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Polynomial estimates for solutions of parametric
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Abstract. Let P : C∞(M ;E) → C∞(M ;F ) be an order µ differential operator
with coefficients a and Pk := P : Hs0+k+µ(M ;E) → Hs0+k(M ;F ). We prove
polynomial norm estimates for the solution P−1

0 f of the form

‖P−1
0 f‖Hs0+k+µ(M ;E) ≤ C

k∑
q=0

‖P−1
0 ‖

q+1 ‖a‖q
W |s0|+k

‖f‖Hs0+k−q ,

(thus in higher order Sobolev spaces, which amounts also to a parametric regu-
larity result). The assumptions are that E,F →M are Hermitian vector bundles
and that M is a complete manifold satisfying the Fréchet Finiteness Condition
(FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis
and Geometry, 2022). These estimates are useful for uncertainty quantification,
since the coefficient a can be regarded as a vector valued random variable. We
use these results to prove integrability of the norm ‖P−1

k f‖ of the solution of
Pku = f with respect to suitable Gaussian measures.
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1. Introduction

1.1. A short summary

Let M be a Riemannian manifold and E,F →M be Hermitian vector bundles.
We let ∇ denote a generic connection on vector bundles. On E and F , ∇ is given,
whereas on TM we consider the Levi-Civita connection. Let

∇j = ∇ ◦∇ ◦ . . . ◦ ∇ : C∞(M ;E)→ C∞(M ;T ∗⊗jM ⊗ E)
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be the j-times composition of the covariant derivative on E, namely the composition
of the maps ∇ : C∞(M ;T ∗⊗iM ⊗ E)→ C∞(M ;T ∗⊗(i+1)M ⊗ E).

In this paper, we study an order µ ≥ 1 differential operator

P := a · ∇tot :=

µ∑
j=0

a[j]∇j (1.1)

acting on sections of E and with values sections of F . This setting allows us to consider
systems of partial differential operators (PDEs). Let s0 ∈ Z (fixed throughout the
paper) and k ∈ Z+ and let

Pk := a · ∇tot : Hs0+k(M ;E)→ Hs0+k+µ(M ;F ) (1.2)

denote the operator induced by P on the indicated Sobolev spaces (which is defined
and continuous provided that a is smooth enough, see Lemma 2.2). Our main result
is to prove polynomial bounds for ‖P−1

k f‖Hs0+k+µ in terms of ‖P−1
0 ‖ and the norm

of the coefficient a under suitable hypotheses on M , E, and F (Theorem 1.3).

We apply these estimates to the integrability of the norm of P−1
k (in

L(Hs0+k(M ;F ), Hs0+k+µ(M ;E))) with respect to suitable Gaussian measures. This
type of estimate is useful for uncertainty quantification, see [3, 7, 11, 13, 15, 16, 20].

Our results apply to complete manifolds M that satisfy the Fréchet Finiteness
Condition (FFC), a condition that was introduced in [14] and will be recalled shortly.
It was proved in Lemma 3.1 of [9] that manifolds with bounded geometry satisfy
(FFC). Consequently, every open subset of a manifold with bounded geometry satisfies
(FFC). In particular, all compact manifolds and all euclidean spaces satisfy (FFC).

1.2. Basic concepts

To formulate our result more precisely, we need to introduce some notation and
terminology and to remind some basic definitions. If E →M is a vector bundle, then
M(M ;E) denotes the set of measurable sections of E. We shall use in the following
∇-differential operators [14]. To define them, let the truncated Fock space FMµ (E) be
defined by

FMµ (E) := ⊕µj=0 T
∗⊗jM ⊗ E . (1.3)

Definition 1.1. Let E,F →M be vector bundles, with E endowed with a connection
and let a = (a[0], a[1], . . . , a[µ]) be a measurable section of Hom(FMµ (E);F ), ∇0 := id.
A ∇–differential operator (on E with values in F ) is a map (see Equation (1.1))

P = a · ∇tot :=

µ∑
j=0

a[j]∇j : C∞(M ;E)→M(M ;F ) .

The order of P , denoted ord(P ), is the least µ for which such a writing exists.

If E is Hermitian, we let

W k,∞
∇ (M ;E) := {u ∈M(M ;E) | ∇ju ∈ Lp(M ;E), 0 ≤ j ≤ k}

be the space of sections of E whose first k covariant derivatives are bounded, as in
[2, 12, 14]. For k ≤ 0 and k /∈ Z, we proceed by duality and interpolation (see [14], for
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instance). We let Hs(M ;E) := W s,2
∇ (M ;E) and W∞,∞∇ (M ;E) := ∩k≥0W

k,∞
∇ (M ;E).

Recall the Fréchet Finiteness Conditions (FFC), see [14, Definition 5.8].

