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Multiplicity theorems involving functions with
non-convex range
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Dedicated to the memory of Professor Csaba Varga, with nostalgia

Abstract. Here is a sample of the results proved in this paper: Let f : R - R
be a continuous function, let p > 0 and let w : [0, p[— [0, 4+oc0[ be a continuous
increasing function such that
3
lim w(z)dr = +o0.
&=r~ Jo

Consider C°([0,1]) x C°([0,1]) endowed with the norm

HMﬂW:AIMMﬁ+A\mmm

Then, the following assertions are equivalent:

(a) the restriction of f to [—g, g] is not constant;

(b) for every convex set S C C°([0,1]) x C°(]0,1]) dense in C°([0, 1]) x C°([0, 1]),
there exists (o, 8) € S such that the problem

1

—w /0 [/ (¢)dt ) u" = B(t) f(u) + a(t) in [0,1]
=u(l)=0

u(0)
| wwpa<p

has at least two classical solutions.
Mathematics Subject Classification (2010): 49J35, 34B10, 41A50, 41A55, 90C26.

Keywords: Minimax, global minimum, multiplicity, non-convex sets, Chebyshev
sets, Kirchhoff-type problems.

Received 03 May 2022; Revised 09 September 2022.



126 Biagio Ricceri

1. Introduction

Let H be a real Hilbert space. A very classical result of Efimov and Stechkin
([3]) states that if X is a non-convex sequentially weakly closed subset of H, then
there exists yo € H such that the restriction to X of the function z — ||z — yo|| has
at least two global minima. A more precise version of such a result was obtained by
I.G. Tsar’kov in [10]. Actually, he proved that any convex set dense in H contains a
point yo with the above property.

In the present paper, as a by product of a more general result, we get the
following:

Theorem 1.1. Let X C H be a non-conver sequentially weakly closed set and let
up € conv(X) \ X.

Then, if we put

0 := dist(ug, X)
and, for each r > 0,
pr = sup ((dist(uo +y, X))* = ly[I?),
llyll<r
for every convexr set S C H dense in H, for every bounded sequentially weakly lower
semicontinuous function ¢ : X — R and for every r satisfying
pr — 6% +supy ¢ —infx ¢

> s
" 26

there exists yo € S, with ||yo — uol| < 7, such that the function x — ||z — yo|* + p(z)
has at least two global minima in X.

So, with respect to the Efimov-Stechkin-Tsar’kov result, Theorem 1.1 gives us
two remarkable additional informations: a precise localization of the point yg and the
validity of the conclusion not only for the function 2 — || —yo||?, but also for suitable
perturbations of it.

Let us recall the most famous open problem in this area: if X is a subset of H
such that, for each y € H, the restriction of the function x — |z — y|| to X has a
unique global minimum, is it true that the set X is convex? So, Efimov-Stechkin’s
result provides an affirmative answer when X is sequentially weakly closed. However,
it is a quite common feeling that the answer, in general, should be negative ([1], [2],
[5], [8]). In the light of Theorem 1.1, we posit the following problem:

Problem 1.1. Let X be a subset of H for which there exists a bounded sequentially
weakly lower semicontinuous function ¢ : X — R such that, for each y € H, the
function = — ||z — y||? + ¢(z) has a unique global minimum in X. Then, must X be
convex?

What allows us to reach the advances presented in Theorem 1.1 is our particular
approach which is entirely based on the minimax theorem established in [9]. So, also
the present paper can be regarded as a further ring of the chain of applications and
consequences of that minimax theorem.
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2. Results

In the sequel, X is a topological space and E is real normed space, with topo-
logical dual E*.

For each S C E*, we denote by A(X,S) (resp. As(X,S)) the class of all pairs
(I,¢), with I : X — R and v : X — E, such that, for each n € S and each s € R,
the set

{oe X :I(z) +n(¥(z)) < s}
is closed and compact (resp. sequentially closed and sequentially compact).

Let us start establishing the following useful proposition. E’ denotes the algebraic
dual of F.

