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Multiplicity theorems involving functions with
non-convex range
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Dedicated to the memory of Professor Csaba Varga, with nostalgia

Abstract. Here is a sample of the results proved in this paper: Let f : R → R
be a continuous function, let ρ > 0 and let ω : [0, ρ[→ [0,+∞[ be a continuous
increasing function such that

lim
ξ→ρ−

∫ ξ

0

ω(x)dx = +∞.

Consider C0([0, 1])× C0([0, 1]) endowed with the norm

‖(α, β)‖ =

∫ 1

0

|α(t)|dt+

∫ 1

0

|β(t)|dt.

Then, the following assertions are equivalent:

(a) the restriction of f to
[
−

√
ρ

2
,
√
ρ

2

]
is not constant;

(b) for every convex set S ⊆ C0([0, 1])×C0([0, 1]) dense in C0([0, 1])×C0([0, 1]),
there exists (α, β) ∈ S such that the problem

−ω
(∫ 1

0

|u′(t)|2dt
)
u′′ = β(t)f(u) + α(t) in [0, 1]

u(0) = u(1) = 0∫ 1

0

|u′(t)|2dt < ρ

has at least two classical solutions.
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1. Introduction

Let H be a real Hilbert space. A very classical result of Efimov and Stechkin
([3]) states that if X is a non-convex sequentially weakly closed subset of H, then
there exists y0 ∈ H such that the restriction to X of the function x → ‖x − y0‖ has
at least two global minima. A more precise version of such a result was obtained by
I.G. Tsar’kov in [10]. Actually, he proved that any convex set dense in H contains a
point y0 with the above property.

In the present paper, as a by product of a more general result, we get the
following:

Theorem 1.1. Let X ⊂ H be a non-convex sequentially weakly closed set and let
u0 ∈ conv(X) \X.

Then, if we put

δ := dist(u0, X)

and, for each r > 0,

ρr := sup
‖y‖<r

((dist(u0 + y,X))2 − ‖y‖2),

for every convex set S ⊆ H dense in H, for every bounded sequentially weakly lower
semicontinuous function ϕ : X → R and for every r satisfying

r >
ρr − δ2 + supX ϕ− infX ϕ

2δ
,

there exists y0 ∈ S, with ‖y0 − u0‖ < r, such that the function x→ ‖x− y0‖2 + ϕ(x)
has at least two global minima in X.

So, with respect to the Efimov-Stechkin-Tsar’kov result, Theorem 1.1 gives us
two remarkable additional informations: a precise localization of the point y0 and the
validity of the conclusion not only for the function x→ ‖x−y0‖2, but also for suitable
perturbations of it.

Let us recall the most famous open problem in this area: if X is a subset of H
such that, for each y ∈ H, the restriction of the function x → ‖x − y‖ to X has a
unique global minimum, is it true that the set X is convex? So, Efimov-Stechkin’s
result provides an affirmative answer when X is sequentially weakly closed. However,
it is a quite common feeling that the answer, in general, should be negative ([1], [2],
[5], [8]). In the light of Theorem 1.1, we posit the following problem:

Problem 1.1. Let X be a subset of H for which there exists a bounded sequentially
weakly lower semicontinuous function ϕ : X → R such that, for each y ∈ H, the
function x→ ‖x− y‖2 + ϕ(x) has a unique global minimum in X. Then, must X be
convex?

What allows us to reach the advances presented in Theorem 1.1 is our particular
approach which is entirely based on the minimax theorem established in [9]. So, also
the present paper can be regarded as a further ring of the chain of applications and
consequences of that minimax theorem.
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2. Results

In the sequel, X is a topological space and E is real normed space, with topo-
logical dual E∗.

For each S ⊆ E∗, we denote by A(X,S) (resp. As(X,S)) the class of all pairs
(I, ψ), with I : X → R and ψ : X → E, such that, for each η ∈ S and each s ∈ R,
the set

{x ∈ X : I(x) + η(ψ(x)) ≤ s}
is closed and compact (resp. sequentially closed and sequentially compact).

Let us start establishing the following useful proposition. E′ denotes the algebraic
dual of E.

Proposition 2.1. Let I : X → R, let ψ : X → E and let x1, . . . , xn ∈ X, λ1, . . . , λn ∈

[0, 1], with

n∑
i=1

λi = 1.