Definition 1.2. Let M be a Riemannian manifold with a metric g. We say that (M, g)
satisfies the Fréchet finiteness condition (FFC) if there exist N ∈ N and an isometric
(vector bundle) embedding Φ : TM → M × RN ,, Φ ∈ W∞,∞∇ (M ; Hom(TM ;RN )) ,
where, in order to define the Sobolev space W∞,∞∇ (M ; Hom(TM ;RN )), we consider
the trivial connection on the vector bundle M × RN →M .

1.3. Statement of the main result

It is known that the operator Pk := a ·∇tot : Hs0+k+µ(M ;E)→ Hs0+k(M ;F ) of

Equation (1.2) is well-defined and continuous if a ∈ W |s0+k|,∞
∇ (M ; Hom(FMµ (E);F ))

(see Lemma 2.2). A vector bundle E is said to have totally bounded curvature if its
curvature tensor is in W∞,∞(M ; Λ2T ∗M ⊗End(E)). We are ready to state our main
result. Recall that, throughout this paper, we have fixed s0 ∈ Z.

Theorem 1.3. Let us assume that M is a complete manifold satisfying (FFC) and that

E and F have totally bounded curvature. Let a ∈ W
|s0|+k,∞
∇ (M ; Hom(FMµ (E);F ))

and Pk := a · ∇tot : Hs0+k+µ(M ;E) → Hs0+k(M ;F ), k ∈ Z+. Let us assume that
P0 is invertible. Then C := ‖P−1

0 ‖ ‖a‖W |s0|+k ≥ 1. Let f ∈ Hs0+k(M ;F ), so P−1
0 f ∈

Hs0+µ(M ;E) is defined, then, in fact, P−1
0 f ∈ Hs0+k+µ(M ;E), and

‖P−1
0 f‖Hs0+k+µ . ‖P−1

0 ‖
k∑
q=0

Cq ‖f‖Hs0+k−q . (Ik)

Consequently, Pk is an isomorphism with ‖P−1
k ‖ ≤ ‖P

−1
0 ‖k+1 ‖a‖k

W |s0|+k
.

For operators in divergence form, we obtain a slightly better result in that we may
allow lower regularity for a, as in [18]. A consequence of our results is the integrability
of ‖P−1

k f‖Hk+µ for operators of divergence form of order 2m with respect to certain
measures of Gaussian type on the set of coefficients a, see Theorem 5.3. We stress
that a particular, but important, special case of our results is when M is compact
without boundary. The case of bounded domains is discussed in [19].

1.4. Contents of the paper

The main result is stated in the Introduction states, where we also recall some
needed concepts. Section 2 contains some preliminary material, including a version
of Nirenberg’s trick following [6, 18]. The third section is devoted to proving that
a totally bounded vector field (i.e. one in W∞,∞∇ (M ;TM)) integrates to a global
one-parameter groups of diffeomorphisms of M and of automorphisms of our Sobolev
spaces. The forth section is devoted to the proof of the main result (Theorem 1.3)
following the method from [18]. The integrability of ‖P−1

k f‖Hs0+k+µ with respect to
suitable Gaussian measures on the space of coefficients is proved in the last section.
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2. Operators and Nirenberg’s trick

Here we describe the ingredients needed to formulate our main result in more
detail. We also recall some needed results, including an extension of Nirenberg’s trick.
See [4, 5, 8, 17, 21] for concepts and results that are not discussed in this article.

2.1. Operators and their norms

The following notation will be used throughout the paper. It was already used
in the statement of the main result. We fix µ ∈ N = {1, 2, . . .}, which will be the
order of the operator P := a · ∇tot that we study. We also fix throughout this paper
s0 ∈ Z, which will be the order of the minimal regularity Sobolev spaces where we
assume the invertibility of P . We let σ := s0 + k, to simplify the notation. We shall
usually write ‖u‖Wk (or even ‖a‖k) instead of ‖u‖Wk,∞(M ;E) and ‖u‖Hs instead of
‖u‖Hs(M ;E). Recall that if X and Y are two normed spaces, then L(X,Y ) denotes
the space of linear, continuous operators X → Y . Let Z+ := N ∪ {0}.
Notation 2.1. Let k ∈ Z+ and s0, µ, and σ := s0 + k as above. We shall write
‖T1‖k := ‖T1‖L(Hσ+µ(M ;E);Hσ(M ;F )) and |||T2|||k := ‖T2‖L(Hσ(M ;F );Hσ+µ(M ;E)) .

We shall write D1 . D2 if there is CΦ,k,M,E,F > 0 such that D1 ≤ CΦ,k,M,E,FD2,
where CΦ,k,M,E,F depends only on Φ, k, M , E, and F , where Φ is as in the Defini-
tion 1.2, k some other parameter, usually related to the order of the Sobolev spaces
involved, M is our manifold and E,F →M are the vector bundle involved. The next
result follows from [14, Proposition 3.7].

