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Microscopic behavior of the solutions of
a transmission problem for the Helmholtz
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Tuğba Akyel and Massimo Lanza de Cristoforis

Dedicated to the memory of Professor Gabriela Kohr

Abstract. Let Ωi, Ωo be bounded open connected subsets of Rn that contain
the origin. Let Ω(ε) ≡ Ωo \ εΩi for small ε > 0. Then we consider a linear
transmission problem for the Helmholtz equation in the pair of domains εΩi and
Ω(ε) with Neumann boundary conditions on ∂Ωo. Under appropriate conditions
on the wave numbers in εΩi and Ω(ε) and on the parameters involved in the
transmission conditions on ε∂Ωi, the transmission problem has a unique solution
(ui(ε, ·), uo(ε, ·)) for small values of ε > 0. Here ui(ε, ·) and uo(ε, ·) solve the

Helmholtz equation in εΩi and Ω(ε), respectively. Then we prove that if ξ ∈ Ωi

and ξ ∈ Rn\Ωi then the rescaled solutions ui(ε, εξ) and uo(ε, εξ) can be expanded
into a convergent power expansion of ε, κnε log ε, δ2,n log−1 ε, κnε log2 ε for ε small
enough. Here κn = 1 if n is even and κn = 0 if n is odd and δ2,2 ≡ 1 and δ2,n ≡ 0
if n ≥ 3.
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1. Introduction

In this paper we consider a linear transmission problem for the Helmholtz equa-
tion in a domain with a small inclusion. Problems of this type are motivated by the
analysis of time-harmonic Maxwells Equations and we continue an analysis of [1]
by analyzing the microscopic behavior of the solutions. For related problems for the
Helmholtz equation, we refer to the papers [3] of Ammari, Vogelius and Volkov, [2] of
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Ammari, Iakovleva and Moskow, [4] of Ammari and Volkov, [12] of Hansen, Poignard
and Vogelius, and [25] of Vogelius and Volkov.

First we introduce a problem with no hole (and no transmission), and then we
consider the case with the hole. We consider m ∈ N\{0}, n ∈ N\{0, 1}, α ∈]0, 1[ and
the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α.
Let Rn \ Ω be connected. Let 0 ∈ Ω . (1.1)

Now let Ωo be as in (1.1). Let

ko ∈ C\]−∞, 0] , =ko ≥ 0 . (1.2)

We also assume that k2
o is not a Neumann eigenvalue for −∆ in Ωo. Then if

go ∈ Cm−1,α(∂Ωo) , (1.3)

the Neumann problem {
∆uo + k2

ou
o = 0 in Ωo ,

∂
∂νΩo

uo = go on ∂Ωo

has a unique solution ũo ∈ Cm,α(Ω
o
) (see for example Colton and Kress [9, Thm.

3.20] and classical Schauder regularity theory).
We now perturb singularly our problem. To do so, we consider another subset

Ωi of Rn as in (1.1). Then there exists

ε0 ∈]0, 1[ such that εΩi ⊆ Ωo ∀ε ∈ [−ε0, ε0] .

A known topological argument shows that Ω(ε) ≡ Ωo \ εΩi is connected, and that

Rn \ Ω(ε) has exactly the two connected components εΩi and Rn \ Ωo, and that

∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo ∀ε ∈]− ε0, ε0[\{0} .
Obviously, the outward unit normal νε to ∂Ω(ε) satisfies the equality

νε(x) = −νΩi(x/ε) sgn(ε) ∀x ∈ ε∂Ωi ,

νε(x) = νΩo(x) ∀x ∈ ∂Ωo ,

for all ε ∈] − ε0, ε0[\{0}, where sgn(ε) = 1 if ε > 0, sgn(ε) = −1 if ε < 0. Then we
introduce the constants

mi,mo ∈]0,+∞[ , a ∈]0,+∞[ , b ∈ R ,
and

ki ∈ C\]−∞, 0] , =ki ≥ 0 , (1.4)

and the datum
gi ∈ Cm−1,α(∂Ωi) . (1.5)

Then we consider the transmission problem
∆ui + k2

i u
i = 0 in εΩi ,

∆uo + k2
ou
o = 0 in Ω(ε) ,

uo(x)− aui(x) = b ∀x ∈ ε∂Ωi ,
− 1
mi

∂
∂νεΩi

ui(x) + 1
mo

∂
∂νεΩi

uo(x) = gi(x/ε) ∀x ∈ ε∂Ωi ,
∂

∂νΩo
uo = go on ∂Ωo ,

(1.6)
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in the unknown (ui, uo) ∈ Cm,α(εΩi) × Cm,α(Ω(ε)) for ε ∈]0, ε0[. By [1, Thm. 4.61],
there exists ε′ ∈]0, ε0[ such that problem (1.6) has a unique solution (ui(ε, ·), uo(ε, ·)) ∈
Cm,α(εΩi)×Cm,α(Ω(ε)). In [1, Thm. 5.1], we have analyzed the behavior of uo(ε, ·) as
ε approaches 0 and we have shown that if x ∈ Ωo \{0}, then uo(ε, x) can be expanded
into a convergent power expansion of ε, κnε log ε, δ2,n log−1 ε for ε small enough. Here
κn = 1 if n is even and κn = 0 if n is odd and δ2,2 ≡ 1 and δ2,n ≡ 0 if n ≥ 3. In this
paper we plan to consider the ‘microscopic’ behavior of our family of solutions, i.e.,
the behavior of the rescaled family

{(ui(ε, ε·), uo(ε, ε·))}ε∈]0,ε′[

when ε is small enough. More precisely, we plan to answer the following two questions

(i) Let ξ be fixed in Ωi. What can be said on the map ε 7→ ui(ε, εξ) when ε > 0 is
close to 0?

(ii) Let ξ be fixed in Rn \Ωi. What can be said on the map ε 7→ uo(ε, εξ) when ε > 0
is close to 0?

Questions of this type have long been investigated for linear problems on domains with
small holes with the methods of asymptotic analysis, which aim at proving complete
asymptotic expansions in terms of the parameter ε. Although we cannot provide here
a complete list of contributions, we mention the early works of of Cherepanov [6], [7]
and the books of Nayfeh [22], Van Dyke [24], and Cole [8]. Then the description of
the method of matching outer and inner asymptotic expansions of Il’in [13] and the
Compound Expansion Method of Mazya, Nazarov and Plamenewskii [21] where the
authors introduce a systematic approach for analyzing general Douglis and Nirenberg
elliptic boundary value problems in domains with perforations and corners.