Then, one has

sup
η∈E′

inf
x∈X

(
I(x) + η

(
ψ(x)−

n∑
i=1

λiψ(xi)

))
≤ max

1≤i≤n
I(xi).

Proof. Fix η ∈ E′. Clearly, for some j′ ∈ {1, . . . , n}, we have

η

(
ψ(xj′)−

n∑
i=1

λiψ(xi)

)
≤ 0. (2.1)

Indeed, if not, we would have

η(ψ(xj)) >

n∑
i=1

λiη(ψ(xi))

for each j ∈ {1, . . . , n}. So, multiplying by λj and summing, we would obtain

n∑
j=1

λjη(ψ(xj)) >

n∑
i=1

λiη(ψ(xi)),

a contradiction. In view of (2.1), we have

inf
x∈X

(
I(x) + η

(
ψ(x)−

n∑
i=1

λiψ(xi)

))
≤ I(xj′) + η

(
ψ(xj′)−

n∑
i=1

λiψ(xi)

)
≤ I(xj′) ≤ max

1≤i≤n
I(xi)

and so we get the conclusion due to the arbitrariness of η. �

Our main result is as follows:

Theorem 2.1. Let I : X → R, let ψ : X → E, let S ⊆ E∗ be a convex set dense in E∗

and let u0 ∈ E.
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Then, for every bounded function ϕ : X → R such that (I + ϕ,ψ) ∈ A(X,S)
and for every r satisfying

sup
X
ϕ− inf

X
ϕ < inf

x∈X
(I(x) + ‖ψ(x)− u0‖r)− sup

‖η‖E∗<r
inf
x∈X

(I(x) + η(ψ(x)−u0)), (2.2)

there exists η̃ ∈ S, with ‖η̃‖E∗ < r, such that the function I + η̃ ◦ ψ + ϕ has at least
two global minima in X.

Proof. Consider the function g : X × E∗ → R defined by

g(x, η) = I(x) + η(ψ(x)− u0)

for all (x, η) ∈ X ×E∗. Let Br denote the open ball in E∗, of radius r, centered at 0.
Clearly, for each x ∈ X, we have

sup
η∈Br

η(ψ(x)− u0)) = ‖ψ(x)− u0‖r. (2.3)

Then, from (2.2) and (2.3), it follows

sup
X
ϕ− inf

X
ϕ < inf

X
sup
Br

g − sup
Br

inf
X
g. (2.4)

Now, consider the function f : X × (S ∩Br)→ R defined by

f(x, η) = g(x, η) + ϕ(x)

for all (x, η) ∈ X × (S ∩ Br). Since S is dense in E∗, the set S ∩ Br is dense in Br.
Hence, since g(x, ·) is continuous, we obtain

inf
X

sup
S∩Br

g = inf
X

sup
Br

g. (2.5)

Then, taking (2.4) and (2.5) into account, we have

sup
S∩Br

inf
X
f ≤ sup

Br

inf
X
f ≤ sup

Br

inf
X
g + sup

X
ϕ < inf

X
sup
Br

g + inf
X
ϕ

≤ inf
x∈X

(
sup

η∈S∩Br

g(x, η) + ϕ(x)

)
= inf

X
sup
S∩Br

f. (2.6)

Now, since (I + ϕ,ψ) ∈ A(X,S) and f is concave in S ∩ Br, we can apply Theorem
1.1 of [9]. Therefore, since (by (2.6)) supS∩Br

infX f < infX supS∩Br
f , there exists of

η̃ ∈ S ∩Br such that the function f(·, η̃) has at least two global minima in X which,
of course, are global minima of the function I + η̃ ◦ ψ + ϕ. �

If we renounce to the very detailed informations contained in its conclusion, we
can state Theorem 2.1 in an extremely simplified form.

Theorem 2.2. Let I : X → R, let ψ : X → E and let S ⊂ E∗ be a convex set
weakly-star dense in E∗. Assume that ψ(X) is not convex and that (I, ψ) ∈ A(X,S).

Then, there exists η̃ ∈ S such that the function I + η̃ ◦ ψ has at least two global
minima in X.

Proof. Fix u0 ∈ conv(ψ(X))\ψ(X) and consider the function g : X×E∗ → R defined
by

g(x, η) = I(x) + η(ψ(x)− u0)
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for all (x, η) ∈ X × E∗. By Proposition 2.1, we know that

sup
E∗

inf
X
g < +∞.