Lemma 2.2. Let E,F,Ej be Hermitian vector bundles, j = 1, 2, 3.

Let bj ∈W k,∞
∇ (M ; Hom(Ej , Ej+1)), j = 1, 2, and f ∈ Hs(M ;E1).

(i) ‖b2b1‖Wk . ‖b2‖Wk‖b1‖Wk .
(ii) ‖b1f‖Hs . ‖b1‖Wk‖f‖Hs , if |s| ≤ k.

(iii) Let Pk := a · ∇tot : Hσ+µ(M ;E) → Hσ(M ;F ). Then Pk is continuous with

norm ‖Pk‖k . ‖a‖W |s0|+k , if a ∈W |s0|+k,∞∇ (M ; Hom(FMm (E);F )).

Here k, µ ∈ Z+, s, s0 ∈ Z, and σ := s0 + k.

As in [18], we obtain the following simple lemma.

Lemma 2.3. We use the notation of Lemma 2.2 and assume Pk is invertible. Then
1 . |||P−1

k |||k ‖a‖W |s0|+k .
2.2. Nirenberg’s trick

In this section we recall a version of Nirenberg’s trick, as it is formalized in [6, 18].
We write t↘ 0 if t→ 0 and t > 0. Let X and Y be two Banach spaces, recall that a
family (Tt)t≥0 in L(X,Y ) converges strongly to T for t↘ 0 if limt↘0 ‖Ttu−Tu‖Y = 0,
for all u ∈ X. We shall need also the following basic concept.

Definition 2.4. A family of operators (S(t))t≥0 of L(X) := L(X,X) is a strongly
continuous semigroup on X if the following conditions are satisfied: S(0) = idX , for
all t ≥ 0 and r ≥ 0, S(t+ r) = S(t)S(r), and, for all x ∈ X, limt→0 ‖S(t)x−x‖X = 0.
Then the infinitesimal generator of (S(t))t≥0 is the operator (LS ,D(LS)) defined by

D(LS) := {x ∈ X | LSx := lim
t→0

t−1
(
S(t)x− x

)
exists in X} .
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The following lemma [6, 18] will play an essential role in what follows. The
version here is a simplified one compared to the ones in the aforementioned articles.

Proposition 2.5. Let T : X → Y be an invertible bounded operator between two Banach
spaces and let SX(t) ∈ L(X) and SY (t) ∈ L(Y ) be two strongly continuous semigroups
of operators. We assume that, for each t ∈ R, there exists Tt ∈ L(X,Y ) such that
TtSX(t) = SY (t)T . Suppose that t−1(Tt − T ) converges strongly to Q ∈ L(X,Y ) for
t↘ 0. Then, for all v in D(LY ), we have

T−1v ∈ D(LSX ) and LSXT
−1v = T−1LSY v − T−1QT−1v.

In our case, at least one of the assumptions of this result will be easy to check.

Remark 2.6. In our applications, both SX and SY will extend to groups of operators.
Thus, SX(t) and SY (t) are defined for t ∈ R with the usual group laws:

SX(t)SX(t′) = SX(t+ t′) and SY (t)SY (t′) = SY (t+ t′).

Therefore, the existence of Tt satisfying TtSX(t) = SY (t)T is guaranteed simply by
taking Tt := SY (t)TSX(−t).

3. Groups of diffeomorphisms and Sobolev spaces

In this section, we systematically use vector fields to define our Sobolev spaces.

3.1. Vector fields and Sobolev spaces

Assume M satisfies (FFC). Let Φ : TM →M × RN be as in Definition 1.2 and
ej , j = 1, . . . , N , be the canonical basis of RN . Then Z1, Z2, . . . , ZN ∈ Wb(M) :=
W∞,∞∇ (M ;TM) will continue to denote a Fréchet system of generators of Wb(M) as
C∞b -module, as in [14], that is,

Zj := ΦT (ej) , (3.1)

We shall need the following proposition from [14].

Proposition 3.1. Let us assume that M satisfies (FFC) and let {Zj} be a Fréchet
system of generators of Wb(M), as in Equation (3.1). Let ` ∈ N and 1 ≤ p ≤ ∞.
Then

W `,p
∇ (M ;E) = {u | ∇EZk1∇

E
Zk2

. . .∇EZkj u ∈ L
p(M ;E), j ≤ `, 1 ≤ ki ≤ N }.

We shall need the following standard consequence. (See also [18].)

Lemma 3.2. Let Z0u := u and Zku := ∇Zk(u), for simplicity, with Zj as in Equation
(3.1). Let s ∈ Z+ and

‖u‖′ :=

N∑
i=0

‖Ziu‖Hs .

Then ‖u‖′ defines an equivalent norm on Hs+1(M ;E).

Proof. This follows right away from Proposition 3.1. �
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3.2. Diffeomorphism groups

We shall need the fact that vector fields X ∈W∞,∞∇ (M ;TM) integrate to global
diffeomorphisms groups and then that these diffeomorphism groups lift to automor-
phism groups of vector bundles.