To analyze the problem and answer the above questions we resort to the Func-
tional Analytic Approach (see reference [11] with Dalla Riva and Musolino) and we

exploit the corresponding results of [1] and we prove that if ξ ∈ Ωi and ξ ∈ Rn \ Ωi

then ui(ε, εξ) and uo(ε, εξ) can be expanded into a convergent power expansion of ε,
κnε log ε, δ2,n log−1 ε, κnε log2 ε for ε small enough, respectively (see Theorem 5.1).

2. Preliminaries and notation

For standard definitions of Calculus in normed spaces, we refer to Cartan [5]
and to Prodi and Ambrosetti [23]. The symbol N denotes the set of natural numbers
including 0. Throughout the paper,

n ∈ N \ {0, 1} .
Let D ⊆ Rn. Then D denotes the closure of D and ∂D denotes the boundary of D.
For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x| denotes the Euclidean
modulus of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}. Let Ω be
an open subset of Rn. Then we find convenient to set

Ω+ ≡ Ω, Ω− ≡ Rn \ Ω .

The space of m times continuously differentiable complex-valued functions on Ω is
denoted by Cm(Ω,C), or more simply by Cm(Ω). Let r ∈ N\{0}, f ∈ (Cm(Ω))

r
. The
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s-th component of f is denoted fs and the Jacobian matrix of f is denoted Df . Let

η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1+· · ·+ηn. Then Dηf denotes ∂|η|f
∂x
η1
1 ...∂xηnn

. The subspace

of Cm(Ω) of those functions f such that f and its derivatives Dηf of order |η| ≤ m
can be extended with continuity to Ω is denoted Cm(Ω). The subspace of Cm(Ω)
whose functions have m-th order derivatives that are Hölder continuous with exponent
α ∈]0, 1] is denoted Cm,α(Ω), (cf. e.g. [11, §2.11]). Let D ⊆ Rn. Then Cm,α(Ω,D)

denotes the set
{
f ∈

(
Cm,α(Ω)

)n
: f(Ω) ⊆ D

}
. We say that a bounded open subset

of Rn is of class Cm or of class Cm,α, if it is a manifold with boundary imbedded in
Rn of class Cm or Cm,α, respectively (cf. e.g., [11, §2.13]). For standard properties of
the functions of class Cm,α both on a domain of Rn or on a manifold imbedded in Rn
we refer to [11, §2.11, 2.12, 2.14, 2.20] (see also [14, §2, Lem. 3.1, 4.26, Thm. 4.28],
[18, §2].) We retain the standard notation of Lp spaces and of corresponding norms.
We note that throughout the paper ‘analytic’ means ‘real analytic’.

3. Some basic facts in potential theory

In the sequel, arg and log denote the principal branch of the argument and of
the logarithm in C\]−∞, 0], respectively. Then we have

arg(z) = = log(z) ∈]− π, π[ ∀z ∈ C\]−∞, 0] .

Then we set

J]ν(z) ≡
∞∑
j=0

(−1)jzj(1/2)2j(1/2)ν

Γ(j + 1)Γ(j + ν + 1)
∀z ∈ C , (3.1)

for all ν ∈ C \ {−j : j ∈ N \ {0}}. Here (1/2)ν = eν log(1/2). As is well known, if
ν ∈ C \ {−j : j ∈ N \ {0}} then the function J]ν(·) is entire and

J]ν(z2) = e−ν log zJν(z) ∀z ∈ C\]−∞, 0] ,

where Jν(·) is the Bessel function of the first kind of index ν (cf. e.g., Lebedev [20,
Ch. 1, §5.3].) If ν ∈ N, we set

N ]
ν(z) ≡ −2ν

π

∑
0≤j≤ν−1

(ν − j − 1)!

j!
zj(1/2)2j

−z
ν

π

∞∑
j=0

(−1)jzj(1/2)2j(1/2)ν

j!(ν + j)!

2
∑

0<l≤j

1

l
+

∑
j<l≤j+ν

1

l

 ∀z ∈ C .

As one can easily see, the N ]
ν(·) is an entire holomorphic function of the variable z ∈ C

and

Nν(z) =
2

π
(log(z)− log 2 + γ)Jν(z) + z−νN ]

ν(z2) ∀z ∈ C\]−∞, 0] ,

where γ is the Euler-Mascheroni constant, and whereNν(·) is the Neumann function of
index ν, also known as Bessel function of second kind and index ν (cf. e.g., Lebedev [20,
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Ch. 1, §5.5].) Let k ∈ C\]−∞, 0], n ∈ N \ {0, 1}, an ∈ C. Then we set

bn ≡
{
π1−(n/2)2−1−(n/2) if n is even ,

(−1)
n−1

2 π1−(n/2)2−1−(n/2) if n is odd ,

and

S̃k,an(x) =



kn−2

{
an + 2bn

π (log k − log 2 + γ) + 2bn
π log |x|

}
×J]n−2

2

(k2|x|2) + bn|x|2−nN ]
n−2

2

(k2|x|2)

if n is even,

ank
n−2J]n−2

2

(k2|x|2) + bn|x|2−nJ]−n−2
2

(k2|x|2)

if n is odd,

(3.2)

for all x ∈ Rn \ {0}. As it is known and can be easily verified, the family {S̃k,an}an∈C
coincides with the family of all radial fundamental solutions of ∆ + k2.

Now we need to consider two specific fundamental solutions. For the first, which
we denote by Sh,n, we need to choose an so that the resulting fundamental solution
can be extended to an entire holomorphic function of the variable k ∈ C. Then we
introduce the following theorem. For a proof we refer to the paper [19, Prop. 3.3] with
Rossi.

Theorem 3.1. Let n ∈ N \ {0, 1}. Let Sh,n(·, ·) be the map from (Rn \ {0}) × C to C
defined by

Sh,n(x, k) ≡


bn

{
2
πk

n−2J]n−2
2

(k2|x|2) log |x|

+|x|−(n−2)N ]
n−2

2

(k2|x|2)

}
if n is even ,

bn|x|−(n−2)J]−n−2
2

(k2|x|2) if n is odd ,

for all (x, k) ∈ (Rn \ {0})× C. Then the following statements hold.

(i) Sh,n(·, k) is a fundamental solution of ∆+k2 for all k ∈ C and Sh,n(·, 0) coincides
with the classical fundamental solution Sn of ∆, i.e.,

Sh,n(x, 0) = Sn(x) ≡
{ 1

sn
log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n− 1) dimensional measure of ∂Bn(0, 1).
(ii) Sh,n(·, k) is real analytic in Rn \ {0}. Moreover, if x ∈ Rn \ {0}, then the map

Sh,n(x, ·) is holomorphic in C.

