Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach

Tugba Akyel, Massimo Lanza de Cristoforis

Abstract


Let $\Omega^{i}$, $\Omega^{o}$ be bounded open connected subsets of
${\mathbb{R}}^{n}$ that contain the origin. Let
$\Omega(\epsilon)\equiv
\Omega^{o}\setminus\epsilon\overline{\Omega^i}$ for    small
$\epsilon>0$. Then we consider
  a linear transmission problem
 for the Helmholtz equation in the pair of domains $\epsilon \Omega^i$
and $\Omega(\epsilon)$ with Neumann boundary conditions on
$\partial\Omega^o$. Under appropriate conditions on the wave numbers
in $\epsilon \Omega^i$ and $\Omega(\epsilon)$ and on the
 parameters involved in the transmission conditions on $\epsilon
\partial\Omega^i$, the transmission problem has a unique solution
 $(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$  for small  values of
$\epsilon>0$.
  Here $u^i(\epsilon,\cdot) $  and $u^o(\epsilon,\cdot) $ solve  the
Helmholtz equation in $\epsilon \Omega^i$ and $\Omega(\epsilon)$,
respectively.  Then we prove that if $\xi\in\overline{\Omega^i}$ and $\xi\in  \mathbb{R}^n\setminus     \Omega^i             $
then the rescaled solutions $u^i(\epsilon,\epsilon\xi) $ and $u^o(\epsilon,\epsilon\xi)$ can be expanded into a convergent power expansion of  $\epsilon$,
$\kappa_n\epsilon\log\epsilon$, $\delta_{2,n}\log^{-1}\epsilon$, $ \kappa_n\epsilon\log^2\epsilon $
  for  $\epsilon$ small enough.  Here  $\kappa_{n}=1$ if $n$ is even
and $\kappa_{n}=0$ if $n$ is odd and  $\delta_{2,2}\equiv 1$   and
$\delta_{2,n}\equiv 0$ if $n\geq 3$.

Keywords


Helmholtz equation; microscopic behavior; real analytic continuation; singularly perturbed domain; transmission problem.

Full Text:

PDF

References


Ammari, H., Iakovleva, E., Moskow, S., {em Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,} SIAM J. Math. Anal., {bf 34}(2003), 882–900.

Ammari, H., Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations,} J. Math. Pures Appl., {bf 80}(2001), 769–814.

Ammari, M.S., Volkov, D., {em Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter,} Journal of Computational Physics, {bf 189}(2003), 371-389.

Akyel, T., Lanza de Cristoforis, M.,

{em Asymptotic behaviour of the solutions

of a transmission problem

for the Helmholtz

equation: A functional

analytic approach}, to appear in Mathematical Methods in the Applied Sciences, 2022.

Cartan, H., {em Cours de calcul diff'{e}rentiel}, Hermann Paris, 1967.

Cherepanov, G.P., {em Mechanics of large destructions}. Nauka, Moscow 1974.

Cherepanov, G.P., {em Mechanics of destruction of composite

materials}. Nauka, Moscow 1983.

Cole, J.D., {em Perturbation methods in applied mathematics}.

Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto,

Ont.-London, 1968.

Colton, D.L., Kress, R.,

{em Integral equation methods in scattering theory}, Society for Industrial and Applied Mathematics, 2013.

Dalla Riva, M., Lanza de Cristoforis, M., {em A perturbation result for the layer potentials of general second order differential operators with constant coefficients},

Journal of Applied Functional Analysis, {bf 5}(2010), 10--30.

Dalla Riva, M., Lanza de Cristoforis, M., Musolino, P., {em Singularly Perturbed Boundary Value Problems. A Functional Analytic Approach}. Springer, Cham, 2021.

Hansen, D.J., Poignard, C., Vogelius, M.S., {em Asymptotically precise norm estimates of

scattering from a small circular inhomogeneity,} Applicable Analysis, {bf 86}(2007), 433--458.

Il'in, A.M., {em Matching of asymptotic expansions of solutions of

boundary value problems}. Translated from the Russian by V. Minachin

[V. V. Minakhin]. Translations of Mathematical Monographs, 102.

American Mathematical Society, Providence, RI, 1992.

Lanza de Cristoforis, M., {em Properties and Pathologies

of the composition and inversion operators in Schauder spaces}, Rend.

Accad. Naz. Sci. XL, {bf 15}(1991), 93--109.

Lanza~de Cristoforis, M., {em Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: A functional analytic approach}, Complex Var. Elliptic Equ. {bf 52}(2007) 945--977.

Lanza~de Cristoforis, M., {em Simple Neumann eigenvalues for the

Laplace operator in a domain with a small hole. A functional analytic

approach}.

Revista Matematica Complutense, {bf 25}(2012), 369-412.

Lanza de Cristoforis, M., Musolino, P., {em A real analyticity result for a nonlinear integral operator}. J. Integral Equations Appl. {bf 25}(2013) 21--46.

Lanza~de~Cristoforis, M., Rossi, L., {em

Real analytic dependence of simple and double

layer potentials upon perturbation

of the support and of the density}, J. Integral Equations

Appl., {bf 16}(2004), 137--174.

Lanza~de~Cristoforis, M., Rossi, L., {em Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density}. Analytic Methods of Analysis and Differential Equations, AMADE 2006, Eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cambridge (UK) (2008), 193--220.

Lebedev, N. N., {em Special functions and their applications}. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972.

Mazya, V.G., Nazarov, S.A., Plamenewskii, B.A., {em Asymptotic theory of

elliptic boundary value problems in singularly perturbed domains},

{bf I, II},

(translation of the original in German published by Akademie Verlag 1991),

Oper. Theory Adv. Appl., {bf 111}, {bf 112}, Birkh"{a}user Verlag,

Basel, 2000.

Nayfeh, A.H., {em Perturbation methods}. Wiley-Interscience. New York, 1973.

Prodi, G., Ambrosetti, A., {em Analisi non lineare}, Editrice

Tecnico Scientifica, Pisa, 1973.

Van Dyke, M.D., {em Perturbation methods in fluid mechanics}. Academic

Press, New York 1964.

Vogelius, M.S., Volkov, D., {em Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter}, Mathematical Modelling and Numerical Analysis, {bf 34}(2000), 723--748.




DOI: http://dx.doi.org/10.24193/subbmath.2022.2.14

Refbacks

  • There are currently no refbacks.