Proposition 2.1. Let [ : X — R, let vy : X — FE and let x1,...,0, € X, A1,...,An €

[0,1], with > X; = 1.
i=1
Then, one has

sup inf <I($) +1 (d)(:ﬂ) - ZMW%))) < max I(z;).

neE’ xre

Proof. Fix n € E'. Clearly, for some j' € {1,...,n}, we have

n <¢($j’) - i)\lw(%)> <0. (2.1)
i=1
Indeed, if not, we would have
n((x;)) > Zn: Ain(i(x:))
i=1

for each j € {1,...,n}. So, multiplying by A; and summing, we would obtain

S ) > 3 Am)

7j=1 i=1

a contradiction. In view of (2.1), we have

n n
inf <I<x> 1 (w(m - wm))) < I(ay) +1 (wo:j/) - Zwm))
i=1 i=1
< I(zj) < max I(z;)
and so we get the conclusion due to the arbitrariness of 7. g

Our main result is as follows:

Theorem 2.1. Let [ : X - R, letp: X — FE, let S C E* be a convex set dense in E*
and let ug € E.
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Then, for every bounded function ¢ : X — R such that (I + ¢,v¢) € A(X,S)
and for every r satisfying

supp—inf < inf (I(z) + [[¢¥(2) —uolr) = sup inf (I()+n(v(z) —uo)), (2.2)

Il gx <r T€X

there exists 1 € S, with ||7]
two global minima in X.

Proof. Consider the function g : X x E* — R defined by

g(z,n) = 1(z) + n(¥(x) — uo)
for all (x,n) € X x E*. Let B, denote the open ball in E*, of radius r, centered at 0.
Clearly, for each z € X, we have

sup 7(y(x) —uo)) = [|¢(z) — uol|r. (2.3)

neB;-
Then, from (2.2) and (2.3), it follows

g+ < T, such that the function I 4+ 10 + ¢ has at least

s;p ©— 1£1(f p < 1£1(f sjlglrpg — S]lgl}) 1§fg. (2.4)
Now, consider the function f: X x (SN B,) — R defined by

flz,m) = g(z,n) + ¢(z)
for all (z,n) € X x (SN B,). Since S is dense in E*, the set SN B, is dense in B,.
Hence, since g(z,-) is continuous, we obtain

inf sup g = 1nf supg (2.5)
X SnB,

Then, taking (2.4) and (2.5) into account, we have

sup 1nff < suplnff < Suplnfg + sup<p < mfsupg + mfgo
SNB,.

< inf < sup g(x,n)+<p(x)> 1nf sup f. (2.6)
z€X \nesSnB, SNB,

Now, since (I + ¢, 9) € A(X,S) and f is concave in SN B,., we can apply Theorem
1.1 of [9]. Therefore, since (by (2.6)) supgnp, infx f < infx supgnp, f, there exists of
71 € SN B, such that the function f(-,7) has at least two global minima in X which,
of course, are global minima of the function I + 70 + . O

If we renounce to the very detailed informations contained in its conclusion, we
can state Theorem 2.1 in an extremely simplified form.

Theorem 2.2. Let I : X — R, let ¢y : X — FE and let S C E* be a convexr set
weakly-star dense in E*. Assume that ¥(X) is not convex and that (I1,v) € A(X,S).
Then, there exists 11 € S such that the function I 4+ 10 has at least two global
minima in X.
Proof. Fix ug € conv(¢(X))\ ¥ (X) and consider the function g : X x E* — R defined
by
g9(x,n) = I(z) +n((z) —uo)
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for all (z,n) € X x E*. By Proposition 2.1, we know that
inf .
sgp 1})1( g < +oo
On the other hand, for each z € X, since ¥ (x) # ug, we have

sup n(v¥(x) — up) = +o0.
nek*

Hence, since S is weakly-star dense in E* and g(z,-) is weakly-star continuous, we
have

sup g(z, 1) = +oo.
nes

Therefore
inf g < inf . 2.
supinfg < infsup g (2.7)

Now, taken into account that (I,v) € A(X,S), we can apply Theorem 1.1 of [9] to
Glxxs- S0, in view of (2.7), there exists 7 € S such that the function g(-,7) (and so
I + 7o) has at least two global minima in X, as claimed. O

The next result is a sequential version of Theorem 1.1 of [9].

