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A two-steps fixed-point method for the simplicial
cone constrained convex quadratic optimization

Merzaka Khaldi and Mohamed Achache

Abstract. In this paper, we deal with the resolution of the simplicial cone con-
strained convex quadratic optimization (abbreviated SCQO). It is known that
the optimality conditions of SCQO is only a standard linear complementarity
problem (LCP). Under a suitable condition, the solution of LCP is equivalent
to find the solution of an absolute value equations AVE. For its numerical solu-
tion, we propose an efficient two-steps fixed point iterative method for solving
the AVE. Moreover, we show that this method converges globally linear to the
unique solution of the AVE and which is in turn an optimal solution of SCQO.
Some numerical results are reported to demonstrate the efficiency of the proposed
algorithm.
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1. Introduction

Consider the simplicial cone constrained convex quadratic optimization SCQO:

min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
s.t. x ∈ S (1.1)

where Q ∈ Rn×n is a symmetric positive definite matrix, b ∈ Rn, c ∈ Rn, and

S =
{
Ax | x ∈ Rn

+

}
is the simplicial cone associated with the nonsingular matrix A ∈ Rn×n. The impor-
tance of quadratic programming lies in its theoretical properties, its applications in
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different scientific fields and several disciplines such as economics, finance, telecom-
munications, medicine and the engineering sciences. Another great advantage of the
quadratic case is that we can transform several real and academic problems (polyno-
mial minimization problems, least squares problems in numerical analysis, etc.) into
an equivalent quadratic problem without loss of generality. Simplicial cone constrained
convex quadratic programming is equivalent to the problem of projecting the point
onto a simplicial cone (see [5, 6, 9]), with its KKT optimality conditions consisting
a linear complementarity problem (see [8, 19]). From this optimality conditions, un-
der suitable conditions, the convex quadratic programming under a simplicial cone
constraints is equivalent to finding the unique solution of the following absolute value
equation:

(ATQA+ I)x+ (ATQA− I)|x| = −AT b. (1.2)

This equation is a special case of the general absolute value equations AVE of the
type:

Āx− B̄|x| = b̄

where Ā, B̄ are given (n × n) real square matrices and b̄ ∈ Rn. The AVE was first
introduced by Rohn [18] and investigated in more general context in Mangasarian
(see [16]). Other studies for the AVE can be found in [1, 3, 2, 7, 10, 12, 13, 15, 17].
Besides some numerical methods are used to solve it. In particular, Mangasarian
in [14] proposed a semi-smooth Newton’s method for solving the AVE, and under
suitable conditions he showed the finite and linear convergence to a solution of the
AVE. However, other numerical approaches focus on reformulating the AVE as an
horizontal linear complementarity problems (HLCP) (see [4]), where they introduce
an infeasible path-following interior-point method for solving the AVE by using is
equivalent reformulations as an HLCP. In this paper, we propose a new two-steps
fixed point iterative method for solving the AVE (1.2) which is introduced in [11],
and under a new mild assumption we show that this method is always well-defined
and the generated sequence converges globally and linearly to the unique solution of
the AVE from any starting initial point. Finally, numerical results are provided to
illustrate the efficiency of this algorithm to solving the SCQO.

Our paper is organized as follows. In section 2, some notations and basic results
used in the paper are presented. In section 3, the reformulation of problem (1.1)
as an absolute value equation AVE and the unique solvability of AVE is studied.
Any solution of the AVE generates a solution of our convex quadratic programming
problem SCQO. In section 4, a description and a convergence property of the two-steps
fixed point iterative method for solving the AVE are stated. In section 5, numerical
results are presented. We end this paper with a conclusion and some remarks in
section 6.

2. Preliminaries

Let Rn be the Euclidean space provided with the usual scalar product 〈x, y〉 =
xT y where x and y are two vectors of Rn and xT is the transpose of x. The nonegative
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orthant of Rn is denoted by Rn
+. For x ∈ Rn

+, we write x ≥ 0, and means that xi ≥ 0,

∀i. For x = (x1, x2, . . . , xn)T ∈ Rn, we denote by:

x+
i := max(0, xi), x

−
i := max(0,−xi), |x| := (|x1| , . . . , |xn|)T .

It is easy from the definitions of x+ and x−, to conclude that:

x = x+ − x−, x+ ∈ Rn
+, x

− ∈ Rn
+,
〈
x+, x−

〉
= 0, |x| = x+ + x−,∀x ∈ Rn.

