### A two-steps fixed-point method for the simplicial cone constrained convex quadratic optimization

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Abdellah, L., Haddou, M., Migot, T., Solving absolute value equations using complemen-

tarity and smoothing functions, J. Comput. Appl. Math., 327(2018),196-207.

Achache, M., On the unique solvability and numerical study of absolute value equations,

J. Numer. Anal. Approx. Theory, 48(2019), no. 2, 112-121.

Achache, M., Anane, N., On the unique solvability and Picard's iterative method for

absolute value equations, Bulletin of Transilvania, Series III: Mathematics and Computer

Sciences, (63)(2021), no. 1, 13-26.

Achache, M., Hazzam, N., Solving absolute value equations via linear complementarity

and interior-point methods, Journal of Nonlinear Functional Analysis, (2018), 1-10.

Barrios, J.G., Ferreira, O.P., N emeth, S.Z., A semi-smooth Newton method for solv-

ing convex quadratic programming problem under simplicial cone constraints, arXiv:

0275 v1 [math. OC] (2015).

Barrios, J.G., Ferreira, O.P., N emeth, S.Z., Projection onto simplicial cones by Picard's

method, Linear Algebra and Its Applications, 480(2015), 27-43.

Corradi, G., A quasi-Newton method for non-smooth equations, Int. J. Comput. Math.,

(5)(2005), 573-581.

Cottle, R.W., Pang, J.S., Stone, R.E., The Linear Complementarity Problem, Academic

Press, New-York, 1992.

Ferreira, O.P., N emeth, S.Z., Projection onto simplicial cones by a semi-smooth Newton

method, Optimization Letters, 9(4)(2015), 731-741.

Hu, S.L., Huang, Z.H., Zhang, Q., A generalized Newton method for absolute value

equations associated with second order cones, J. Comput. Appl. Math., 235(2011), 1490-

Ke, Y., The new iteration algorithm for absolute value equation, Applied Mathematics

Letters, 99(2020).

Ketabchi, S., Moosaei, H., An e cient method for optimal correcting of absolute value

equations by minimal changes in the right hand side, Comput. Math. Appl., 64(2012),

-1885.

Li, C.X., A Modi ed generalized Newton method for absolute value equations, J. Optim.

Theory Appl., (2016), 1055-1059.

Mangasarian, O.L., A generalized Newton method for absolute value equations, Opti-

mization Letters, 3(2009), 101-108.

Mangasarian, O.L., Linear complementarity as absolute value equation solution, Opti-

mization Letters, 8(2014), 1529-1534.

Mangasarian, O.L., Meyer, R.R., Absolute value equations, Linear Algebra and Its Ap-

plications, 419(2006), 359-367.

Noor, M.A., Iqbal, J., Khattri, S., Al-Said, E., On a iterative method for solving absolute

value equation, Optimization Letters, 6(2012), 1027-1033.

Rhon, J., A theorem of the alternatives for the equation Ax+B jxj = b, Linear Multilinear

A, 52(2004), 421-426.

Ujv ari, M., On the projection onto a nitely generated cone, Preprint WP 2007-5,

MTASZTAKI, Laboratory of Operations Research and Decision Systems, Budapest,

DOI: http://dx.doi.org/10.24193/subbmath.2024.2.13

### Refbacks

- There are currently no refbacks.