Theorem 2.3. Let X be a topological space, E a topological vector space, Y C E a non-
empty separable convex set and f : X XY — R a function satisfying the following
conditions:
(a) for each y €Y, the function f(-,y) is sequentially lower semicontinuous, sequen-
tially inf-compact and has a unique global minimum in X ;
(b) for each x € X, the function f(x,-) is continuous and quasi-concave.

Then, one has

supinf f =infs .
gplgf inf lépf

Proof. The pattern of the proof is the same as that of Theorem 1.1 of [9]. We limit
ourselves to stress the needed changes. First, for every n € N, one proves the result
when £ = R" and Y = S, := {(A1,...,An) € ([0,4+00))™ : A\ + ...+ A, = 1}
In this connection, the proof agrees exactly with that of Lemma 2.1 of [9], with the
only difference of using the sequential version of Theorem 1.A of [9] instead of such
a result itself (see Remark 2.1 of [9]). Next, we fix a sequence {x, } dense in Y. For
each n € N, set
P, =conv({z1,...,Zn}).

Consider the function 5 : S,, = P defined by
n()\l,...,)\n) =MT1+ ...+ \xn

for all (A1,...,A,) € Sp. Plainly, the function (z,A1,..., ) = f(z,n(A1,..., \n))
satisfies in X x S, the assumptions of Theorem A, and so, by the case previously
proved, we have

sup inf f(z,n(A1,...,\,)) = inf sup flx,n(A, ..., ).
(Ao An)ES, TEX (@ ) TEX (A1, An)ESy (@1 )
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Since 1(Sy) = P,, we then have

sup 1§ff = 151(f S}ljlnp f

Now, set
D= P.
neN
In view of Proposition 2.2 of [9], we have

supinf f = inf's .
up ity f=i %pf
Finally, by continuity and density, we have

sup f(x,y) = sup f(z,y)
yeD yeyY

for all z € X, and so
inf = inf = inf f < inf f <inf
iny SL;pf iny Sllljpf s1[1)p1§ < sgp% < inf Sl}l/pf
and the proof is complete. O

Reasoning as in the proof of Theorem 2.1 and using Theorem 2.3, we get

Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied. In addition, assume
that E* is separable.
Then, the conclusion of Theorem 2.1 holds with As(X,S) instead of A(X,S).

Analogously, the sequential version of Theorem 2.2 is as follows:

Theorem 2.5. Let I : X — R, lety : X — FE and let S C E* be a convex set weakly-
star separable and weakly-star dense in E*. Assume that (X)) is not convezx and that
(I,¢) € As(X, 9).

Then, there exists 1 € S such that the function I 4+ 10 has at least two global
minima in X.

Here is a consequence of Theorem 2.1:

Theorem 2.6. Let E be a Hilbert space, let v : X — E be a weakly continuous function
and let S C E be a convex set dense in E. Assume that ¥(X) is not convex and that
the function ||y (-)|| is inf-compact. Let ug € conv(ip(X)) \ ¥(X).

Then, for every bounded function ¢ : X — R such that ||¢(-)||? + ¢(-) is lower
semicontinuous and for every r satisfying

sup |, < ((dist(uo +y,9(X)))* — lyll*) — (dist(uo, ¥(X)))* 4+ supx ¢ — infx ¢
> : >
2dist(ug, V(X))
(2.8)
there exists § € S, with ||§ — uol|| < r, such that the function ||¢(-) — §||* + ¢(-) has at
least two global minima in X.

Proof. First, we observe that the set ¢(X) is sequentially weakly closed (and so norm
closed). Indeed, let {x,} be a sequence in X such that {¢)(z,)} converges weakly to
y € E. So, in particular, {¢)(z,)} is bounded and hence, since [|#(-)|| is inf-compact,
there exists a compact set K C X such that z,, € K for all n € N. Since 1 is weakly
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continuous, the set ¥ (K) is weakly compact and hence weakly closed. Therefore,
y € Y(K), as claimed. This remark ensures that dist(ug, (X)) > 0. Now, we apply
Theorem 2.1 identifying F with E* and taking

1) = 5 () — ol

for all z € X. Of course, we have

H@+Oﬂ@—Umw:%W¢@%ﬂm+MF—MW) (2.9)

for all y € E. In view of (2.8) and (2.9), we have
1

o (dist (o, 9(X))? + rdlist (uo, ¥(X))