On the other hand, for each x ∈ X, since ψ(x) 6= u0, we have

sup
η∈E∗

η(ψ(x)− u0) = +∞.

Hence, since S is weakly-star dense in E∗ and g(x, ·) is weakly-star continuous, we
have

sup
η∈S

g(x, η) = +∞.

Therefore

sup
S

inf
X
g < inf

X
sup
S
g. (2.7)

Now, taken into account that (I, ψ) ∈ A(X,S), we can apply Theorem 1.1 of [9] to
g|X×S

. So, in view of (2.7), there exists η̃ ∈ S such that the function g(·, η̃) (and so
I + η̃ ◦ ψ) has at least two global minima in X, as claimed. �

The next result is a sequential version of Theorem 1.1 of [9].

Theorem 2.3. Let X be a topological space, E a topological vector space, Y ⊆ E a non-
empty separable convex set and f : X × Y → R a function satisfying the following
conditions:
(a) for each y ∈ Y , the function f(·, y) is sequentially lower semicontinuous, sequen-
tially inf-compact and has a unique global minimum in X;
(b) for each x ∈ X, the function f(x, ·) is continuous and quasi-concave.

Then, one has

sup
Y

inf
X
f = inf

X
sup
Y
f.

Proof. The pattern of the proof is the same as that of Theorem 1.1 of [9]. We limit
ourselves to stress the needed changes. First, for every n ∈ N, one proves the result
when E = Rn and Y = Sn := {(λ1, . . . , λn) ∈ ([0,+∞[)n : λ1 + . . . + λn = 1}.
In this connection, the proof agrees exactly with that of Lemma 2.1 of [9], with the
only difference of using the sequential version of Theorem 1.A of [9] instead of such
a result itself (see Remark 2.1 of [9]). Next, we fix a sequence {xn} dense in Y . For
each n ∈ N, set

Pn = conv({x1, . . . , xn}).
Consider the function η : Sn → P defined by

η(λ1, . . . , λn) = λ1x1 + . . .+ λnxn

for all (λ1, . . . , λn) ∈ Sn. Plainly, the function (x, λ1, . . . , λn) → f(x, η(λ1, . . . , λn))
satisfies in X × Sn the assumptions of Theorem A, and so, by the case previously
proved, we have

sup
(λ1,...,λn)∈Sn

inf
x∈X

f(x, η(λ1, . . . , λn)) = inf
x∈X

sup
(λ1,...,λn)∈Sn

f(x, η(λ1, . . . , λn)).
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Since η(Sn) = Pn, we then have

sup
Pn

inf
X
f = inf

X
sup
Pn

f.

Now, set

D =
⋃
n∈N

Pn.

In view of Proposition 2.2 of [9], we have

sup
D

inf
X
f = inf

X
sup
D
f.

Finally, by continuity and density, we have

sup
y∈D

f(x, y) = sup
y∈Y

f(x, y)

for all x ∈ X, and so

inf
X

sup
Y
f = inf

X
sup
D
f = sup

D
inf
X
f ≤ sup

Y
inf
X
f ≤ inf

X
sup
Y
f

and the proof is complete. �

Reasoning as in the proof of Theorem 2.1 and using Theorem 2.3, we get

Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied. In addition, assume
that E∗ is separable.

Then, the conclusion of Theorem 2.1 holds with As(X,S) instead of A(X,S).

Analogously, the sequential version of Theorem 2.2 is as follows:

Theorem 2.5. Let I : X → R, let ψ : X → E and let S ⊂ E∗ be a convex set weakly-
star separable and weakly-star dense in E∗. Assume that ψ(X) is not convex and that
(I, ψ) ∈ As(X,S).

Then, there exists η̃ ∈ S such that the function I + η̃ ◦ ψ has at least two global
minima in X.

Here is a consequence of Theorem 2.1:

Theorem 2.6. Let E be a Hilbert space, let ψ : X → E be a weakly continuous function
and let S ⊆ E be a convex set dense in E. Assume that ψ(X) is not convex and that
the function ‖ψ(·)‖ is inf-compact. Let u0 ∈ conv(ψ(X)) \ ψ(X).