For x ∈ Rn, sign(x) denotes a vector with components equal to 1, 0, -1 depending on
whether the corresponding component of x is positive, zero or negative. We denote
by Rn×n the vector space of real square matrices of order n, the identity matrix is
denoted by In. If x ∈ Rn then X = Diag(x) denotes the n × n diagonal matrix
with Xii = xi, ∀i = 1, . . . , n. Let A ∈ Rn×n, its spectral matrix norm is denoted by
‖A‖ := max {‖Ax‖ : x ∈ Rn, ‖x‖ = 1} , where ‖x‖ denotes the Euclidean norm, this
definition implies:

‖Ax‖ ≤ ‖A‖ ‖x‖ , ‖AB‖ ≤ ‖A‖ ‖B‖ , ∀A,B ∈ Rn×n.

For a matrix M , ρ(M) denote its spectral radius. In addition, if M is a real symmetric
matrix, ρ(M) = ‖M‖. Finally,

Lemma 2.1. For all x ∈ Rn and y ∈ Rn, we have:

‖|x| − |y|‖ ≤ ‖x− y‖ .

Proof. For detailed proof see Lemma 5 [15]. �

3. The SCQO as an absolute value equation

Recall that the SCQO problem is given by:

min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
s.t. x ∈ S.

Starting from the definition of simplicial cones S associated with the nonsingular
matrix A, the problem (1.1) can be formulated as a quadratic programming problem
under positive constraints:

min
y

[
f(y) =

1

2
yTATQAy + yTAT b+ c

]
s.t. y ∈ Rn

+. (3.1)

As the problem (3.1) is convex and the constraints are positive then the optimality
conditions of K.K.T are necessary and sufficient and we have, y ∈ Rn

+ is an optimal
solution of problem (3.1) if and only if there exists z ∈ Rn

+ such that:

z −ATQAy = AT b, zT y = 0, y ≥ 0, z ≥ 0, (3.2)

which is a standard linear complementarity problem (see [8] ).
Next, letting z = |s| − s and y = |s| + s, then the LCP (3.2) is reformulated as the
following absolute value equations (AVE) of type

Ās+ B̄ |s| = b̄, (3.3)
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where
Ā = ATQA+ I, B̄ = ATQA− I, b̄ = −AT b.

Hence, solving the problem (1.1) is equivalent to solving the AVE (3.3). The following
result is needed to guarantee the unique solvability of the AVE.

Theorem 3.1 ( Theorem 8 [2]). Assume that Ā is invertible and the matrices Ā, B̄
satisfy the following condition,

∥∥Ā−1B̄
∥∥ < 1, then the AVE (3.3) has a unique solution

for any b̄ ∈ Rn.

For our case since Ā = ATQA + I and B̄ = ATQA − I where Q is symmetric
positive definite and A is invertible, the condition

∥∥Ā−1B̄
∥∥ < 1 of Theorem 3.1, is

satisfied. We check this result through the following lemma.

Lemma 3.2. Let Ā = ATQA + I and B̄ = ATQA − I such that A is invertible
matrix and Q is symmetric positive definite. Then the matrix Ā is invertible and∥∥Ā−1B̄

∥∥ < 1.

Proof. Because Q is symmetric positive definite and A is invertible, then the matrix
ATQA is symmetric positive definite, hence Ā is symmetric positive definite too, which
implies that Ā is invertible. Next, since ATQA is symmetric positive definite, then
ATQA has positive real eigenvalues denoted by λi(A

TQA) := λi > 0,∀i = 1, ..., n. In
addition, it is known that the eigenvalues of Ā and B̄, are given by λi + 1 > 0 and
λi − 1, respectively. Because, Ā and B̄ are real symmetric matrices, we then have,∥∥Ā−1B̄

∥∥ ≤
∥∥Ā−1

∥∥∥∥B̄∥∥ = ρ(Ā−1)ρ(B̄)

= max
i

(∣∣∣∣λi − 1

λi + 1

∣∣∣∣) .
As λi > 0, then ∣∣∣∣λi − 1

λi + 1

∣∣∣∣ < 1.