1
— — inf
2(supap mn (p)<

~ L sup ((dis(uo — 9, ()2 — Ilyl1?)

llyll<r

< LU+ [9() —wllr) — 5 s (distluo — v, 600" ~ o)

= inf (I(z) + [6(x) — uollr) — sup inf (I(x) + () —wr)).  (2.10)
zeX llyll<r zeX

Let us show that (I + %g@ Y) € A(X, E). So, fix y € E. Since v is weakly continuous,

(¥(+), v) is continuous in X for all v € E. Observing that

1) + 5(@) + W(@)9) = 5 (D@7 + (@) + W(a), y o) + 3 ol

we infer that I(-) 4+ $¢(-) + (¥(-),y) is lower semicontinuous since [|[)(-)||? + ¢(-) is so
by assumption. Now, let s € R. We readily have

{oex: 1)+ o)+ w10 <}

c {oe X @) -2l — woll l¥@)| < 25— inf e} (2.11)

Since |[3(-)|| is inf-compact, the set in the right-hand side of (2.11) is compact and
hence so is the set in left-hand right, as claimed. Since the set ug — S is convex and
dense in E, in view of (2.10), Theorem 2.1 ensures the existence of ¢ € ug — S, with
|5]| < r, such that the function I(-) + (¥(-), ) + () has at least two global minima
in X. Consequently, since

1) + ((2),9) + 50(2) = 3 (19(2) + 5 uoll? + ()

5 (luoll* = 117 — uol®),

1
2
if we put

Y :i=uog—7,
we have § € S, ||§ — uo| < r and the function ||¢)(-) — §[|?> + () has at least two
global minima in X. The proof is complete. O

Remark 2.1. Of course, Theorem 1.1 is an immediate corollary of Theorem 2.6: take
E = H, consider X equipped with the relative weak topology, take ¢(z) = = and
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observe that if ¢ : X — R is sequentially weakly lower semicontinuous, then ||-||2+¢(-)
is weakly lower semicontinuous in view of the Eberlein-Smulyan theorem.

Here is an application of Theorem 2.2. An operator T between two Banach spaces
F1, F» is said to be sequentially weakly continuous if, for every sequence {x,} in Fy
weakly convergent to x € F, the sequence {T'(z,,)} converges weakly to T'(z) in Fs.

Theorem 2.7. Let V' be a reflexive real Banach space, let xg € V', letr > 0, let X be the
open ball in V', of radius r, centered at xo, let v : [0,r[— R, with lim¢_,,- v(§) = 400,
let I: X = R and y : X — E be two Gateaux differentiable functions. Moreover,
assume that I is sequentially weakly lower semicontinous, that v is sequentially weakly
continuous, that ¥ (X) is bounded and non-convex, and that

Yz = 2oll) < I(z)

forallx € X.
Then, for every convex set S C E* weakly-star dense in E*, there exists n € S
such that the equation

I'(x) + (Roy) (x) =0
has at least two solutions in X.

Proof. We apply Theorem 2.2 considering X equipped with the relative weak topology.
Let nn € E*. Since 1(X) is bounded, we have ¢ := infyex n(9(z)) > —oo. Let s € R.
We have

{reX: I(z)+n¢(x) <s} C{re X :I(x)<s—c}
C{xe X v(|lz — o) < s—c}. (2.12)

Since limg_,,- y(t) = 400, there is § €]0,r[, such that y(§) > s — ¢ for all £ €], 7[.
Consequently, from (2.12), we obtain

{reX: I(z)+n(r) <s} C{xeV:|z—urx <d}. (2.13)

From the assumptions, it follows that the function I + 1 o ¢ is sequentially weakly
lower semicontinuous in X. Hence, from (2.13), since § < r and V is reflexive, we
infer that the set {z € X : I(x) + n(¢(z)) < s} is sequentially weakly compact and
hence weakly compact, by the Eberlein-Smulyan theorem. In other words, (I,4) €
A(X, E*). Therefore, we can apply Theorem 2.2. Accordingly, there exists 77 € S such
that the function I + 77 0 ¢ has at least two global minima in X which are critical
points of it since X is open. O

Here is an application of Theorem 1.1:

Theorem 2.8. Let H be a Hilbert space and let I,J : H — R be two C' functionals
with compact derivative such that 21 — J? is bounded. Moreover, assume that J(0) # 0
and that there is & € H such that J(—%) = —J(&).
Then, for every convex set S C H X R dense in H x R and for every r satisfying
oo N3P+ 1T@)1° = infeen(lz)® + |7 (2)]%) + supy (2 — J?) — infx (21 = J%)
2infren /||2(? +[J (2)?