Proposition 3.3. Let X ∈ W∞,∞∇ (M ;TM) (that is, X is a totally bounded smooth
vector field on M). Assume that M is complete, then X generates a one-parameter
group of diffeomorphisms φt : M →M , t ∈ R.

A one-parameter group of diffeomorphisms (of M) will also be called a “flow (on M).”

Proof. The proof is almost the same as the one of the existence of global geodesics
on complete Riemannian manifolds. First, the existence of a local family φt is a
classical result in ordinary differential equations and differential geometry. Then, for
each x ∈ M , the curve φt(x) is an integral curve of the vector field X and is defined
at least on some interval (−ε, ε), where ε > 0 may depend on x. We need to show that
this curve extends indefinitely for each x under the assumption that our manifold
M is complete. We shall proceed by contradiction. For any given x ∈ M , let I ⊂ R
be a maximal interval on which the integral curve φt(x), t ∈ I, is defined. Let us
assume I 6= R and let a ∈ I r I. Let also tn ∈ I, tn → a. As X is bounded, we have
dist(φtn(x), φtm(x)) ≤ ‖X‖L∞ |tn − tm|, for all n,m ∈ N. Hence, the sequence φtn(x)
is a Cauchy sequence. Since we have assumed that M is complete, this sequence has
a limit y ∈ M . Therefore limt→a,t∈I φt(a) = y exists. Then the local existence of the
flow generated by X in a neighborhood of y will allow us to extend the flow φt(x) for
t past a by setting φa+t(x) = φt(y) for |t| small. This is a contradiction and hence
our result is proved. �

Lemma 3.4. We use the notation and the assumptions of Proposition 3.3, in particular,
X ∈ W∞,∞∇ (M ;TM) generates the flow φt : M → M , t ∈ R. For any vector bundle
E endowed with a connection, the parallel transport τt along the integral curves of X
generates a one-parameter group of automorphisms of C∞(M ;E).

Proof. This is a classical result. Indeed, the definition of the parallel transport τt
amounts to solving a linear system of ordinary differential equations (ODEs) along
each of the integral curves φt(x) of φ. We know by Proposition 3.3 that the integral
curves of X extend indefinitely, so φt(x) is defined for all t ∈ R and x ∈ M . Hence
we have global solutions for the system of ODEs defining the parallel transport (since
the integral curves of φ extend indefinitely and the ODE system is linear). �

In what follows, one should distinguish between the parallel transport τt and
the map φt∗ : C∞(M ;T ) → C∞(M ;T ), where T is a tensor bundle on M (tensor
product of TM and T ∗M or canonical subbundles) and φt∗ is the map induced by
the diffeomorphism φt : M → M . We shall use this construction for T = TM and
T = R (plain functions). Of course, if α is a function, then τt(α) = φt∗(α).

Theorem 3.5. We use the notation and the assumptions of Proposition 3.3 and Lemma
3.4. Let k ∈ Z+. Let us assume also that E →M is a Hermitian vector bundle endowed
with a metric-preserving connection with totally bounded curvature. Then the parallel
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transport τ = (τ∗t )t∈R defines a one-parameter group of continuous operators on all

spaces W k,p
∇ (M ;E), 1 ≤ p ≤ ∞, such that, if k ≥ 1 and Z ∈W k−1,∞

∇ (M ;TM), then

A(t;X,Z) := τt(Z)− φt∗(Z) ∈W k−1,∞
∇ (M ;TM) ,

φt∗ is bounded on W k−1,∞(M ;TM) and

B(t;X,Z) := τt∇Zτ−t −∇φ∗t (Z) ∈W k−1,∞
∇ (M ; End(E)) ,

(3.2)

with C∞-dependence for A and B on t ∈ R if Z ∈ W∞,∞∇ (M ;TM). If p < ∞, the
resulting group (τt)t∈R is strongly continuous. The infinitesimal generator Lτ of τ
acting on W k+1,p(M ;E) satisfies Lτξ = ∇Xξ for ξ ∈W k+1,p(M ;E).

Proof. We shall prove our result by induction on k. Let us assume k = 0. Since
the connection on E is metric-preserving, the parallel transport will be isometric
between the fibers of E. To obtain the desired result on the boundedness of the
induced operator, it is enough to notice that the volume form is increased by at most
a bounded factor since div(X) is bounded (i.e. in L∞), by the results of [14]. (For
k = 0 there is nothing to check about φt∗ or the functions A and B of Equation (3.2).)

Let us assume now that the result is true for k−1 ≥ 0 and let us prove it for k. We

will first prove the result for A, then the boundedness of φt∗ on the W k−1,∞
∇ (M ;TM)

spaces, then the result for B and, finally, we will check the boundedness of τt on the

W k,p
∇ spaces.