So
∥∥Ā−1B̄

∥∥ < 1. This gives the required result. �

Proposition 3.3. If s∗ is the solution of the AVE (3.3) then (y∗, z∗) = (|s∗|+s∗, |s∗|−
s∗) is the solution of the LCP (3.2). Consequently, Ay∗ is the optimal solution of
problem (1.1).

Proof. Let s∗ be the unique solution of the AVE, then

Ās∗ + B̄ |s∗| = b̄.

So (
ATQA+ I

)
s∗ + (ATQA− I) |s∗| = −AT b

⇔ ATQA(|s∗|+ s∗) + |s∗| − s∗ = −AT b

⇔ z∗ −ATQAy∗ = AT b.

Now, since y∗ = |s∗| + s∗ = 2(s∗)+, z∗ = |s∗| − s∗ = 2(s∗)−, then we have y∗ ≥ 0,
z∗ ≥ 0 and z∗T y∗ = 0, hence, the pair (y∗, z∗) is a solution of LCP (3.2). Finally,
we deduce that Ay∗ is an optimal solution of the SCQO problem. This completes the
proof. �
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4. Two-steps Picard’s fixed point iterative method for SCQO

In this section, we derive a new fixed-point iterative approach for solving the
equation (3.3). Let t = |s| then, the AVE (3.3) is equivalent to the following system:{

Ās+ B̄t = b̄
− |s|+ t = 0.

(4.1)

The latter can be expressed as follows:(
Ā B̄
−D (s) I

)(
s
t

)
=

(
b̄
0

)
, (4.2)

where D(s) :=Diag (sign (s)), s ∈ Rn. Note that the system (4.2) is nonlinear, it is
generally impossible to obtain an exact solution. We will therefore be satisfied with
an approximated solution. Since the matrix Ā is invertible hence from (4.1) we can
obtain the following fixed point equation:{

s∗ = Ā−1
(
−B̄t∗ + b̄

)
t∗ = (1− r) t∗ + r |s∗| (4.3)

where r > 0, is a suitable parameter that we shall specified it later. According to the
fixed-point equation, we generate a sequence (s(k), t(k)) converging to the solution of
AVE. So the new fixed-point iteration is given by:{

s(k+1) = Ā−1
(
−B̄t(k) + b̄

)
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ , k = 0, 1, . . .

(4.4)

The details of our algorithm for solving the AVE (3.3) is described in Figure 1.

4.1. Algorithm

Input
An accuracy parameter ε > 0;
a parameter r such that 0 < r < 2

‖Ā−1B̄‖+1
;

an initial starting point t0 ∈ Rn;
compute t1 = (1− r)t0 + r|s1|, s1 = Ā−1

(
−B̄t(0) + b̄

)
; k := 0;

While
‖tk+1−tk‖
‖b̄‖ ≥ ε do

begin

compute :

{
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ ,

s(k+1) = Ā−1
(
−B̄t(k) + b̄

)
k := k + 1;

end
end

Fig. 1. Algorithm. 4.1

In this section, we give detailed proof for the convergence of Algorithm 4.1.

Theorem 4.1. Let Q ∈ Rn×n be a symmetric positive definite matrix, b ∈ Rn and A ∈
Rn×n is an invertible matrix then the sequence (s(k), t(k)) generated by the iterative
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algorithm (4.4) to solve the problem (4.1) is well-defined for any starting point t0 ∈
Rn. In addition, if

0 < r <
2∥∥Ā−1B̄
∥∥+ 1

,

then the sequence (s(k), t(k)) converges linearly to the solution (s∗, t∗) of the nonlinear
equation (4.1). Consequently, A(|s∗|+ s∗) is the solution of the problem (1.1).

Proof. First, we check that the sequence (s(k), t(k)) is well-defined, it suffices to show
that the matrix Ā = ATQA + I is invertible. This claim was proven by Lemma 3.2.
Next, using formula (4.4) and Lemma 2.1, we have, on one hand that∥∥tk+1 − t∗

∥∥ =
∥∥∥(1− r) tk + r

∣∣∣s(k+1)
∣∣∣− (1− r) t∗ + r |s∗|

∥∥∥
=

∥∥∥(1− r) (tk − t∗) + r(
∣∣∣s(k+1)

∣∣∣− |s∗|)∥∥∥
≤ |1− r|

∥∥(tk − t∗)
∥∥+ r

∥∥sk+1 − s∗
∥∥ .

