∈ N ∪ {0} and n ∈ N :

δn,j =


1

bj+1 ( n
n+1 ), n > j,

1− n
n+1 (

∑n
k=1

1
bk

), n = j,

0, n < j,

(6.1)

where b > 1.

Example 6.1. Let H1 = H2 = R and C = Q = [0, 10]. Let A : H1 → H2 be
defined by Ax = x

5 for all x ∈ H1. Then, we have that A∗y = y
5 for all y ∈ H2. For

x ∈ C, j ∈ N and i = 1, 2, . . . , 5, let Pj , Si : C → CB(C) be multivalued mappings
defined as follows:

Pj(x) =

[
0,

x

10j

]
, Si(x) =

[
0,

x

10i

]
. (6.2)

One can easily verify that Pj and Si are nonexpansive and strictly pseudo-contractive,
respectively. Define mappings B : H1 → H1 by Bx = 2x, D : H1 → H1 by Dx = 3x,
and let the bifunctions F1, φ1 : C×C → R be defined by F1(x, y) = y2 +3xy−4x2 and
φ1(x, y) = y2−x2 for x, y ∈ C, and F2, φ2 : Q×Q→ R by F2(w, v) = 2v2 +wv−3w2

and φ2(w, v) = w − v for w, v ∈ Q. It is easy to verify that all the conditions of

Theorem 4.4 are satisfied. Next, we compute T
(F1,φ1)
r (x). We find u ∈ C such that for
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all z ∈ C

0 ≤ F1(u, z) + φ1(u, z) +
1

r
〈z − u, u− x〉

= 2z2 + 3uz − 5u2 +
1

r
〈z − u, u− x〉

⇔
0 ≤ 2rz2 + 3ruz − 5ru2 + (z − u)(u− x)

= 2rz2 + 3ruz − 5ru2 + uz − xz − u2 + ux

= 2rz2 + (3ru+ u− x)z + (−5ru2 − u2 + ux).

Suppose h(z) = 2rz2 + (3ru+u−x)z+ (−5ru2−u2 +ux). Then, h(z) is a quadratic
function of z with coefficients a = 2r, b = 3ru+ u− x, and c = −5ru2 − u2 + ux. We
determine the discriminant 4 of h(z) as follows:

4 = (3ru+ u− x)2 − 4(2r)(−5ru2 − u2 + ux)

= 49r2u2 + 14ru2 − 14rux+ u2 − 2ux+ x2

= ((7r + 1)u− x)2. (6.3)

By Lemma 2.6, T
(F1,φ1)
r is single-valued. Thus, it follows that h(z) has at most

one solution in R. Hence, from (6.3), we have that u = y
7r+1 . This implies that

T
(F1,φ1)
r (y) = y

7r+1 . Similarly, we compute T
(F2,φ2)
r (y). Find w ∈ Q such that for all

d ∈ Q

T (F2,φ2)
r (y) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

r
〈d− w,w − y〉 ≥ 0, ∀ d ∈ Q

}
.

By following similar procedure as above, we obtain w = y+r
5r+1 . This implies that

T
(F2,φ2)
r (y) = y+r

5r+1 .

In this example, we set the parameter b on {δn,i} in (6.1) to be b = 40, v = 3.5 and
we choose different initial values as follows:
Case I: x0 = 7, x1 = 3;
Case II: x0 = 6, x1 = 2;
Case III: x0 = 8, x1 = 4;
Case IV: x0 = 9, x1 = 5.

We compare the performance of our Algorithm 3.1 with Algorithms (1.14),
(1.15), (1.16) and (1.17). The stopping criterion used for our computation is
|xn+1 − xn| < 10−4. We plot the graphs of errors against the number of iterations in
each case. The numerical results are reported in Figure 1 and Table 1.

Example 6.2. Let H1 = H2 = L2([0, 1]) with the inner product defined as

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ L2([0, 1]).

Let
C := {x ∈ H1 : 〈a, x〉 ≥ d},
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Table 1. Numerical results for Example 6.1

Alg.
(1.14)

Alg.
(1.15)

Alg.
(1.16)

Alg.
(1.17)

Alg. 3.1

Case I No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0057 0.0078 1.6693 0.3383 0.0032

Case II No. of Iter. 8 20 4 8 2
CPU time (sec) 0.0051 0.0059 1.6884 0.3124 0.0039

Case III No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0053 0.0057 1.6625 0.3566 0.0041

Case IV No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0054 0.0067 1.6623 0.3449 0.0039
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Figure 1. Top left: Case I ; Top right: Case II; Bottom left: Case
III ; Bottom right: Case IV.

where a = 2t2 and d = 0. Here, we have

PC(x) = x+
d− 〈a, x〉
||a||2

a.