Let us prove the result for A(t;X,Z). If, furthermore, Z ∈ W k,p(M ;TM)
(slightly better regularity than in the statement), then

∂tA(t;X,Z) = ∂t
(
τt(Z)− φt∗(Z)

)
= τt(∇X(Z))− φt∗([X,Z])

= τt([X,Z])− φt∗([X,Z]) + τt(∇Z(X))

= A(t;X, [X,Z]) + τt(∇Z(X)) .

We shall use this relation for all Z = Zj , j = 1, . . . , N , where {Zj} is a Fréchet
system of generators of W∞,∞∇ (M ;TM), as in Equation (3.1). We have X,Zj ∈
W∞,∞∇ (M ;TM), and hence ∇Zj (X) ∈W∞,∞∇ (M ;TM) [14]. The induction hypothe-

sis tells us that τt is bounded on the space W k−1,∞
∇ (M ;TM), which gives then that

τt(∇Zj (X)) ∈ W k−1,∞
∇ (M ;TM). We then express each [X,Zj ] =

∑
ji CjiZi, with

Cji ∈ W∞,∞∇ (M), as in [14]. This yields an inhomogeneouse linear system of ODEs

in W k−1,p(M ;TM) for A(t;X,Zj) with free term τt(∇Zj (X)) ∈ W k−1,∞
∇ (M ;TM).

Since A(0;X,Z) = 0 and since τt preserves W k−1,∞
∇ (M ;TM), we obtain the desired

result that A(t;X,Zj) ∈ W k−1,∞
∇ (M ;TM) for Z = Zj . Next, we use use the linear-

ity of A(t;X,Z) in Z ∈ W k−1,p(M ;TM) (same regularity now as in the statement)

and express Z =
∑N
j=1 αjZj as a linear combination of the Fréchet system of gen-

erators {Zj}, j = 1, . . . , N with coefficients αj ∈ W k−1,∞
∇ (M). We also notice that
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A(t;X,αZ) = τt(α)A(t;X,αZ) for α a function, by the definition of A. This gives

A(t;X,Z) =

N∑
j=1

A(t;X,αjZj) = τt(αj)

N∑
j=1

A(t;X,Zj) ∈W k−1,∞
∇ (M ;TM) ,

where we have used again the induction hypothesis for τt acting on W k−1,∞
∇ (M).

Let us check next that φt∗ is bounded on the spaces W k−1,∞
∇ (M ;TM). Let

Z ∈W k−1,∞
∇ (M ;TM). The result we have just proved for A gives

φt∗(Z) := τt(Z)−A(t;X,Z) ∈W k−1,∞
∇ (M ;TM)

Hence φt∗ maps W k−1,∞
∇ (M ;TM) to itself. Since φt∗ is continuous in the sense of

distributions (by Lemma 3.4) it has closed graph, and hence it is continuous.

Let us now turn to the study of the term B(t;X,Z), which will be similar. Let Ω
be the curvature of E. Our assumption that E has totally bounded curvature amounts
to Ω ∈ W∞,∞∇ (M ; Λ2T ∗M ⊗ End(E)). Again for Z with a little bit more regularity,
we have

∂tB(t;X,Z) = ∂t
[
τt∇Zτ−t −∇φt∗(Z)

]
= τt

(
∇X∇Z −∇Z∇X

)
τ−t −∇φt∗([X,Z])

= τt
(
∇[X,Z] + Ω(X,Z)

)
τ−t −∇φt∗([X,Z])

= B(t;X, [X,Z]) + τtΩ(X,Z)τ−t .

We know by the induction hypothesis (boundedness of τt on W k−1,∞
∇ and E with

totally bounded curvature) that τtΩ(X,Z)τ−t ∈ W k−1,∞
∇ (M ; End(E)). We complete

the discussion for B as we did for A. That is, we notice first that B(t;X,Z) is linear
in Z and that B(t;X,αZ) = τt(α)B(t;X,Z) for α a smooth enough function. We
then use the last displayed equation for Z ranging through the vectors of a Fréchet
system of generators {Zj}. We next express [X,Zj ] =

∑
j αjZj , and we use linearity to

obtain an inhomogeneous linear system of ODEs for B(t;X,Zj). Since B(0, X, Z) = 0,

since τt preserves W k−1,∞
∇ (M ;TM), and since τtΩ(X,Z)τ−t ∈W k−1,∞

∇ (M ; End(E)),

we obtain B(t;X,Zj) ∈ W k−1,∞
∇ (M ; End(E)). By using this relation, the linearity

of B(t;X,Z) in Z, and by expressing Z as a linear combination with W k−1,∞
∇ (M)

coefficients of the Fréchet basis {Zj}, j = 1, . . . , N , we obtain the desired result that

B(t;X,Z) := τt∇Zτ−t −∇φt∗(Z) ∈W k−1,∞
∇ (M ; End(E)).