Next we introduce the second fundamental solution that we need. Let k ∈ C\]−∞, 0],
=k ≥ 0. As well known in scattering theory, a function u ∈ C1(Rn \ {0}) satisfies the
outgoing k-radiation condition provided that

lim
x→∞

|x|
n−1

2 (Du(x)
x

|x|
− iku(x)) = 0 .
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Classically, one can prove that the fundamental solution of (3.2) satisfies the outgoing
k-radiation condition if and only if

an ≡
{
−ibn if n is even

−e−in−2
2 πbn if n is odd

}
= −iπ1−(n/2)2−1−(n/2) (3.3)

Then we introduce the following definition.

Definition 3.2. Let n ∈ N \ {0, 1}. Let k ∈ C\] −∞, 0]. We denote by Sr,n(·, k) the
function from Rn \ {0} to C defined by

Sr,n(x, k) ≡ S̃k,an(x) ∀x ∈ Rn \ {0} ,
with an as in (3.3) (cf. (3.2).)

As we have said above, if k ∈ C\] −∞, 0] and =k ≥ 0, then Sr,n(·, k) satisfies
the outgoing k-radiation condition. The subscript r stands for ‘radiation’. Now we
introduce the function γn from C to C defined by setting

γn(z) ≡
{

[−i+ 2
π (z − log 2 + γ)]bn if n is even ,

−e−in−2
2 πbn if n is odd ,

(3.4)

for all z ∈ C. Then we have

Sr,n(x, k) = Sh,n(x, k) + γn(log k)kn−2J]n−2
2

(k2|x|2) ∀x ∈ Rn \ {0} ,

for all k ∈ C\]−∞, 0]. Next we introduce the layer potential operators corresponding
to a fundamental solution or to a smooth kernel.

Definition 3.3. Let n ∈ N \ {0, 1}, k ∈ C. Let S be either a fundamental solution of
∆ + k2 or a real analytic function from Rn to C. Let Ω be a bounded open subset of
Rn of class C1,α. Let µ ∈ C0(∂Ω). Then we introduce the following notation.

(i) We denote by vΩ[µ, S] the function from Rn to C defined by

vΩ[µ, S](x) ≡
∫
∂Ω

S(x− y)µ(y) dσy ∀x ∈ Rn .

Then we denote by v+
Ω [µ, S], by v−Ω [µ, S] and by VΩ[µ, S], the restriction of

vΩ[µ, S] to Ω, to Ω− and to ∂Ω, respectively.
(ii) We denote by W t

Ω[µ, S] the function from ∂Ω to C defined by

W t
Ω[µ, S](x) ≡

∫
∂Ω

∂

∂νΩ,x
S(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

where

∂

∂νΩ,x
S(x− y) ≡ DS(x− y)νΩ(x) ∀(x, y) ∈ ∂Ω× ∂Ω, x 6= y .

If k ∈ C\]−∞, 0], we set

vΩ[µ, k] ≡ vΩ[µ, Sr,n(·, k)] ,

and we use corresponding abbreviations for VΩ, v±Ω , W t
Ω. If k ∈ C, we set

vΩ,h[µ, k] = vΩ[µ, Sh,n(·, k)] ,
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and we use corresponding abbreviations for VΩ,h, v±Ω,h, W t
Ω,h. If λ ∈ C, we set

vΩ,J [µ, λ] = vΩ[µ, J]n−2
2

(λ| · |2)] ,

and we use corresponding abbreviations for VΩ,J , v±Ω,J , W t
Ω,J . For the regularity results

on acoustic layer potentials that we need, we refer the reader to [10] (which is a
generalization of [19]), to [16, Thm. A.3] and to [1, §3]. If m ∈ N \ {0}, α ∈]0, 1[, we
set

W̃ t
Ω,J [µ, λ](x)

≡ 2

∫
∂Ω

(J]n−2
2

)′(λ(x− y)(x− y))(x− y)νΩ(x)µ(y) dσy ,

for all x ∈ ∂Ω and for all (µ, λ) ∈ Cm−1,α(∂Ω)× C. Then we have

W t
Ω,J [µ, λ](x) = λW̃ t

Ω,J [µ, λ](x) ∀x ∈ ∂Ω ,

for all (µ, λ) ∈ Cm−1,α(∂Ω)× C. By our abbreviations, we have

v±Ω [µ, k] = v±Ω,h[µ, k] + γn(log k)kn−2v±Ω,J [µ, k2] (3.5)

on Ω± for all µ in Cm−1,α(∂Ω) and k ∈ C\]−∞, 0] (cf. [1, Cor. 3.25]).
Next we observe that the fundamental solution Sr,n satisfies the following scaling

property, which can be verified by exploiting the definition of Sr,n and elementary
computations.

Lemma 3.4. Let n ∈ N \ {0, 1}, k ∈ C\]−∞, 0]. Then the following equalities hold

εn−2Sr,n(εx, k) = Sr,n(x, εk) ,

εn−1DSr,n(εx, k) = DSr,n(x, εk)

for all x ∈ Rn \ {0}, ε ∈]0,+∞[.

Then we note that the following elementary equality holds

γn(log(εk)) =
2bn
π
κn log ε+ γn(log k) , (3.6)

for all k ∈ C\]−∞, 0] and ε ∈]0,+∞[ (cf. (3.4).)

4. Existence of a family of solutions {(ui(ε, ·), uo(ε, ·))}ε∈]0,ε′[
We first transform problem (1.6) into a problem for integral equations on the

boundaries ∂Ωi and ∂Ωo. To do so, we first set

Ym−1,α ≡ Cm−1,α(∂Ωi)0 × C× Cm−1,α(∂Ωi)0 × C× Cm−1,α(∂Ωo) ,

where

Cm−1,α(∂Ωi)0 ≡
{
θ ∈ Cm−1,α(∂Ωi) :

∫
∂Ωi

θ dσ = 0

}
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and we mention that we can choose θ] ∈ Cm−1,α(∂Ωi) such that

θ] is real valued ,

∫
∂Ωi

θ] dσ = 1 , −1

2
θ] +W t

Ωi,h[θ], 0] = 0 on ∂Ωi (4.1)

and accordingly that

υ] ≡ VΩi,h[θ], 0] is constant on ∂Ωi (4.2)

(cf. e.g., [11, Prop. 6.18, Thms. 6.24, 6.25], [15, Thm. 5.1]). Then we also have

VΩi,J [θ], 0] = J]n−2
2

(0) on ∂Ωi (4.3)

and ∫
∂Ωi

1

2
φ+W t

Ωi,h[φ, 0]dσ =

∫
∂Ωi

φ dσ ∀φ ∈ Cm−1,α(∂Ωi)

(cf. e.g., [11, Lem. 6.11]). To shorten our notation, we find convenient to introduce
the polynomial function %n from R2 to R defined by

%n(ε, ε1) ≡ [(1− δ2,n)εn−3 + δ2,n][(1− δ2,n)ε1 + κnδ2,n] ∀(ε, ε1) ∈ R2 , (4.4)

and we observe that

%n(ε, κnε log ε) = εn−2κn
log ε

logδ2,n ε
∀ε ∈]0, 1[ . (4.5)