Then, for every bounded function ϕ : X → R such that ‖ψ(·)‖2 + ϕ(·) is lower
semicontinuous and for every r satisfying

r >
sup‖y‖<r((dist(u0 + y, ψ(X)))2 − ‖y‖2)− (dist(u0, ψ(X)))2 + supX ϕ− infX ϕ

2dist(u0, ψ(X))
,

(2.8)
there exists ỹ ∈ S, with ‖ỹ− u0‖ < r, such that the function ‖ψ(·)− ỹ‖2 +ϕ(·) has at
least two global minima in X.

Proof. First, we observe that the set ψ(X) is sequentially weakly closed (and so norm
closed). Indeed, let {xn} be a sequence in X such that {ψ(xn)} converges weakly to
y ∈ E. So, in particular, {ψ(xn)} is bounded and hence, since ‖ψ(·)‖ is inf-compact,
there exists a compact set K ⊆ X such that xn ∈ K for all n ∈ N. Since ψ is weakly
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continuous, the set ψ(K) is weakly compact and hence weakly closed. Therefore,
y ∈ ψ(K), as claimed. This remark ensures that dist(u0, ψ(X)) > 0. Now, we apply
Theorem 2.1 identifying E with E∗ and taking

I(x) =
1

2
‖ψ(x)− u0‖2

for all x ∈ X. Of course, we have

I(x) + 〈ψ(x)− u0, y〉 =
1

2
(‖ψ(x)− u0 + y‖2 − ‖y‖2) (2.9)

for all y ∈ E. In view of (2.8) and (2.9), we have

1

2
(sup
X
ϕ− inf

X
ϕ) <

1

2
(dist(u0, ψ(X)))2 + rdist(u0, ψ(X))

− 1

2
sup
‖y‖<r

((dist(u0 − y, ψ(X)))2 − ‖y‖2)

≤ inf
x∈X

(I(x) + ‖ψ(x)− u0‖r)−
1

2
sup
‖y‖<r

((dist(u0 − y, ψ(X)))2 − ‖y‖2)

= inf
x∈X

(I(x) + ‖ψ(x)− u0‖r)− sup
‖y‖<r

inf
x∈X

(I(x) + 〈ψ(x)− u0, y〉). (2.10)

Let us show that (I + 1
2ϕ,ψ) ∈ A(X,E). So, fix y ∈ E. Since ψ is weakly continuous,

〈ψ(·), v〉 is continuous in X for all v ∈ E. Observing that

I(x) +
1

2
ϕ(x) + 〈ψ(x), y〉 =

1

2
(‖ψ(x)‖2 + ϕ(x)) + 〈ψ(x), y − u0〉+

1

2
‖u0‖2,

we infer that I(·) + 1
2ϕ(·) + 〈ψ(·), y〉 is lower semicontinuous since ‖ψ(·)‖2 +ϕ(·) is so

by assumption. Now, let s ∈ R. We readily have{
x ∈ X : I(x) +

1

2
ϕ(x) + 〈ψ(x), y〉 ≤ s

}
⊆
{
x ∈ X : ‖ψ(x)‖2 − 2‖y − u0‖‖ψ(x)‖ ≤ 2s− inf

X
ϕ
}
. (2.11)

Since ‖ψ(·)‖ is inf-compact, the set in the right-hand side of (2.11) is compact and
hence so is the set in left-hand right, as claimed. Since the set u0 − S is convex and
dense in E, in view of (2.10), Theorem 2.1 ensures the existence of ṽ ∈ u0 − S, with
‖ṽ‖ < r, such that the function I(·) + 〈ψ(·), ṽ〉+ 1

2ϕ(·) has at least two global minima
in X. Consequently, since

I(x) + 〈ψ(x), ṽ〉+
1

2
ϕ(x) =

1

2
(‖ψ(x) + ṽ − u0‖2 + ϕ(x))− 1

2
(‖u0‖2 − ‖ṽ − u0‖2),

if we put

ỹ := u0 − ṽ,
we have ỹ ∈ S, ‖ỹ − u0‖ < r and the function ‖ψ(·) − ỹ‖2 + ϕ(·) has at least two
global minima in X. The proof is complete. �

Remark 2.1. Of course, Theorem 1.1 is an immediate corollary of Theorem 2.6: take
E = H, consider X equipped with the relative weak topology, take ψ(x) = x and
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observe that if ϕ : X → R is sequentially weakly lower semicontinuous, then ‖·‖2+ϕ(·)
is weakly lower semicontinuous in view of the Eberlein-Smulyan theorem.