It remains to prove that τt is maps continuously W k,p
∇ (M ;E) to itself. Let us

prove this without checking the continuity in t. Let ξ ∈ W k,p
∇ (M ;E). By Lemma

3.2, it is enough to check that ∇Zjτ−t(ξ) ∈ W k−1,p
∇ (M ;E) for all j = 1, . . . , N .

We have just proved that φt∗(Zj) ∈ W k−1,∞
∇ (M ;TM). Hence φt∗(Zj) can be ex-

pressed as a linear combination of the vectors Zi with coefficients in W k−1,∞
∇ (M)

and therefore ∇φt∗(Zj)ξ ∈ W k−1,p
∇ (M ;E). The relation we proved for B, namely

B(t;X,Z) ∈ W k−1,∞
∇ (M ; End(E)) gives also B(t;X,Z)ξ ∈ W k−1,p

∇ (M ;E). Putting
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all this together we obtain

τt∇Zjτ−tξ = ∇φt∗(Zj)ξ +B(t;X,Z)ξ ∈W k−1,p
∇ (M ;E) .

The desired result follows by multiplying the last equation to the left with τ−t (which

is bounded on W k−1,p
∇ (M ;E) by induction). Hence τt maps W k,∞

∇ (M ;TM) to itself.
Since τt is continuous in the sense of distributions (Lemma 3.4) it has closed graph,

and hence τt : W k,∞
∇ (M ;TM)→W k,∞

∇ (M ;TM) is continuous.
The smoothness of A and B as functions of t follows from the fact that the free

term of the linear equations defining them are smooth functions of t and from the
smoothness of τt(α) if α ∈W∞,∞∇ (M).

Finally, the continuity of the group τt follows from the continuity on smooth

sections with compact support and the density of those in the spaces W k,p
∇ for p <∞.

The statement on the infinitesimal generator is proved by the same argument. �

The following consequence will allow us to check the hypotheses of Proposition 2.5.

Proposition 3.6. Let a ∈ W k+1,∞
∇ (M ; Hom(FMµ (E);F )) and X ∈ W∞,∞∇ (M ;TM).

We assume E to have totally bounded curvature and we use the notation in Theorem
3.5. Let τ = (τt)t∈R be the one-parameter group defined by parallel transport on any

given Sobolev space Hk or W k,∞
∇ .

(i) [∇X , a · ∇tot] = ∇X(a) · ∇tot + a · [∇X ,∇tot] is a differential operator of order

≤ µ with coefficients in W k,∞
∇ (M ; Hom(FMµ (E);F )).

(ii) ‖[∇X , a · ∇tot]‖L(Hk+µ(M ;E);L(Hk(M ;F )) . ‖a‖Wk+1
∇

.

(iii) t−1
[
τt(a · ∇tot)τ−t − a · ∇tot

]
converges strongly to [∇X , a · ∇tot] in

L(Hk+µ(M ;E);L(Hk(M ;F )).

Proof. (i) is a straightforward calculation. To prove (ii), we notice that ∇X(a) ∈
W k,∞
∇ (M ; Hom(FMµ (E);F )) and that [∇X ,∇tot] is a ∇-differential operator with

W∞,∞∇ coefficients. Therefore (ii) follows right away from (i) and Lemma 2.2. To
prove (iii), let us first notice that the operators τt are bounded in view of Theorem
3.5. We then compute for ξ ∈ Hk+µ(M ;E):

1

t

[
τt(a · ∇tot)τ−t − a · ∇tot

]
ξ =

1

t

[
τt(a · ∇tot)τ−t − τtaτ−t · ∇tot

+ τtaτ−t · ∇tot − a · ∇tot
]
ξ = τtaτ−t ·

1

t

[
τt∇totτ−t −∇tot

]
ξ +

1

t

[
τtaτ−t − a

]
· ∇totξ

→ a · [∇X ,∇tot]ξ +∇X(a) · ∇totξ .

The proof that limt→0
1
t

[
τtaτ−t − a

]
ξ = ∇X(a)ξ, ξ ∈ Hk+µ(M ;E) is as in [18]. �

These results give the action of certain diffeomorphism groups on Sobolev spaces
on manifolds with bounded geometry [1, 2, 9, 10].

Corollary 3.7. We use the notation of Proposition 3.6. Suppose that a ∈
W
|s0|+k+1,∞
∇ (M ; Hom(FMµ (E);F )) and that P = a ·∇tot : Hσ+µ(M ;E)→ Hσ(M ;F )

is an isomorphism. Then, for all f ∈ Hσ+1(M ;E) we have

∇X(P−1f) = P−1(∇Xf)− P−1[∇X , P ]P−1f .
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Proof. As in [18], the proof of this result is a direct and immediate consequence
of Propositions 2.5 and 3.6 and of Theorem 3.5. Indeed, let us consider the spaces
Hσ+µ(M ;E) and Hσ(M ;F ) and the operator T := P = a · ∇tot and the groups of
automorphisms τ = (τt)t∈R generated by the parallel transport along the flow defined
by X. It was assumed that T := P := a · ∇ is bijective. Proposition 3.6, parts (i)
and (iii) shows that the other two hypotheses of Proposition 2.5 are satisfied with
Q := [∇X , a · ∇tot]. Proposition 2.5 then gives the result. �

4. Proof of the main theorem

Let us now give the proof of the main result (Theorem 1.3). Our proof follows
the method of [18]. See also [19] for other similar results.