Then we set

Zm−1,α ≡ Cm,α(∂Ωi)× Cm−1,α(∂Ωi)× Cm−1,α(∂Ωo)

and we introduce the map M≡ (Ml)l=1,2,3 from ]− ε0, ε0[×R2 × Ym−1,α to Zm−1,α

defined by

M1[ε, ε1, ε2, ζ, c
i, ςi, c, θo](ξ) ≡

∫
∂Ωi

Sh,n(ξ − η, εko)ςi(η) dση (4.6)

+εn−1kno

[
2bn
π
ε1 + εγn(log ko)

] ∫ 1

0

∂

∂λ
VΩi,J [ςi, tε2k2

o ](ξ) dt

+

∫
∂Ωi

Sh,n(ξ − η, εko)ciθ](η) dση

+εn−1kno

[
2bn
π
ε1 + εγn(log ko)

]
ci
∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

o ](ξ) dt

+εn−2kn−2
o γn(log ko)c

iVΩi,J [θ], 0](ξ) +

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

−a
∫
∂Ωi

Sh,n(ξ − η, εki)ζ(η) dση

−aεn−1kni

[
2bn
π
ε1 + εγn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [ζ, tε2k2

i ](ξ) dt

−(kn−2
o /kn−2

i )ci
∫
∂Ωi

Sh,n(ξ − η, εki)θ](η) dση

−a
∫
∂Ωi

Sh,n(ξ − η, εki)c[(1− δ2,n) + ε2]θ](η) dση
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−εn−1kn−2
o cik2

i

[
2bn
π
ε1 + εγn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

−aεn−1kni

[
2bn
π
ε1 + εγn(log ki)

]
c[(1− δ2,n) + ε2]

×
∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt− εn−2kn−2
o ciγn(log ki)VΩi,J [θ], 0](ξ)

−akn−2
i

[
2bn
π
%n(ε, ε1) + εn−2[(1− δ2,n) + ε2]γn(log ki)

]
cVΩi,J [θ], 0](ξ)− b, ∀ξ ∈ ∂Ωi,

M2[ε, ε1, ε2, ζ, c
i, ςi, c, θo](ξ) (4.7)

≡ − 1

mi

{
− 1

2

(
ζ(ξ) + a−1(kn−2

o /kn−2
i )ciθ](ξ) + c[(1− δ2,n) + ε2]θ](ξ)

)
+

∫
∂Ωi

DSh,n(ξ − η, εki)νΩi(ξ)

×
(
ζ(η) + a−1(kn−2

o /kn−2
i )ciθ](η) + c[(1− δ2,n) + ε2]θ](η)

)
dση

+εn−1kni

[
2bn
π
ε1 + εγn(log ki)

]
×W̃ t

Ωi,J [ζ + a−1(kn−2
o /kn−2

i )ciθ] + c[(1− δ2,n) + ε2]θ], ε2k2
i ](ξ)

}
− 1

mo

{
− 1

2

(
ςi(ξ) + ciθ](ξ)

)
−
∫
∂Ωi

DSh,n(ξ − η, εko)νΩi(ξ)
(
ςi(η) + ciθ](η)

)
dση

−εn−1kno

[
2bn
π
ε1 + εγn(log ko)

]
W̃ t

Ωi,J [ςi + ciθ], ε2k2
o ](ξ)

−ε
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
− εgi(ξ), ∀ξ ∈ ∂Ωi,

M3[ε, ε1, ε2, ζ, c
i, ςi, c, θo](x) (4.8)

≡ −1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)
(
ςi(η) + ciθ](η)

)
dσηε

n−2

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy − go(x), ∀x ∈ ∂Ωo

for all (ε, ε1, ε2, ζ, c
i, ςi, c, θo) ∈] − ε0, ε0[×R2 × Ym−1,α. Here ∂

∂λVΩi,J denotes the
partial differential of the analytic map VΩi,J [·, ·] with respect to its second argu-
ment (cf. [1, Thm. 3.22]). Then we have the following statement of [1, Thms. 4.18,
4.47] that shows that for ε ∈]0, ε0[ small problem (1.6) is equivalent to equation

M[ε, ε1, ε2, ζ, c
i, ςi, c, θo] = 0 provided that we choose ε1 = κnε log ε, ε2 =

δ2,n
log ε .
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Theorem 4.1. Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as in (1.1).
Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.5). Let ki, ko be as
in (1.2), (1.4). Assume that k2

o is not a Neumann eigenvalue for −∆ in Ωo. Let
θ] ∈ Cm−1,α(∂Ωi) be as in (4.1). LetM≡ (Ml)l=1,2,3 be the map from ]−ε0, ε0[×R2×
Ym−1,α to Zm−1,α defined by (4.6)–(4.8). Then the following statements hold.

(i) If ε = ε1 = ε2 = 0, then equation

M[0, 0, 0, ζ, ci, ςi, c, θo] = 0 (4.9)

has one and only one solution (ζ̃, c̃i, ς̃i, c̃, θ̃o) in Ym−1,α. Moreover, c̃i = 0.
(ii) There exists ε∗ ∈]0, ε0[ such that the map from the subset of Ym−1,α consisting

of the 5-tuples (ζ, ci, ςi, c, θo) that solve the equation

M[ε, κnε log ε,
δ2,n
log ε

, ζ, ci, ςi, c, θo] = 0

onto the set of solutions (ui, uo) in Cm,α(εΩi)×Cm,α(Ω(ε)), which satisfy prob-
lem (1.6), which takes (ζ, ci, ςi, c, θo) to the pair of functions

(ui[ε, ζ, ci, ςi, c, θo], uo[ε, ζ, ci, ςi, c, θo])

defined by

ui[ε, ζ, ci, ςi, c, θo](x) =
1

ε
v+
εΩi [ζ(·/ε), ki](x) (4.10)

+
1

ε

(
a−1

(
kn−2
o /kn−2

i

)
ci +

c

(log ε)δ2,n

)
v+
εΩi [θ

](·/ε), ki](x) ∀x ∈ εΩi ,

uo[ε, ζ, ci, ςi, c, θo](x) = v+
Ωo [θ

o, ko](x) +
1

ε
v−εΩi [ς

i(·/ε), ko](x)

+
ci

ε
v−εΩi [θ

](·/ε), ko](x) ∀x ∈ Ω(ε) ,

is a bijection.

The equation (4.9) can be shown to be equivalent to a boundary value problem
in the sense of the following statement of [1, Thm. 4.32].