So ∥∥sk+1 − s∗
∥∥ =

∥∥Ā−1
(
−B̄tk + b

)
− Ā−1

(
−B̄t∗ + b

)∥∥
=

∥∥−Ā−1B̄(tk − t∗)
∥∥ ≤ ∥∥Ā−1B̄

∥∥∥∥(tk − t∗)
∥∥ .

Therefore ∥∥tk+1 − t∗
∥∥ ≤ (|1− r|+ r

∥∥Ā−1B̄
∥∥)
∥∥(tk − t∗)

∥∥ .
On the other hand,∥∥sk+1 − s∗

∥∥ ≤
∥∥−Ā−1B̄(tk − t∗)

∥∥
≤

∥∥−Ā−1B̄(tk − (1− r)tk−1 + (1− r)tk−1 − t∗)
∥∥

≤
∥∥−Ā−1B̄(r

∣∣sk∣∣+ (1− r)tk−1 − t∗)
∥∥ .

As |s∗| = t∗, we find∥∥sk+1 − s∗
∥∥ ≤

∥∥−Ā−1B̄(r
∣∣sk∣∣− r |s∗|)− (1− r)Ā−1B̄(tk−1 − t∗)

∥∥
≤ r

∥∥Ā−1B̄
∥∥∥∥sk − s∗∥∥+ |1− r|

∥∥sk − s∗∥∥
≤ (|1− r|+ r

∥∥Ā−1B̄
∥∥)
∥∥sk − s∗∥∥ .

The sequence (s(k), t(k)) is convergent if the following condition

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1

holds. For that we distinguish two cases.
Case 1. If 0 < r ≤ 1, then

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1 ⇔ 1− r + r
∥∥Ā−1B̄

∥∥ < 1

⇔ r(
∥∥Ā−1B̄

∥∥− 1) < 0.

Since
∥∥Ā−1B̄

∥∥ < 1 then,

r(
∥∥Ā−1B̄

∥∥− 1) < 0, ∀ 0 < r ≤ 1.
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Case 2. If r ≥ 1, then

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1 ⇔ −1 + r + r
∥∥Ā−1B̄

∥∥ < 1

⇔ r <
2∥∥Ā−1B̄
∥∥+ 1

.

Finally, regrouping the two cases, this gives the required result. �

5. Numerical results

In this section, we present numerical results for Algorithm 4.1 by using ε = 10−6

and r = 0.9. The algorithm has been applied on three examples of SCQO problem.
The iterations have been carry out by MATLAB R2016a and run on a personal pc
with 1.40 GHZ AMD E1-2500 APU Radeon(TM) HD Graphic, 8 GB memory and
Windows 10 operating system. The starting point and the unique solution by t0 and
s∗, respectively. The stopping criterion used in our algorithm is the relative residue,
i.e.,

RES :=

∥∥tk+1 − tk
∥∥∥∥b̄∥∥ ≤ 10−6

In view of the influence of the initial point on the convergence of our algorithm,
different values are used. For each problem, the hypotheses of Theorem 4.1 are
checked. In the tables below, the symbols ”It” and ”CPU” denote the number of
iterations produced by the algorithm and the elapsed times, respectively.
Problem 1. Consider the SCQO problem where Q, A and b are given by :

Q =


2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

 , A =


3 0 0 0 0

0.5 3 0 0 0
−1 0.5 3 0 0
−1 −1 0.5 3 0
−1 −1 −1 0.5 3


and b = [−3, 1, −10, −12, −2]T .
The starting point in this example is taken as:

t0 = [0, −1, −1, 2, 1]T .

After 21 iterations, the unique solution s∗ of AVE is:

s∗ = [0.2071, −7.6143, 0.5262, 0.7886, −2.2308]T ,

and

y∗ = |s∗|+ s∗ = [0.4142, 0, 1.0525, 1.5771, 0]T .

Therefore, the unique solution of Problem (1.1), is given by:

x∗ = Ay∗ = [1.2426, 0.2071, 2.7433, 4.8435, −0.6781]T .
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Problem 2. Let the matrices Q, A and the vector b of this example are given by:

Q = (qij) =


4, for i = j,
1
2 , for |i− j| = 1, i = 1, 2, . . . n− 2,

1, for

{
j = i− 2, i = 1, 2, . . . n,
i = j − 2, j = 1, 2, . . . n,

0, otherwise

A = (aij) =


−2, for i = j,
4, for j = i− 1, i = 2, . . . n,
−1, for i = j − 1, j = 2, . . . n,
1
2 , for j > i+ 2, i = 1, 2, . . . n,
1
5 , for i > j + 1, j = 1, 2, . . . n,

and

b = −2Ā−1(Ā+ B̄)e.

