### Modified Hadamard product properties of certain class of analytic functions with varying arguments defined by Salagean and Ruscheweyh derivative

#### Abstract

In this paper we study the modified Hadamard product properties of certain class of analytic functions with varying arguments defined by Salagean and Ruscheweyh derivative.

The obtained results are sharp and they improve known results.

#### Keywords

#### Full Text:

PDF#### References

A. Alb Lupas, L. Andrei, Aspects of univalent holomorphic functions involving Ruscheweyh derivative and generalized Salagean operator, Journal of Computational Analysis & Applications, July 2015, Vol. 19, Issue 1, 272-277.

H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math., 38(1980), 87-94.

F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Ind. J. Math. Math. Sci., 27 (2004), 1429-1436.

A. A. Attiya and M. K. Aouf, A study on certain class of analytic functions defined by Ruscheweyh derivative, Soochow J. Math., 33(2)(2007), 273-289.

Hossen H. M., Salagean G. S. and Aouf M. K., Notes on certain classes of analytic functions with negative coeficients, Mathematica 7 (1981),39(2) (1997), 165-179.

A. O. Pall-Szabo , Certain class of analytic functions with varying arguments defined by Salagean and Ruscheweyh derivative, (submitted paper)

St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

G. S. Salagean, Convolution properties of some classes of analytic functions with negative coeficients, Proc. Int. Symposium New. Develop. Geometric Function Th. and its Appl. GFTA, Univ. Kebangsaan Malaysia, 10-13 Nov. 2008, ISBN: 978-967-5048-32-6, pag. 12-16.

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013(1983), 362-372.

A. Schild and H. Silverman, Convolution of univalent functions with negative coeficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975),99-107.

H. Silverman, Univalent functions with varying arguments, Houston J. Math., 17(1981), 283-287.

DOI: http://dx.doi.org/10.24193/subbmath.2017.4.05

### Refbacks

- There are currently no refbacks.