Theorem 4.2. Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as in (1.1). Let
mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.5). Let ki, ko be as in (1.2),
(1.4). Assume that k2

o is not a Neumann eigenvalue for −∆ in Ωo. Then the limiting
boundary value problem

∆ui,r1 = 0 in Ωi ,
∆uo,r1 = 0 in Ωi− ,
∆uo + k2

ou
o = 0 in Ωo ,

uo,r1 (x) + uo(0)− aui,r1 (x) = b ∀x ∈ ∂Ωi ,

− 1
mi

∂
∂νΩi

ui,r1 (x) + 1
mo

∂
∂νΩi

uo,r1 (x) = 0 ∀x ∈ ∂Ωi ,
∂

∂νΩo
uo = go on ∂Ωo ,

lim
ξ→∞

uo,r1 (ξ) = 0 ,
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has one and only one solution (ũi,r1 , ũo,r1 , ũo) in

Cm,α(Ωi)× Cm,αloc (Ωi−)× Cm,α(Ωo) ,

which is delivered by the following formulas

ũi,r1 = v+
Ωi,h[ζ̃, 0] + C̃ in Ωi , ũo,r1 = v−Ωi,h[ς̃i, 0] in Ωi− ,

ũo = v+
Ωo [θ̃

o, ko] in Ωo
(4.11)

where (ζ̃, c̃i, ς̃i, c̃, θ̃o) is the only solution in Ym−1,α of equation (4.9) and

C̃ =

(
δ2,n
2π

+ (1− δ2,n) υ]
)
c̃

(see (4.2) for the constant υ] ≡ VΩi,h[θ], 0]).

Next we turn to equation M = 0. One can show that one can solve equation
M[ε, ε1, ε2, ζ, c

i, ςi, c, θo] = 0 in the unknown (ζ, ci, ςi, c, θo) in terms of (ε, ε1, ε2) by
mean of the following statement of [1, Thm. 4.53, Rmk. 4.58].

Theorem 4.3. Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as in (1.1). Let
mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.5). Let ki, ko be as in (1.2),
(1.4). Assume that k2

o is not a Neumann eigenvalue for −∆ in Ωo. Let ε∗ ∈]0, ε0[ be
as in Theorem 4.1. Let M≡ (Ml)l=1,2,3 be the map from ]− ε0, ε0[×R2 × Ym−1,α to

Zm−1,α defined by (4.6)–(4.8). Then there exists ε′ ∈]0, ε∗[, an open neighbourhood Ũ

of (0, 0) in R2 and an open neighbourhood Ṽ of (ζ̃, c̃i, ς̃i, c̃, θ̃o) in Ym−1,α and a real
analytic map (

Z,Ci, Si, C,Θo
)

from ]− ε′, ε′[×Ũ to Ṽ such that(
κnε log ε,

δ2,n
log ε

)
∈ Ũ , ∀ε ∈]0, ε′[,

and such that the set of zeros of M in ] − ε′, ε′[×Ũ × Ṽ coincides with the graph of
the map (Z,Ci, Si, C,Θo). In particular,(

Z[0, 0, 0], Ci[0, 0, 0], Si[0, 0, 0], C[0, 0, 0],Θo[0, 0, 0]
)

= (ζ̃, c̃i, ς̃i, c̃, θ̃o) ,

where (ζ̃, c̃i, ς̃i, c̃, θ̃o) is the only solution in Ym−1,α of equation (4.9). Moreover,

∂Ci

∂ε1
[0, 0, 0] = 0,

∂Ci

∂ε2
[0, 0, 0] = 0. (4.12)

For the sake of brevity, we set

Ξn[ε] ≡
(
κnε log ε,

δ2,n
log ε

)
, ∀ε ∈]0, 1[. (4.13)

Then we have the following existence and uniqueness theorem for problem (1.6) for
ε ∈]0, ε′[ (cf. [1, Thm. 4.61].)
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Theorem 4.4. Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as in (1.1). Let
mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.5). Let ki, ko be as in (1.2),
(1.4). Assume that k2

o is not a Neumann eigenvalue for −∆ in Ωo.
Let ε′ ∈]0, ε0[ be as in Theorem 4.3. If ε ∈]0, ε′[, then the transmission problem

(1.6) has one and only one solution (ui(ε, ·), uo(ε, ·)) ∈ Cm,α(εΩi)× Cm,α(Ω(ε)) and
the following formula holds

ui(ε, ·) (4.14)

= ui[ε, Z[ε,Ξn[ε]], Ci[ε,Ξn[ε]], Si[ε,Ξn[ε]], C[ε,Ξn[ε]],Θo[ε,Ξn[ε]]](·)
uo(ε, ·)

= uo[ε, Z[ε,Ξn[ε]], Ci[ε,Ξn[ε]], Si[ε,Ξn[ε]], C[ε,Ξn[ε]],Θo[ε,Ξn[ε]]](·)
for all ε ∈]0, ε′[ (cf. (4.10)).

5. Microscopic representation for {(ui(ε, ·), uo(ε, ·))}ε∈]0,ε′[
We now analyze the microscopic behavior of our family of solutions, i.e., the

behavior of the rescaled family {(ui(ε, ε·), uo(ε, ε·))}ε∈]0,ε′[.

Theorem 5.1. With the assumptions of Theorem 4.3, the following statements hold.

(i) There exist real analytic maps U i1 ,U i2 from ]− ε′, ε′[×Ũ to Cm,α(Ωi) such that

ui(ε, εξ) = U i1[ε,Ξn[ε]] + (κnε log2 ε)U i2[ε,Ξn[ε]] ∀ξ ∈ Ωi

for all ε ∈]0, ε′[ (cf. (4.13) for the definition of Ξn). Moreover,

U i1[0, 0, 0] = ũi,r1 , U i2[0, 0, 0] = 0 ,

where ũi,r1 has been defined in Theorem 4.2.

(ii) Let Ωm be a bounded open subset of Rn \ Ωi. Then there exist εm ∈]0, ε′[, and

two real analytic maps Uom,1 ,Uom,2 from ]− εm, εm[×Ũ to Cm,α(Ωm) such that

εΩm ⊆ Ωo ∀ε ∈]− εm, εm[ ,

uo(ε, εξ) = Uom,1[ε,Ξ[ε]](ξ)

+(κnε log2 ε)Uom,2[ε,Ξ[ε]](ξ) ∀ξ ∈ Ωm , ε ∈]0, εm[.

Moreover,

Uom,1[0, 0, 0](ξ) = ũo(0) + ũo,r1 (ξ) , Uom,2[0, 0, 0](ξ) = 0 ∀ξ ∈ Ωm ,

where ũo and ũo,r1 are as in Theorem 4.2.