The computational results with different size of n are shown in Table 1. For the
initialization of Problem 2, we take different values of t0.

n t0 = [0, . . . , 0]T t0 = [5, . . . , 5]T t0 = [−10, . . . ,−10]T

10
CPU

It
RES

0.04966s
17

9.923e− 07

0.04552s
11

8.542e− 07

0.10820s
65

9.606e− 07

50
CPU

It
RES

0.03704s
4

9.136e− 07

0.03391s
3

9.025e− 07

0.36887s
42

9.576e− 07

100
CPU

It
RES

0.07339s
3

6.032e− 07

0.05023s
3

1.508e− 07

0.26949s
22

9.365e− 07

1000
CPU

It
RES

5.34351s
2

5.992e− 07

4.42180s
1

3.371e− 07

5.36816s
2

7.501e− 07

2000
CPU

It
RES

34.17236s
1

3.370e− 07

33.23488s
1

8.427e− 07

39.15840s
2

1.873e− 07

Table 1. Computational results of Problem 2.

An exact solution with different size of n is given by:

s∗ = [2, 2, . . . , 2]
T
,

and

y∗ = [4, 4, . . . , 4]
T
.

An exact solution of problem (1.1) is given by: x∗ = Ay∗.
Problem 3. The bloc matrices Q,A and the vector b of this example are given by:

Q =

[
Q11 In
In Q22

]
, A =

[
A11 In
B A11

]
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where

Q11 = (q11)ij =

 6, for i = j,
−1, for |i− j| = 1, i = 1, 2, . . . n,
0, otherwise.

Q22 = (q22)ij =


5, for i = j,
−2, for |i− j| = 1, i = 1, 2, . . . n,

1
4 , for

{
j = i+ 1, i = 1, 2, . . . n− 1,
j = i− 1, j = 1, 2, . . . n− 1,

0, otherwise.

A11 = (a11)ij =


−2, for i = j,
−1, for j = i− 1, i = 3, . . . n,
3, for j > i, i = 3, . . . n,

0.5, otherwise.

B = (bij) =



−1, for i = j,

0, for

{
j = i+ 1, i = 1, 2, . . . n− 1,
j = i− 1, j = 1, 2, . . . n,

1
n , for

{
j = i+ 2, i = 1, 2, . . . n− 2,
j = i− 2, j = 4, . . . n,

0, otherwise,

and

b = [−8, . . . ,−8]T .

For the initialization, we take:

t0 = [0, . . . , 0,−1, . . . ,−1]T .

The numerical results with different size of n are summarized in Table 2.

n 10 50 100 1000 2000
CPU

It
RES

0.14101s
122

9.81e− 07

1.0919s
137

9.98e− 07

1.11202s
92

9.95e− 07

8.37809s
6

7.436e− 07

35.76440s
3

7.35e− 07

Table 2. Computational results of Problem 3.

For example, if n = 10 then,

s∗ = [0.0984, 0.0042, 0.409, −1.782, 1.6329, 0.3763, 0.4448, 0.881, 0.7929, 2.7841]T ,

and

y∗ = |s∗|+s∗ = [0.1967, 0.0082, 0.8179, 0, 3.2658, 0.7525, 0.8896, 1.7619, 1.586, 5.568]T .

An exact solution of problem (1.1) is given by:

x∗ = Ay∗ = [2.3928, 2.475, 2.3819, 2.206, 2.1049, 2.0303, 3.038, 3.3649, 3.2356, 2.3168]T .
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6. Conclusion and remarks

In this paper, a convex quadratic programming problem under simplicial cone
constraints were studied, and via its optimality conditions is reduced to finding the
unique solution of an absolute value equation AVE. For solving this AVE we applied
a new two-steps Picard’s iterative fixed point iteration. In particular, the sufficient
conditions for the convergence of our algorithm are studied. The obtained numerical
results deduced from the testing examples illustrate that the suggested algorithm is
efficient and valid to solve the SCQO problems.
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