Proof of Theorem 1.3. In this proof, we shall write Hj instead of Hj(M ;E) or

Hj(M ;F ), and W j,∞
∇ instead of W j,∞

∇ (M ; Hom(E;F )), to simplify the notation.
Thus we shall write ‖f‖Hj = ‖f‖Hj(M ;E) and so on. Moreover, we shall write
‖a‖j = ‖a‖W j,∞(M ;E). The relation C ≥ 1 follows from Lemma 2.3. To prove the
relation (Ik) we shall proceed by induction on k ≥ 0 using Corollary 3.7 (which is
Proposition 2.5 applied to the setting that we need).

The case k = 0 (that is, the relation (I0)) follows right away from the definition
of the norm of P−1

0 . Let us now prove the result for k+1 assuming that it is true for k.
As before, we shall write σ := s0 +k for the sake of brevity, and we shall use the result
of Lemma 3.2 on norm equivalences. Let then f ∈ Hσ+1 = Hs0+k+1(M ;F ). Since
f ∈ Hσ as well, the induction hypothesis gives that P−1

0 f ∈ Hσ+µ. The induction
step is then to prove that P−1

0 f ∈ Hσ+1+µ and that (Ik+1) is satisfied.

Let Z1, Z2, . . . , ZN ∈ Wb(M) := W∞,∞∇ (M ;TM) be a Fréchet system of gener-
ators of Wb(M) as C∞b -module, for instance the system given in Equation (3.1). Let
also Z0 := id, to simplify the notation, as before. Also, we shall write Z` instead of
∇Z` . Corollary 3.7 for P0 : Hσ+µ → Hσ and the parallel transport automorphisms
groups generated by Z`, ` ≥ 1, (which exist due to Theorem 3.5) give

‖Z`(P−1
0 f)‖Hσ+µ ≤ ‖P−1

0 (Z`f)‖Hσ+µ + ‖Qf‖Hσ+µ , (4.1)

where Q := P−1
0 [Z`, P0]P−1

0 : Hσ(M)→ Hσ+µ(M). For every ` = 0, . . . , N , we have
Z`f ∈ Hσ, and hence we can use by the induction hypothesis the relation (Ik) with
f replaced with Z`f to obtain for ` ≥ 1:

‖P−1
0 (Z`f)‖Hσ+µ .

k∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k‖Z`f‖Hσ−q

.
k∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k‖f‖Hσ+1−q . (4.2)
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To estimate the term ‖Qf‖Hσ+µ , we shall use the relation (Ik) twice. First, for
g := [Z`, P ]P−1f ∈ Hσ(M), the induction hypothesis (Ik) gives the relation

‖Qf‖Hσ+µ := ‖P−1
0 (g)‖Hσ+µ .

k∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k‖g‖Hσ−q . (4.3)

Moreover, for q fixed in {0, 1, . . . , k}, using Proposition 3.6(ii), we get:

‖g‖Hσ−q = ‖[Z`, P0]P−1
0 f‖Hσ−q . ‖a‖|s0|+k+1−q‖P−1

0 (f)‖Hσ−q+µ

. ‖a‖|s0|+k+1−q

k−q∑
s=0

|||P−1
0 |||

s+1
0 ‖a‖s|s0|+k−q‖f‖Hσ−q−s

.
k−q∑
s=0

|||P−1
0 |||

s+1
0 ‖a‖s+1

|s0|+k+1‖f‖Hσ−q−s . (4.4)

Consequently, the equations (4.3) and (4.4) give,

‖Qf‖Hσ+µ .
k∑
q=0

k−q∑
s=0

|||P−1
0 |||

q+s+2
0 ‖a‖q+s+1

|s0|+k+1‖f‖Hσ−q−s . (4.5)

Then, by substituting p = q + s+ 1, we get that

‖Qf‖Hσ+µ .
k+1∑
p=1

|||P−1
0 |||

p+1
0 ‖a‖p|s0|+k+1‖f‖Hσ+1−p . (4.6)

Then, by using the equations (4.2) and (4.6) to estimate the two right-hand side terms
in (4.1), we obtain that:

‖Z`(P−1f)‖Hσ+µ .
k+1∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k+1‖f‖Hσ+1−q . (4.7)

To use the estimate of Lemma 3.2, need to estimate ‖Z0P
−1
0 f‖Hσ+µ = ‖P−1

0 f‖Hσ+µ ,
which we will do by using (Ik) to obtain

‖Z0(P−1
0 f)‖Hσ+µ .

k∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k‖f‖Hσ−q

.
k∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k+1‖f‖Hσ+1−q .