9
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there exists (yo, po) € S, with ||yo|? + |po|? < r?, such that the equation
z+1I'(z) + pod'(z) = yo

has at least three solutions.

Proof. We consider the Hilbert space E := H x R with the scalar product

<(I7 )‘)7 (ya ,lL)>E = <I, y) + )\/1,
for all (x, A), (y, ) € E. Take
X ={(x,\) e E: Xx=J(x)}.
Since J' is compact, the functional J turns out to be sequentially weakly continuous
([11], Corollary 41.9). So, the set X is sequentially weakly closed. Moreover, notice
that (0,0) ¢ X, while the antipodal points (Z,J(£)) and —(&, J(Z)) lie in X. So,
(0,0) € conv(X). Now, with the notations of Theorem 1.1, taking, of course, ug =
(0,0), we have
— 2 2
¢ = inf vllz[|* +]J ()|
and

pr = \Iy\lzillllﬁ2<7’2 Iig)f((llacH2 | T(@)? = 2((z, J(2)), (v, 1)) B)-

Then, from Proposition 2.1, we infer that
pr < 12|17 + | T (2)[.
Now, consider the function ¢ : X — R defined by
oz, \) = 2I(x) — \?
for all (x,)\) € X. Notice that ¢ is sequentially weakly continuous and r satisfies
the inequality of Theorem 1.1. Consequently, there exists (yo, o) € S such that the
functional
(2,3) = 1 M — 202 2), (o, i) 5+ 21() — 2
has at least two global minima in X. Of course, if (x,\) € X, we have
12, M1 = 2((, A); (9o, 10)) & + 21 () — N?
= [|z]|* + J*(x) — 2(z, yo) — 2p0J () + 2 (x) — J*(x).
In other words, the functional
x — |lz]|? = 2(z, y0) — 2p0J (x) + 21 ()
has two global minima in H. Since the functional
x = —2{(x,yo) — 2puoJ () + 21(x)
has a compact derivative, a well know result ([11], Example 38.25) ensures that the
functional
2 22 = 20z, yo) — 240 (&) + 21 ()
has the Palais-Smale property and so, by Corollary 1 of [6], it possesses at least three
critical points. The proof is complete. O

Remark 2.2. In Theorem 2.8, apart from being C'! with compact derivative, the truly
essential assumption on J is, of course, that its graph is not convex. This amounts to
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say that J is not affine. The current assumptions are made to simplify the constants
appearing in the conclusion. Actually, from the proof of Theorem 2.8, the following
can be obtained:

Theorem 2.9. Let H be a Hilbert space and let I,J : H — R be two C! functionals
with compact derivative such that 2I — J? is bounded. Moreover, assume that J is not

affine.
Then, for every convex set S C H x R dense in H X R, there exists (yo, Ao) € S
such that the equation

x+I'(x) + XoJ (2) = yo

has at least three solutions.

Remark 2.3. For I = 0, the conclusion of Theorem 2.9 can be obtained from Theorem
4 of [7] (see also [4]) provided that, for some 7 € R, the set J~*(r) is not convex.
Therefore, for instance, the fact that, for any non-constant bounded C' function
J : R — R, there are a,b € R such that the equation

r+al'(x)=0b

has at least three solutions, follows, in any case, from Theorem 2.9, while it follows
from Theorem 4 of [7] only if J is not monotone.

We conclude presenting an application of Theorem 2.7 to a class of Kirchhoff-
type problems.