Proof. By the first formulas of (4.10) and (4.14), we have

ui(ε, εξ) = εn−2

∫
∂Ωi

Sr,n(εξ − εη, ki)Z[ε,Ξn[ε]](η) dση

+εn−2a−1
(
kn−2
o /kn−2

i

)
Ci[ε,Ξn[ε]]

∫
∂Ωi

Sr,n(εξ − εη, ki)θ](η) dση

+εn−2 log−δ2,n ε C[ε,Ξn[ε]]

∫
∂Ωi

Sr,n(εξ − εη, ki)θ](η) dση ∀ξ ∈ Ωi
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for all ε ∈]0, ε′[. Then Lemma 3.4 implies that

ui(ε, εξ) = v+
Ωi [Z[ε,Ξn[ε]], εki](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[ε,Ξn[ε]]v+

Ωi [θ
], εki](ξ)

+ log−δ2,n ε C[ε,Ξn[ε]]v+
Ωi [θ

], εki](ξ) ∀ξ ∈ Ωi

for all ε ∈]0, ε′[. Then equality (3.5) implies that

ui(ε, εξ) = v+
Ωi,h[Z[ε,Ξn[ε]], εki](ξ)

+γn(log(εki))ε
n−2kn−2

i v+
Ωi,J [Z[ε,Ξn[ε]], ε2k2

i ](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[ε,Ξn[ε]]

×
(
v+

Ωi,h[θ], εki](ξ) + γn(log(εki))ε
n−2kn−2

i v+
Ωi,J [θ], ε2k2

i ](ξ)
)

+ log−δ2,n ε C[ε,Ξn[ε]]

×
(
v+

Ωi,h[θ], εki](ξ) + γn(log(εki))ε
n−2kn−2

i v+
Ωi,J [θ], ε2k2

i ](ξ)
)

for all ξ ∈ Ωi and ε ∈]0, ε′[. By equality (3.6), we have

ui(ε, εξ) = v+
Ωi,h[Z[ε,Ξn[ε]], εki](ξ)

+

[
2bn
π
κn log ε+ γn(log ki)

]
εn−2kn−2

i v+
Ωi,J [Z[ε,Ξn[ε]], ε2k2

i ](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[ε,Ξn[ε]]

(
v+

Ωi,h[θ], εki](ξ)

+

[
2bn
π
κn log ε+ γn(log ki)

]
εn−2kn−2

i v+
Ωi,J [θ], ε2k2

i ](ξ)

)
+ log−δ2,n ε C[ε,Ξn[ε]]

(
v+

Ωi,h[θ], εki](ξ)

+

[
2bn
π
κn log ε+ γn(log ki)

]
εn−2kn−2

i v+
Ωi,J [θ], ε2k2

i ](ξ)

)
∀ξ ∈ Ωi

for all ε ∈]0, ε′[. Since there exists an entire function J],1n−2
2

such that

J]n−2
2

(z) = J]n−2
2

(0) + zJ],1n−2
2

(z) ∀z ∈ C (5.1)

(see (3.1)), then we have

v+
Ωi,J [Z[ε,Ξn[ε]], ε2k2

i ](ξ) =

∫
∂Ωi

J]n−2
2

(ε2k2
i |ξ − η|2)Z[ε,Ξn[ε]](η)dση (5.2)

= J]n−2
2

(0)

∫
∂Ωi

Z[ε,Ξn[ε]](η)dση

+ε2k2
i

∫
∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
i |ξ − η|2)Z[ε,Ξn[ε]](η)dση

= ε2k2
i

∫
∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
i |ξ − η|2)Z[ε,Ξn[ε]](η)dση ∀ε ∈]0, ε′[.
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Indeed,
∫
∂Ωi

Z[ε,Ξn[ε]](η)dση = 0 for all ε ∈]0, ε′[. Also, the Fundamental Theorem

of Calculus and equality Ci[0, 0, 0] = c̃i = 0 imply that

(κn log ε) Ci[ε, κnε log ε, δ2,n/ log ε] (5.3)

= (κnε log ε)

∫ 1

0

∂Ci

∂t1
[sε, sκnε log ε, sδ2,n/ log ε] ds

+κnε log2 ε

∫ 1

0

∂Ci

∂t2
[sε, sκnε log ε, sδ2,n/ log ε] ds

+δ2,n

∫ 1

0

∂Ci

∂t3
[sε, sκnε log ε, sδ2,n/ log ε] ds ∀ε ∈]0, ε′[.

Next introduce the following analytic functions

C1[ε, ε1, ε2] ≡ ε1
∫ 1

0

∂Ci

∂t1
[sε, sε1, sε2] ds+ δ2,n

∫ 1

0

∂Ci

∂t3
[sε, sε1, sε2] ds

and

C2[ε, ε1, ε2] ≡
∫ 1

0

∂Ci

∂t2
[sε, sε1, sε2] ds ∀(ε, ε1, ε2) ∈]− ε′, ε′[×Ũ .

By equality (5.3), we have

(κn log ε) Ci[ε, κnε log ε, δ2,n/ log ε] (5.4)

= C1[ε, κnε log ε, δ2,n/ log ε] + κnε log2 εC2[ε, κnε log ε, δ2,n/ log ε].

By (5.2), (5.4), and by the elementary equality

log−δ2,n ε = (1− δ2,n) +
δ2,n
log ε

∀ε ∈]0, 1[ ,

we have
ui(ε, εξ) = v+

Ωi,h[Z[ε,Ξn[ε]], εki](ξ)

+
2bn
π
kni κnε

n log ε

∫
∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
i |ξ − η|2)Z[ε,Ξn[ε]](η)dση

+γn(log ki)k
n−2
i εn−2v+

Ωi,J [Z[ε,Ξn[ε]], ε2k2
i ](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[ε,Ξn[ε]]v+

Ωi,h[θ], εki](ξ)

+a−1kn−2
o

2bn
π
C1[ε,Ξn[ε]] εn−2v+

Ωi,J [θ], ε2k2
i ](ξ)

+a−1kn−2
o

2bn
π
κnε log2 εC2[ε,Ξn[ε]]εn−2v+

Ωi,J [θ], ε2k2
i ](ξ)

+a−1kn−2
o Ci[ε,Ξn[ε]]γn(log ki)ε

n−2v+
Ωi,J [θ], ε2k2

i ](ξ)

+

[
(1− δ2,n) +

δ2,n
log ε

]
C[ε,Ξn[ε]]v+

Ωi,h[θ], εki](ξ)

+
2bn
π
%n(ε, κnε log ε)kn−2

i C[ε,Ξn[ε]]v+
Ωi,J [θ], ε2k2

i ](ξ)

+

[
(1− δ2,n) +

δ2,n
log ε

]
γn(log ki)C[ε,Ξn[ε]]εn−2kn−2

i v+
Ωi,J [θ], ε2k2

i ](ξ), ∀ξ ∈ Ωi
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for all ε ∈]0, ε′[ (see (4.5)). Thus, we find natural to set