Here is an application of Theorem 2.2. An operator T between two Banach spaces
F1, F2 is said to be sequentially weakly continuous if, for every sequence {xn} in F1

weakly convergent to x ∈ F1, the sequence {T (xn)} converges weakly to T (x) in F2.

Theorem 2.7. Let V be a reflexive real Banach space, let x0 ∈ V , let r > 0, let X be the
open ball in V , of radius r, centered at x0, let γ : [0, r[→ R, with limξ→r− γ(ξ) = +∞,
let I : X → R and ψ : X → E be two Gâteaux differentiable functions. Moreover,
assume that I is sequentially weakly lower semicontinous, that ψ is sequentially weakly
continuous, that ψ(X) is bounded and non-convex, and that

γ(‖x− x0‖) ≤ I(x)

for all x ∈ X.
Then, for every convex set S ⊆ E∗ weakly-star dense in E∗, there exists η̃ ∈ S

such that the equation

I ′(x) + (η̃ ◦ ψ)′(x) = 0

has at least two solutions in X.

Proof. We apply Theorem 2.2 considering X equipped with the relative weak topology.
Let η ∈ E∗. Since ψ(X) is bounded, we have c := infx∈X η(ψ(x)) > −∞. Let s ∈ R.
We have

{x ∈ X : I(x) + η(ψ(x)) ≤ s} ⊆ {x ∈ X : I(x) ≤ s− c}
⊆ {x ∈ X : γ(‖x− x0‖) ≤ s− c}. (2.12)

Since limξ→r− γ(t) = +∞, there is δ ∈]0, r[, such that γ(ξ) > s − c for all ξ ∈]δ, r[.
Consequently, from (2.12), we obtain

{x ∈ X : I(x) + η(ψ(x)) ≤ s} ⊆ {x ∈ V : ‖x− x0‖ ≤ δ}. (2.13)

From the assumptions, it follows that the function I + η ◦ ψ is sequentially weakly
lower semicontinuous in X. Hence, from (2.13), since δ < r and V is reflexive, we
infer that the set {x ∈ X : I(x) + η(ψ(x)) ≤ s} is sequentially weakly compact and
hence weakly compact, by the Eberlein-Smulyan theorem. In other words, (I, ψ) ∈
A(X,E∗). Therefore, we can apply Theorem 2.2. Accordingly, there exists η̃ ∈ S such
that the function I + η̃ ◦ ψ has at least two global minima in X which are critical
points of it since X is open. �

Here is an application of Theorem 1.1:

Theorem 2.8. Let H be a Hilbert space and let I, J : H → R be two C1 functionals
with compact derivative such that 2I−J2 is bounded. Moreover, assume that J(0) 6= 0
and that there is x̂ ∈ H such that J(−x̂) = −J(x̂).

Then, for every convex set S ⊆ H×R dense in H×R and for every r satisfying

r >
‖x̂‖2 + |J(x̂)|2 − infx∈H(‖x‖2 + |J(x)|2) + supH(2I − J2)− infX(2I − J2)

2 infx∈H
√
‖x‖2 + |J(x)|2

,
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there exists (y0, µ0) ∈ S, with ‖y0‖2 + |µ0|2 < r2, such that the equation

x+ I ′(x) + µ0J
′(x) = y0

has at least three solutions.

Proof. We consider the Hilbert space E := H ×R with the scalar product

〈(x, λ), (y, µ)〉E = 〈x, y〉+ λµ

for all (x, λ), (y, µ) ∈ E. Take

X = {(x, λ) ∈ E : λ = J(x)}.
Since J ′ is compact, the functional J turns out to be sequentially weakly continuous
([11], Corollary 41.9). So, the set X is sequentially weakly closed. Moreover, notice
that (0, 0) 6∈ X, while the antipodal points (x̂, J(x̂)) and −(x̂, J(x̂)) lie in X. So,
(0, 0) ∈ conv(X). Now, with the notations of Theorem 1.1, taking, of course, u0 =
(0, 0), we have

δ = inf
x∈X

√
‖x‖2 + |J(x)|2

and
ρr = sup

‖y‖2+|µ|2<r2
inf
x∈X

(‖x‖2 + |J(x)|2 − 2〈(x, J(x)), (y, µ)〉E).

