Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach
DOI:
https://doi.org/10.24193/subbmath.2022.2.14Keywords:
Helmholtz equation, microscopic behavior, real analytic continuation, singularly perturbed domain, transmission problem.Abstract
Let $\Omega^{i}$, $\Omega^{o}$ be bounded open connected subsets of${\mathbb{R}}^{n}$ that contain the origin. Let
$\Omega(\epsilon)\equiv
\Omega^{o}\setminus\epsilon\overline{\Omega^i}$ for small
$\epsilon>0$. Then we consider
a linear transmission problem
for the Helmholtz equation in the pair of domains $\epsilon \Omega^i$
and $\Omega(\epsilon)$ with Neumann boundary conditions on
$\partial\Omega^o$. Under appropriate conditions on the wave numbers
in $\epsilon \Omega^i$ and $\Omega(\epsilon)$ and on the
parameters involved in the transmission conditions on $\epsilon
\partial\Omega^i$, the transmission problem has a unique solution
$(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$ for small values of
$\epsilon>0$.
Here $u^i(\epsilon,\cdot) $ and $u^o(\epsilon,\cdot) $ solve the
Helmholtz equation in $\epsilon \Omega^i$ and $\Omega(\epsilon)$,
respectively. Then we prove that if $\xi\in\overline{\Omega^i}$ and $\xi\in \mathbb{R}^n\setminus \Omega^i $
then the rescaled solutions $u^i(\epsilon,\epsilon\xi) $ and $u^o(\epsilon,\epsilon\xi)$ can be expanded into a convergent power expansion of $\epsilon$,
$\kappa_n\epsilon\log\epsilon$, $\delta_{2,n}\log^{-1}\epsilon$, $ \kappa_n\epsilon\log^2\epsilon $
for $\epsilon$ small enough. Here $\kappa_{n}=1$ if $n$ is even
and $\kappa_{n}=0$ if $n$ is odd and $\delta_{2,2}\equiv 1$ and
$\delta_{2,n}\equiv 0$ if $n\geq 3$.
References
Ammari, H., Iakovleva, E., Moskow, S., {em Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,} SIAM J. Math. Anal., {bf 34}(2003), 882–900.
Ammari, H., Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations,} J. Math. Pures Appl., {bf 80}(2001), 769–814.
Ammari, M.S., Volkov, D., {em Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter,} Journal of Computational Physics, {bf 189}(2003), 371-389.
Akyel, T., Lanza de Cristoforis, M.,
{em Asymptotic behaviour of the solutions
of a transmission problem
for the Helmholtz
equation: A functional
analytic approach}, to appear in Mathematical Methods in the Applied Sciences, 2022.
Cartan, H., {em Cours de calcul diff'{e}rentiel}, Hermann Paris, 1967.
Cherepanov, G.P., {em Mechanics of large destructions}. Nauka, Moscow 1974.
Cherepanov, G.P., {em Mechanics of destruction of composite
materials}. Nauka, Moscow 1983.
Cole, J.D., {em Perturbation methods in applied mathematics}.
Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto,
Ont.-London, 1968.
Colton, D.L., Kress, R.,
{em Integral equation methods in scattering theory}, Society for Industrial and Applied Mathematics, 2013.
Dalla Riva, M., Lanza de Cristoforis, M., {em A perturbation result for the layer potentials of general second order differential operators with constant coefficients},
Journal of Applied Functional Analysis, {bf 5}(2010), 10--30.
Dalla Riva, M., Lanza de Cristoforis, M., Musolino, P., {em Singularly Perturbed Boundary Value Problems. A Functional Analytic Approach}. Springer, Cham, 2021.
Hansen, D.J., Poignard, C., Vogelius, M.S., {em Asymptotically precise norm estimates of
scattering from a small circular inhomogeneity,} Applicable Analysis, {bf 86}(2007), 433--458.
Il'in, A.M., {em Matching of asymptotic expansions of solutions of
boundary value problems}. Translated from the Russian by V. Minachin
[V. V. Minakhin]. Translations of Mathematical Monographs, 102.
American Mathematical Society, Providence, RI, 1992.
Lanza de Cristoforis, M., {em Properties and Pathologies
of the composition and inversion operators in Schauder spaces}, Rend.
Accad. Naz. Sci. XL, {bf 15}(1991), 93--109.
Lanza~de Cristoforis, M., {em Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: A functional analytic approach}, Complex Var. Elliptic Equ. {bf 52}(2007) 945--977.
Lanza~de Cristoforis, M., {em Simple Neumann eigenvalues for the
Laplace operator in a domain with a small hole. A functional analytic
approach}.
Revista Matematica Complutense, {bf 25}(2012), 369-412.
Lanza de Cristoforis, M., Musolino, P., {em A real analyticity result for a nonlinear integral operator}. J. Integral Equations Appl. {bf 25}(2013) 21--46.
Lanza~de~Cristoforis, M., Rossi, L., {em
Real analytic dependence of simple and double
layer potentials upon perturbation
of the support and of the density}, J. Integral Equations
Appl., {bf 16}(2004), 137--174.
Lanza~de~Cristoforis, M., Rossi, L., {em Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density}. Analytic Methods of Analysis and Differential Equations, AMADE 2006, Eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cambridge (UK) (2008), 193--220.
Lebedev, N. N., {em Special functions and their applications}. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972.
Mazya, V.G., Nazarov, S.A., Plamenewskii, B.A., {em Asymptotic theory of
elliptic boundary value problems in singularly perturbed domains},
{bf I, II},
(translation of the original in German published by Akademie Verlag 1991),
Oper. Theory Adv. Appl., {bf 111}, {bf 112}, Birkh"{a}user Verlag,
Basel, 2000.
Nayfeh, A.H., {em Perturbation methods}. Wiley-Interscience. New York, 1973.
Prodi, G., Ambrosetti, A., {em Analisi non lineare}, Editrice
Tecnico Scientifica, Pisa, 1973.
Van Dyke, M.D., {em Perturbation methods in fluid mechanics}. Academic
Press, New York 1964.
Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter}, Mathematical Modelling and Numerical Analysis, {bf 34}(2000), 723--748.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.