We then take the sum of this last equation with all the equations 4.7, for ` = 1, . . . , N .
As desired, Lemma 3.2 gives

‖P−1
0 f‖Hσ+1+µ .

k+1∑
q=0

|||P−1
0 |||

q+1
0 ‖a‖q|s0|+k+1‖f‖Hσ+1−q , (4.8)

which is exactly the relation (Ik+1) we were also looking for. This reasoning also gives
P−1

0 f ∈ Hσ+1+µ. Using C ≥ 1 and bounding ‖f‖Hσ−q with ‖f‖Hσ , we also obtain
the desired inequality for |||P−1

k+1|||. This completes the proof of Theorem 1.3. �
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5. Remarks and applications

The method of our theorem gives a stronger result than the more straightforward
estimates expounded below.

Remark 5.1. As in [18], Corollary 3.7 and the Lemmas 2.2 and 3.2 give

|||P−1
0 |||k+1 ≤ |||P−1

0 |||2k‖a‖|s0|+k+1 . (5.1)

An induction argument in k then gives

|||P−1
0 |||k := ‖P−1

k ‖ ≤ ‖P
−1
0 ‖2

k

‖a‖2
k−1
|s0|+k , (5.2)

which is, obviously, much weaker than the result of Theorem 1.3. Nevertheless, this
type of result (which follows the method of [6]) is also sufficient for many applications.

Let A ∈ W k+2m,∞
∇ (M ; End(FMm (E))), k,m ≥ 0. It is known then from [14]

that (∇tot)∗A∇tot is a ∇-differential operator of order 2m with coefficients in

W k+2m,∞
∇ (M ; End(FMm (E))). We will let ReA := 1

2

(
A + A∗

)
, with A∗ the adjoint

of A. We write A ≥ γI if, for any complex vector ξ on which A acts, we have
(Aξ, ξ) ≥ γ‖ξ‖2, pointwise (that is, as functions on M). From now on, we shall assume
that s0 = −m. Theorem 1.3 applied to the operator (∇tot)∗A∇tot (and s0 = −m)
then yields the following result.

Theorem 5.2. Let A ∈ W k+2m,∞
∇ (M ; End(FMµ (E))) be such that ReA ≥ γI, γ > 0.

Let Pk = (∇tot)∗A∇tot : Hk+m(M ;E) → Hk−m(M ;E). Then P0 is invertible with
norm |||P−1

0 |||0 ≤ γ−1. Moreover, given f ∈ Hk−m(M ;E), we have that

‖P−1
0 f‖Hk+m .

k∑
q=0

γ−(q+1) ‖A‖q
Wk+2m‖f‖Hk−m .

In particular, Pk is invertible and |||P−1
k |||k ≤ γ−k−1 ‖A‖kWk+2m .

Proof. Let u ∈ Hm(M ;E). Then

Re(P0u, u) := Re(A∇totu,∇totu) ≥ γ(∇totu,∇totu) ≥ γ‖u‖2Hm .
So P0 is invertible and |||P−1|||0 ≤ γ−1, by the Lax-Milgram lemma. We also notice
that 1 ≤ C . γ−1‖A‖Wk+2m . The proof is then completed by using Theorem 1.3. �

We obtain the following consequence.

Theorem 5.3. We use the setting of Theorem 1.3. Let X = (X1, X2, . . . , XK) be a
vector Gaussian random variable with covariance σ = (σij) > 0. Let

A1, A2, . . . , AK ∈W k+2m,∞
∇ (M ; End(FMµ (E))) ,

with Aj ≥ γI, γ > 0. We note A :=
∑K
j=1 e

XjAj . Then |||P−1
k |||k is integrable.

Proof. We proceed as in [18]. We have

Re(A) := Re

 K∑
j=1

eXjAj

 ≥ γ K∑
j=1

eXj .
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Likewise ‖A‖Wk+2m ≤
∑K
j=1 e

Xj‖Aj‖Wk+2m . According to Theorem 5.2, we get

|||P−1
k |||k ≤

γ K∑
j=1

eXj

−k−1

‖A‖KWk+2m

≤

γ K∑
j=1

eXj

−k−1  K∑
j=1

eXj‖Aj‖Wk+2m

k

≤ C
( K∑
j=1

eXj
)−1

,

which is integrable, because
(∑K

j=1 e
xj
)−1

≤ e|x1|+...+|xK | is integrable with respect

to the measure of density e−(σx,x) ≤ e−ε‖x‖
2

, where C depends on ‖Aj‖Wk+2m , k
and K. �
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