Then, from Proposition 2.1, we infer that

ρr ≤ ‖x̂‖2 + |J(x̂)|2.
Now, consider the function ϕ : X → R defined by

ϕ(x, λ) = 2I(x)− λ2

for all (x, λ) ∈ X. Notice that ϕ is sequentially weakly continuous and r satisfies
the inequality of Theorem 1.1. Consequently, there exists (y0, µ0) ∈ S such that the
functional

(x, λ)→ ‖(x, λ)‖2E − 2〈(x, λ), (y0, µ0)〉E + 2I(x)− λ2

has at least two global minima in X. Of course, if (x, λ) ∈ X, we have

‖(x, λ)‖2E − 2〈(x, λ), (y0, µ0)〉E + 2I(x)− λ2

= ‖x‖2 + J2(x)− 2〈x, y0〉 − 2µ0J(x) + 2I(x)− J2(x).

In other words, the functional

x→ ‖x‖2 − 2〈x, y0〉 − 2µ0J(x) + 2I(x)

has two global minima in H. Since the functional

x→ −2〈x, y0〉 − 2µ0J(x) + 2I(x)

has a compact derivative, a well know result ([11], Example 38.25) ensures that the
functional

x→ ‖x‖2 − 2〈x, y0〉 − 2µ0J(x) + 2I(x)

has the Palais-Smale property and so, by Corollary 1 of [6], it possesses at least three
critical points. The proof is complete. �

Remark 2.2. In Theorem 2.8, apart from being C1 with compact derivative, the truly
essential assumption on J is, of course, that its graph is not convex. This amounts to
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say that J is not affine. The current assumptions are made to simplify the constants
appearing in the conclusion. Actually, from the proof of Theorem 2.8, the following
can be obtained:

Theorem 2.9. Let H be a Hilbert space and let I, J : H → R be two C1 functionals
with compact derivative such that 2I−J2 is bounded. Moreover, assume that J is not
affine.

Then, for every convex set S ⊆ H ×R dense in H ×R, there exists (y0, λ0) ∈ S
such that the equation

x+ I ′(x) + λ0J
′(x) = y0

has at least three solutions.

Remark 2.3. For I = 0, the conclusion of Theorem 2.9 can be obtained from Theorem
4 of [7] (see also [4]) provided that, for some r ∈ R, the set J−1(r) is not convex.
Therefore, for instance, the fact that, for any non-constant bounded C1 function
J : R→ R, there are a, b ∈ R such that the equation

x+ aJ ′(x) = b

has at least three solutions, follows, in any case, from Theorem 2.9, while it follows
from Theorem 4 of [7] only if J is not monotone.

We conclude presenting an application of Theorem 2.7 to a class of Kirchhoff-
type problems.

Theorem 2.10. Let f : R→ R be a continuous function, let ρ > 0 and let ω : [0, ρ[→
[0,+∞[ be a continuous increasing function such that

lim
ξ→ρ−

∫ ξ

0

ω(x)dx = +∞.

Consider C0([0, 1])× C0([0, 1]) endowed with the norm

‖(α, β)‖ =

∫ 1

0

|α(t)|dt+

∫ 1

0

|β(t)|dt.

Then, the following assertions are equivalent:

(a) the restriction of f to
[
−
√
ρ

2 ,
√
ρ

2

]
is not constant;

(b) for every convex set S ⊆ C0([0, 1]) × C0([0, 1]) dense in C0([0, 1]) × C0([0, 1]),
there exists (α, β) ∈ S such that the problem

−ω
(∫ 1

0

|u′(t)|2dt
)
u′′ = β(t)f(u) + α(t) in [0, 1]

u(0) = u(1) = 0∫ 1

0

|u′(t)|2dt < ρ

has at least two classical solutions.
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Proof. Consider the Sobolev space H1
0 (]0, 1[) with the usual scalar product

〈u, v〉 =

∫ 1

0

u′(t)v′(t)dt.