U i1[ε, ε1, ε2](ξ) ≡ v+
Ωi,h[Z[ε, ε1, ε2], εki](ξ) (5.5)

+
2bn
π
kni ε1ε

n−1

∫
∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
i |ξ − η|2)Z[ε, ε1, ε2](η)dση

+γn(log ki)ε
n−2kn−2

i v+
Ωi,J [Z[ε, ε1, ε2], ε2k2

i ](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[ε, ε1, ε2]v+

Ωi,h[θ], εki](ξ)

+a−1kn−2
o

2bn
π
C1[ε, ε1, ε2] εn−2v+

Ωi,J [θ], ε2k2
i ](ξ)

+a−1kn−2
o Ci[ε, ε1, ε2]γn(log ki)ε

n−2v+
Ωi,J [θ], ε2k2

i ](ξ)

+ [(1− δ2,n) + ε2]C[ε, ε1, ε2]v+
Ωi,h[θ], εki](ξ)

+
2bn
π
%n(ε, ε1)kn−2

i C[ε, ε1, ε2]v+
Ωi,J [θ], ε2k2

i ](ξ) + [(1− δ2,n) + ε2]

×γn(log ki)C[ε, ε1, ε2]εn−2kn−2
i v+

Ωi,J [θ], ε2k2
i ](ξ) ∀ξ ∈ Ωi,

U i2[ε, ε1, ε2](ξ) ≡ a−1kn−2
o

2bn
π
C2[ε, ε1, ε2]εn−2v+

Ωi,J [θ], ε2k2
i ](ξ) ∀ξ ∈ Ωi

for all (ε, ε1, ε2) ∈]ε′, ε′[×Ũ (see Theorem 4.3). By [1, Thm. 3.21 (i)], v+
Ωi,h[·, ·] defines a

real analytic map from Cm−1,α(∂Ωi)×C to Cm,α(Ωi). Then Theorem 4.3 implies that

the map from ]−ε′, ε′[×Ũ to Cm,α(Ωi) which takes (ε, ε1, ε2) to v+
Ωi,h [Z[ε, ε1, ε2], εki] is

real analytic. Similarly, the map from ]− ε′, ε′[×Ũ to Cm,α(Ωi) which takes (ε, ε1, ε2)

to v+
Ωi,h

[
θ], εki

]
is real analytic. Since |ξ − η|2J],1n−2

2

(ε2k2
i |ξ − η|2) is analytic in the

variable (ξ, η, ε) in an open neighbourhood of Ωi × ∂Ωi×] − ε′, ε′[ then Proposition
4.1 (i) of paper [17] with Musolino on integral operators with real analytic kernel

implies that the map from ] − ε′, ε′[×L1(∂Ωi) to Cm,α(Ωi) that takes (ε, f) to the

function
∫
∂Ωi
|ξ−η|2J],1n−2

2

(ε2k2
i |ξ−η|2)f(η)dση of the variable ξ ∈ ∂Ωi is real analytic.

Since Z is real analytic and Cm−1,α(∂Ωi) is continuously imbedded into L1(∂Ωi),

we conclude that the map from ] − ε′, ε′[×Ũ to Cm,α(Ωi) which takes (ε, ε1, ε2) to
the second summand of the right-hand side of (5.5) is analytic. By [1, Thm. 3.22

(ii)], v+
Ωi,J [·, ·] defines a real analytic map from Cm−1,α(∂Ωi)× C to Cm,α(Ωi). Then

Theorem 4.3 implies that the map from ]−ε′, ε′[×Ũ to Cm,α(Ωi) which takes (ε, ε1, ε2)

to v+
Ωi,J

[
Z[ε, ε1, ε2], ε2k2

i

]
is real analytic. Similarly, the map from ] − ε′, ε′[×Ũ to

Cm,α(Ωi) which takes (ε, ε1, ε2) to v+
Ωi,J [θ], ε2k2

i ] is real analytic. Finally Ci is real

analytic by Theorem 4.3 and thus, C1 and C2 are real analytic as well. Hence U i1 and
U i2 are real analytic. Moreover, (4.3), (4.4) and Theorems 4.2, 4.3 imply that

U i1[0, 0, 0](ξ) = v+
Ωi,h[Z[0, 0, 0], 0](ξ) + γn(log ki)δ2,nk

n−2
i v+

Ωi,J
[Z[0, 0, 0], 0](ξ)

+a−1
(
kn−2
o /kn−2

i

)
Ci[0, 0, 0]v+

Ωi,h[θ], 0](ξ) + a−1kn−2
o

2bn
π
C1[0, 0, 0] δ2,nv

+
Ωi,J [θ], 0](ξ)

+a−1kn−2
o Ci[0, 0, 0]γn(log ki)δ2,nv

+
Ωi,J [θ], 0](ξ) + (1− δ2,n)C[0, 0, 0]v+

Ωi,h[θ], 0](ξ)
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+
2bn
π
δ2,nk

n−2
i C[0, 0, 0]v+

Ωi,J [θ], 0](ξ)

+(1− δ2,n)γn(log ki)C[0, 0, 0]δ2,nk
n−2
i v+

Ωi,J [θ], 0](ξ) = v+
Ωi,h[Z[0, 0, 0], 0](ξ)

+

(
(1− δ2,n)v+

Ωi,h[θ], 0](ξ) + δ2,nk
n−2
i

2bn
π
J]n−2

2

(0)

)
C[0, 0, 0]

+a−1kn−2
o

2bn
π
C1[0, 0, 0] δ2,nJ

]
n−2

2

(0)

= v+
Ωi,h[ζ̃, 0](ξ) + C̃ + a−1kn−2

o

2bn
π
C1[0, 0, 0] δ2,nJ

]
n−2

2

(0)

= ũi,r1 (ξ) + a−1kn−2
o

2bn
π
C1[0, 0, 0] δ2,nJ

]
n−2

2

(0)

U i2[0, 0, 0](ξ) = a−1kn−2
o

2bn
π
C2[0, 0, 0]δ2,nJ

]
n−2

2

(0), ∀ξ ∈ Ωi.

By the definition of C1, C2 and by equality (4.12), we have

C1[0, 0, 0] = C2[0, 0, 0] = 0 , (5.6)

and thus the proof of (i) is complete. We now consider statement (ii). Let εm be such
that

εΩm ⊆ Ωo ∀ε ∈ [−εm, εm].

Then we have

Ωm ⊆
1

ε
Ω(ε) ∀ε ∈ [−εm, εm] \ {0}.