Theorem 2.10. Let f: R — R be a continuous function, let p > 0 and let w : [0, p[—
[0, +00[ be a continuous increasing function such that

3
lim w(x)dx = +o0.
&=r~ Jo

Consider C°([0,1]) x C°([0,1]) endowed with the norm
1 1
la.8)l = [ i+ [ 150ar

Then, the following assertions are equivalent:
(a) the restriction of f to [—g, g} is not constant;

(b) for every convex set S C C°([0,1]) x C°([0,1]) dense in C°([0,1]) x C°(]0,1]),
there exists («, ) € S such that the problem

—w </0 |u’(t)|2dt> ' = B(t)f(u) + at) in [0,1]
u(0) =u(l) =0
[ wpa <o

0

has at least two classical solutions.
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Proof. Consider the Sobolev space Hg(]0,1[) with the usual scalar product

(u,v) :/0 o' ()’ (t)dt.

Let B /5 be the open ball in Hj(]0, 1], of radius ,/p, centered at 0. Let g : [0,1]xR — R
be a continuous function. Consider the functionals I, J, : B ;5 — R defined by

I(u) = %w (/01 u’(t)|2dt) ,

Jo(u) = / 3t u(t))dt

for all u € B, /5, where &(¢& fo x)dz, §(t, &) = fo (t,z)dx. By classical results,
taking into account that if w( )=20 then x = 0, it follows that the classical solutions

of the problem
1
—w (/ |u’(t)2dt) v’ = g(t,u) in [0,1]

=u(l)=0

/|u J2dt < p

are exactly the critical points in B, s of the functional I — J,.
Let us prove that (a) — (b). We are going to apply Theorem 2.7 taking V = H}(]0, 1]),
x9 =0, 7 =/p, I as above, v(£) = 50(€?), E = C°([0,1]) x C°([0,1]) and ¢ : B /; —

FE defined by

P(u)() = (u(), f(ul)))
for all u € B, where f fo x)dz. Clearly, the functional I is continuous and
strictly convex (and so weakly lower semlcontmuoub), while the operator v is Gateaux

differentiable and sequentially weakly continuous due to the compact embedding of
H(]0,1]) into C°([0,1]). Recall that

1
max |u| < B /|u’(t)|2dt

(0,1]

for all w € HZ(]0,1[). As a consequence, the set v (B\/;,) is bounded and, in view of
(a), non-convex. Hence, each assumption of Theorem 2.7 is satisfied. Now, consider
the operator T': E — E* defined by

T(aﬁ)(u,v):/o a(t)u(t)dt—f—/o B(t)v(t)dt

for all (o, 8), (u,v) € E. Of course, T is linear and the linear subspace T'(E) is total
over E. Hence, T(E) is weakly-star dense in E*. Moreover, notice that T is continuous
with respect to the weak-star topology of E*. Indeed, let {(a,, 8n)} be a sequence in
E converging to some (a, 8) € E. Fix (u,v) € E. We have to show that

nhﬂn;Q T(an, Bn)(u,v) = T(a, B)(u,v). (2.14)
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Notice that

nh—>Holo </ loen (t) — a(t |dt+/ |Bn(t) — |dt> (2.15)

On the other hand, we have

@, ) 0) =T )0} = | [ en®) —atO)utirin + | (ﬁn<t>—5<t>>v<t>dt]

</ |, (t) — a(t |dt—|—/ |Bn(t) — |dt>max{max|u|,max|v}
[0,1] [0,1]

and hence (2.14) follows in view of (2.15).

Finally, fix a convex set S C C°(]0,1]) x C°([0, 1]) dense in C°([0, 1]) x C°(]0, 1]). Then,
by the kind of continuity of T" just now proved, the convex set T(—S5) is weakly-star
dense in E* and hence, thanks to Theorem 2.7, there exists (ag, 89) € —S such that,
if we put

9(t,§) = ao(t) + Bo(t) £(£),

the functional I — J, has at least two critical points in B, ,; which are the claimed

solutions of the problem in (), with o = —ap and 8 = —f.
Now, let us prove that (b) — (a). Assume that the restriction of f to [—@, 4}
is constant. Let ¢ be such a value. So, the classical solutions of the problem

—w (/ [u/(¢)] dt) = cf(t) + «(t) in [0,1]
/ o (4)2dt < p

are the critical points in B, /; of the functional

"o %w (/01 u’(t)|2dt) _ /Ol(ca(t) + B()yult)dt

But, since w is increasing and non-negative, this functional is strictly convex and so
it possesses a unique critical point. The proof is complete. O
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