Also, let

Q := {x ∈ H2 : 〈c, x〉 ≤ e},
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where c = t
3 , e = 1 and we have

PQ(x) = x+ max

{
0,
e− 〈c, x〉
||c||2

c

}
.

Let F1 : C × C → R and F2 : Q × Q → R be defined as F1(x, y) = 〈L1x, y − x〉
and F2(x, y) = 〈L2x, y − x〉, where L1x(t) = x(t)

3 and L2x(t) = x(t)
4 . It can easily

be verified that F1 and F2 satisfy conditions (A1)-(A4). Also, let φ1 = φ2 = 0.
Furthermore, define B : H1 → H1 by Bx = 3x, D : H1 → H1 by Dx = 7x, and let

A : L2([0, 1]) → L2([0, 1]) be defined by Ax(t) = x(t)
3 and A∗y(t) = y(t)

3 . Then, A is
a bounded linear operator. We consider the case for which the multivalued mappings
{Sj} and {Si} are single-valued. Let Sj , Si : L2([0, 1])→ L2([0, 1]) be defined by

(Sjx)(t) =

∫ 1

0

tjx(s)ds and (Six)(t) =

∫ 1

0

tix(s)ds for all t ∈ [0, 1].

Note that Si and Sj are nonexpansive for each i, j. Select rn = 2n
2n+1 , θn = 0.8, τn =

0.7. It can easily be checked that all the conditions of Theorem 4.4 are satisfied. Now,

we compute T
(F1,φ1)
r (x). We find z ∈ C such that for all y ∈ C

F1(z, y) + φ1(z, y) +
1

r
〈y − z, z − x〉 ≥ 0

⇔〈z
2
, y − z〉+

1

r
〈y − z, z − x〉 ≥ 0

⇔z

3
(y − z) +

1

r
(y − z)(z − x) ≥ 0

⇔(y − z)[rz + 3(z − x)] ≥ 0

⇔(y − z)[(r + 3)z − 3x] ≥ 0. (6.4)

By Lemma 2.6, we obtain

T (F1,φ1)
r (x) =

{
z ∈ C : F1(z, y) + φ1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
,

(∀ x ∈ H1), is single-valued. Thus, from (6.4) we obtain z = 3x
r+3 . This implies that

T
(F1,φ1)
r (x) = 3x

r+3 . Similarly, we compute T
(F2,φ2)
r (v). We find w ∈ Q such that for

all d ∈ Q

T (F2,φ2)
s (v) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

s
〈d− w,w − v〉 ≥ 0, ∀ d ∈ Q

}
.

By using similar approach as above, we obtain w = 4v
s+4 . This implies that

T
(F2,φ2)
s (v) = 4v

s+4 .

Here, we set the parameter b on {δn,i} in (6.1) to be b = 3, v = t2 and we choose
different initial values as follows:
Case I: x0 = t4, x1 = t2 + t4 + t6 + 3;
Case II: x0 = t5, x1 = t2 + t5 + 2;
Case III: x0 = t4, x1 = t3 + t5 + t7 + 2;
Case IV: x0 = t5, x1 = t+ t2 + 1.
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Figure 2. Top left: Case I; Top right: Case II; Bottom left: Case
III; Bottom right: Case IV.

We compare the performance of our Algorithm 3.1 with Algorithms (1.14),
(1.15), (1.16) and (1.17). The stopping criterion used for our computation is
||xn+1 − xn|| < 10−4. We plot the graphs of errors against the number of iterations
in each case. The numerical results are reported in Figure 2 and Table 2.

Table 2. Numerical results for Example 6.2

Alg.
(1.14)

Alg.
(1.15)

Alg.
(1.16)

App.
(1.17)

Alg. 3.1

Case I No. of Iter. 10 14 10 6 6
CPU time (sec) 0.7297 0.7237 1.2541 0.2548 0.3256

Case II No. of Iter. 9 14 9 6 6
CPU time (sec) 0.6743 0.7004 1.1791 0.2628 0.3091

Case III No. of Iter. 9 14 9 6 6
CPU time (sec) 0.6507 0.6825 1.1474 0.2599 0.3087

Case IV No. of Iter. 9 13 8 6 6
CPU time (sec) 0.6353 0.6458 1.1130 0.2631 0.3166
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7. Conclusion

In this article, we proposed a new modified inertial shrinking projection algo-
rithm for finding common solution of split generalized equilibrium problem, monotone
inclusion problem and fixed point problems for a countable family of strictly pseudo-
contractive multivalued mappings. We established strong convergence result for the
proposed method. We applied our results to study related optimization problems and
presented some numerical examples to demonstrate the efficiency of our proposed
method in comparison with other existing methods. Our results extend and improve
several existing results in this direction in the current literature.
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