By the second formulas of (4.10) and (4.14), we have

uo(ε, εξ) =

∫
∂Ωo

Sr,n(εξ − y, ko)Θo[ε,Ξn[ε]](y)dσy

+εn−2

∫
∂Ωi

Sr,n(εξ − εη, ko)Si[ε,Ξn[ε]](η) dση

+εn−2

∫
∂Ωi

Sr,n(εξ − εη, ko)Ci[ε,Ξn[ε]]θ](η) dση ξ ∈ Ωm

for all ε ∈]0, εm[. By Lemma 3.4 and equalities (3.5), (3.6), we have

uo(ε, εξ) =

∫
∂Ωo

Sr,n(εξ − y, ko)Θo[ε,Ξn[ε]](y)dσy

+v−Ωi,h[Si[ε,Ξn[ε]], εko](ξ) +

[
2bn
π
κn log ε+ γn(log ko)

]
εn−2kn−2

o

×v−Ωi,J [Si[ε,Ξn[ε]], ε2k2
o ](ξ)

+Ci[ε,Ξn[ε]]
(
v−Ωi,h[θ], εko](ξ) +

[
2bn
π
κn log ε+ γn(log ko)

]
εn−2kn−2

o

×v−Ωi,J [θ], ε2k2
o ](ξ)

)
∀ξ ∈ Ωm
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for all ε ∈]0, εm[. Thus by exploiting (5.1) and (5.4) we find natural to set

Uom,1[ε, ε1, ε2](ξ) (5.7)

≡
∫
∂Ωo

Sr,n(εξ − y, ko)Θo[ε, ε1, ε2](y)dσy + v−Ωi,h[Si[ε, ε1, ε2], εko](ξ)

+
2bn
π
ε1ε

n−1kno

∫
∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
o |ξ − η|2)Si[ε, ε1, ε2](η)dση

+γn(log ko)ε
n−2kn−2

o v−Ωi,J [Si[ε, ε1, ε2], ε2k2
o ](ξ)

+Ci[ε, ε1, ε2]v−Ωi,h[θ], εko](ξ)

+γn(log ko)ε
n−2kn−2

o Ci[ε, ε1, ε2]v−Ωi,J [θ], ε2k2
o ](ξ)

+
2bn
π
εn−2kn−2

o C1[ε, ε1, ε2]v−Ωi,J [θ], ε2k2
o ](ξ) ∀ξ ∈ Ωm

Uom,2[ε, ε1, ε2](ξ) ≡ εn−2kn−2
o

2bn
π
C2[ε, ε1, ε2]v−Ωi,J [θ], ε2k2

o ](ξ) ∀ξ ∈ Ωm

for all (ε, ε1, ε2) ∈] − ε′, ε[×Ũ . Since Sr,n(εξ − y, ko) is real analytic in the variable

(ξ, y, ε) in an open neighbourhood of Ωm × ∂Ωo×] − εm, εm[ then by Proposition
4.1 (i) of [17] on the integral operators with real analytic kernel, the map from ] −
εm, εm[×L1(∂Ωo) to Cm,α(Ωm) which takes a pair (ε, h) to

∫
∂Ωo

Sr,n(ε·−y, ko)h(y)dσy
is analytic. Since Θo is real analytic and Cm−1,α(∂Ωo) is continuously imbedded into

L1(∂Ωo), we conclude that the map from ] − εm, εm[×Ũ to Cm,α(Ωm) which takes
(ε, ε1, ε2) to the first summand of the right-hand side of (5.7) is real analytic. By
[1, Thm. 3.22 (ii)], v−Ωi,h[·, ·] defines a real analytic map from Cm−1,α(∂Ωi) × C to

Cm,α(Ωm). Then Theorem 4.3 implies that the map from ] − ε′, ε′[×Ũ to Cm,α(Ωm)
which takes (ε, ε1, ε2) to v−Ωi,h

[
Si[ε, ε1, ε2], εko

]
is real analytic. Similarly, the map

]−εm, εm[×Ũ to Cm,α(Ωm) which takes (ε, ε1, ε2) to v−Ωi,h[θ], εko] is real analytic. Since

|ξ− η|2J],1n−2
2

(ε2k2
o |ξ− η|) is analytic in the variable (ξ, η, ε) in an open neighbourhood

of Ωm×∂Ωi×]− εm, εm[ then by Proposition 4.1 (i) of [17] on integral operators with
real analytic kernel the map from ]− εm, εm[×L1(∂Ωi) to Cm,α(Ωm) that takes (ε, h)
to the function ∫

∂Ωi
|ξ − η|2J],1n−2

2

(ε2k2
o |ξ − η|2)h(η)dση ∀ξ ∈ ∂Ωi

is real analytic. Since Si is real analytic and Cm−1,α(∂Ωi) is continuously imbedded

into L1(∂Ωi), we conclude that the map from ] − εm, εm[×Ũ to Cm,α(Ωm) which
takes (ε, ε1, ε2) to the third summand of the right-hand side of (5.7) is real analytic.
By [1, Thm. 3.22 (iii)], v−Ωi,J [·, ·] defines a real analytic map from Cm−1,α(∂Ωi) × C
to Cm,α(Ωm). Then Theorem 4.3 (ii) implies that the map from ] − εm, εm[×Ũ to
Cm,α(Ωm) which takes (ε, ε1, ε2) to v−Ωi,J

[
Si[ε, ε1, ε2], ε2k2

o

]
is real analytic. Similarly,

the map from ] − εm, εm[×Ũ to Cm,α(Ωm) which takes (ε, ε1, ε2) to v−Ωi,J [θ], ε2k2
o ]

is real analytic. Finally, Ci is real analytic by Theorem 4.3 and thus C1 and C2 are



400 Tuğba Akyel and Massimo Lanza de Cristoforis

analytic. Hence Uom,1 and Uom,2 are analytic. Then by (4.11), Theorem 4.3 and equality
(5.6), we have

Uom,1[0, 0, 0](ξ) =

∫
∂Ωo

Sr,n(−y, ko)Θo[0, 0, 0](y)dσy + v−Ωi,h[Si[0, 0, 0], 0](ξ)

+γn(log ko)δ2,nk
n−2
o v−Ωi,J [Si[0, 0, 0], 0](ξ) + Ci[0, 0, 0]v−Ωi,h[θ], 0](ξ)

+γn(log ko)δ2,nk
n−2
o Ci[0, 0, 0]v−Ωi,J [θ], 0](ξ)

+
2bn
π
δ2,nk

n−2
o C1[0, 0, 0]v−Ωi,J [θ], 0](ξ)

= v+
Ωo [θ̃

o, ko](0) + v−Ωi,h[ς̃i, 0](ξ) +
2bn
π
δ2,nk

n−2
o C1[0, 0, 0]J]n−2

2

(0)

= ũo(0) + ũo,r1 (ξ) ,

Uom,2[0, 0, 0](ξ) = 0 ∀ξ ∈ Ωm .
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