LetB√ρ be the open ball inH1
0 (]0, 1[, of radius

√
ρ, centered at 0. Let g : [0, 1]×R→ R

be a continuous function. Consider the functionals I, Jg : B√ρ → R defined by

I(u) =
1

2
ω̃

(∫ 1

0

|u′(t)|2dt
)
,

Jg(u) =

∫ 1

0

g̃(t, u(t))dt

for all u ∈ B√ρ, where ω̃(ξ) =
∫ ξ
0
ω(x)dx, g̃(t, ξ) =

∫ ξ
0
g(t, x)dx. By classical results,

taking into account that if ω(x) = 0 then x = 0, it follows that the classical solutions
of the problem 

−ω
(∫ 1

0

|u′(t)|2dt
)
u′′ = g(t, u) in [0, 1]

u(0) = u(1) = 0∫ 1

0

|u′(t)|2dt < ρ

are exactly the critical points in B√ρ of the functional I − Jg.
Let us prove that (a)→ (b). We are going to apply Theorem 2.7 taking V = H1

0 (]0, 1[),
x0 = 0, r =

√
ρ, I as above, γ(ξ) = 1

2 ω̃(ξ2), E = C0([0, 1])×C0([0, 1]) and ψ : B√ρ →
E defined by

ψ(u)(·) = (u(·), f̃(u(·)))
for all u ∈ B√ρ, where f̃(ξ) =

∫ ξ
0
f(x)dx. Clearly, the functional I is continuous and

strictly convex (and so weakly lower semicontinuous), while the operator ψ is Gâteaux
differentiable and sequentially weakly continuous due to the compact embedding of
H1

0 (]0, 1[) into C0([0, 1]). Recall that

max
[0,1]
|u| ≤ 1

2

√∫ 1

0

|u′(t)|2dt

for all u ∈ H1
0 (]0, 1[). As a consequence, the set ψ

(
B√ρ

)
is bounded and, in view of

(a), non-convex. Hence, each assumption of Theorem 2.7 is satisfied. Now, consider
the operator T : E → E∗ defined by

T (α, β)(u, v) =

∫ 1

0

α(t)u(t)dt+

∫ 1

0

β(t)v(t)dt

for all (α, β), (u, v) ∈ E. Of course, T is linear and the linear subspace T (E) is total
over E. Hence, T (E) is weakly-star dense in E∗. Moreover, notice that T is continuous
with respect to the weak-star topology of E∗. Indeed, let {(αn, βn)} be a sequence in
E converging to some (α, β) ∈ E. Fix (u, v) ∈ E. We have to show that

lim
n→∞

T (αn, βn)(u, v) = T (α, β)(u, v). (2.14)
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Notice that

lim
n→∞

(∫ 1

0

|αn(t)− α(t)|dt+

∫ 1

0

|βn(t)− β(t)|dt
)

= 0. (2.15)

On the other hand, we have

|T (αn, βn)(u, v)−T (α, β)(u, v)| =
∣∣∣∣∫ 1

0

(αn(t)− α(t))u(t)dt+

∫ 1

0

(βn(t)− β(t))v(t)dt

∣∣∣∣
≤
(∫ 1

0

|αn(t)− α(t)|dt+

∫ 1

0

|βn(t)− β(t)|dt
)

max

{
max
[0,1]
|u|,max

[0,1]
|v|
}

and hence (2.14) follows in view of (2.15).
Finally, fix a convex set S ⊆ C0([0, 1])×C0([0, 1]) dense in C0([0, 1])×C0([0, 1]). Then,
by the kind of continuity of T just now proved, the convex set T (−S) is weakly-star
dense in E∗ and hence, thanks to Theorem 2.7, there exists (α0, β0) ∈ −S such that,
if we put

g(t, ξ) = α0(t) + β0(t)f(ξ),

the functional I − Jg has at least two critical points in B√ρ which are the claimed
solutions of the problem in (b), with α = −α0 and β = −β0.

Now, let us prove that (b)→ (a). Assume that the restriction of f to
[
−
√
ρ

2 ,
√
ρ

2

]
is constant. Let c be such a value. So, the classical solutions of the problem

−ω
(∫ 1

0

|u′(t)|2dt
)
u′′ = cβ(t) + α(t) in [0, 1]

u(0) = u(1) = 0∫ 1

0

|u′(t)|2dt < ρ

are the critical points in B√ρ of the functional

u→ 1

2
ω̃

(∫ 1

0

|u′(t)|2dt
)
−
∫ 1

0

(cα(t) + β(t))u(t)dt.

But, since ω is increasing and non-negative, this functional is strictly convex and so
it possesses a unique critical point. The proof is complete. �
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