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On convolution, convex, and starlike mappings
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Abstract. Let C and S∗ stand for the classes of convex and starlike mapping

in D, and let co(C), co(S∗) denote the closures of the respective convex hulls.

We derive characterizations for when the convolution of mappings in co(C) is

convex, as well as when the convolution of mappings in co(S∗) is starlike. Several

characterizations in terms of convolution are given for convexity within co(C) and

for starlikeness within co(S∗). We also obtain a correspondence via convolution
between C and S∗, as well as correspondences between the subclasses of convex
and starlike mappings that have n-fold symmetry.
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1. Introduction

The present paper is motivated by our interest in convex mappings of the unit
disk, D, in particular a representation formula for the pre-Schwarzian of such mappings
that has been very useful in studying, for example, Schwarz-Christoffel mappings
onto convex polygons. The famous Pólya-Schoenberg conjecture, resolved in 1973 by
Ruscheweyh and Sheil-Small, [9], can be formulated in terms of this representation
formula and leads to an open problem, stated in Section 4, regarding a certain product
in the unit ball of H∞(D).

We also revisit some classical themes related to convolution of holomorphic map-
pings in D, with a particular focus in the classes C and S∗ of convex and starlike
mappings. The analysis will carry over naturally to the closures of the convex hulls
co(C) and co(S∗). In Section 2, we will derive necessary and sufficient conditions for

f ∗g to be convex when f, g ∈ co(C), with two corollaries characterizing the mappings
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in co(C) that are convex. In the same vein, we will characterize when f ∗ g is starlike

for f, g ∈ co(S∗), as well as give necessary and sufficient conditions for f ∈ co(S∗) to
be starlike. Many more characterizations are probably possible.

In the Section 3 we will derive via convolution the classical theorem of Alexander
for the correspondence between convex and starlike mappings, with the interesting
special case of the correspondence between mappings onto convex polygons and star-
like slit mappings. We also establish correspondences via convolution for the subclasses
of C and S∗ having n-fold symmetry.

We recall the definition of the convolution of two holomorphic functions. In terms
of power series, if

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

then their convolution is

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.

As well,

(f ∗ g)(z) =
1

2πi

∫
|ζ|=ρ

f(ζ)g(zζ−1)
dζ

ζ
, |z| < ρ. (1.1)

2. Convex Hulls

Let co(C) and co(S∗) stand, respectively, for the closures of the convex hulls of

convex and starlike mappings of D. It was shown in [1] that f ∈ co(C) if and only if
there exists a probability measure µ on ∂D such that

f(z) =

∫
|ζ|=1

z

1− zζ
dµ ,

and that f ∈ co(S∗) if and only if there exists a probability measure ν on ∂D such
that

f(z) =

∫
|ζ|=1

z

(1− zζ)2
dν .

To make this actionable we will need a number of explicit convolutions.

Lemma 2.1. The following identities hold for functions of the variable z ∈ D and fixed
parameters ζ, ξ ∈ ∂D.

i)
z

1− zζ
∗ z

1− zξ
=

z

1− zζξ

ii)
z

(1− zζ)2
∗ z

1− zξ
=

z

(1− zζξ)2

iii)
z

(1− zζ)2
∗ zξ

(1− zξ)2
=
z(1 + zζξ)

(1− zζξ)3
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iv)
z

1− zζ
∗ 1

(1− z)2
=
z(2− zζ)

(1− zζ)3

v)
z

1− zζ
∗ z2

(1− z)2
=

z2ζ

(1− zζ)2

vi)
z

1− zζ
∗ z

(1− z)3
=

z2

(1− zζ)3

vii)
z

1− zζ
∗ z2

(1− z)3
=

z2ζ

(1− zζ)3

Proof. The first identity follows directly from the power series of the functions con-
volved. For the remaining parts, we will use that z(h1 ∗ h2)′ = h1 ∗ (zh′2).

ii) We have

z

(1− zζ)2
∗ z

1− zξ
= z

(
z

1− zζ

)′
∗ z

1− zξ
= z

(
z

1− zζ
∗ z

1− zξ

)′
= z

(
z

1− zζξ

)′
=

z

(1− zζξ)2
.

iii) Here we use that

zξ

(1− zξ)2
= z

(
z

1− zξ

)′
.

iv) Since
1

(1− z)2
= 1 +

z

1− z
+

z

(1− z)2

the convolution is equal to
z

1− zζ
+

z

(1− zζ)2
,

which gives the result.

v) The identity follows at once from

z2

(1− z)2
= 1 +

2z

(1− z)2
− 1

(1− z)2
.

vi) Here we write

z

(1− z)3
=
z

2

(
1

(1− z)2

)′
.

vii) The identity follows from

z2

(1− z)3
=

z

(1− z)3
− z

(1− z)2
.

�

We have a series of observations.
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Theorem 2.2. Let f, g ∈ co(C) be represented by measures µ, τ , respectively. Then
f ∗ g is convex if and only if∣∣∣∣∣∣∣

∫∫
|ζ|,|ξ|=1

zζξ

(1− zζξ)3
dµdτ

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫∫
|ζ|,|ξ|=1

1

(1− zζξ)3
dµdτ

∣∣∣∣∣∣∣ .
Proof. Let f, g ∈ co(C). Differentiating z(f ∗ g)′ = f ∗ (zg′) gives

z(f ∗ g)′′ + (f ∗ g)′ = (f ∗ (zg′))′ = [(zf ′) ∗ (zg′)]/z .

Write

ψ := 1 + z
(f ∗ g)′′

(f ∗ g)′
=

(zf ′) ∗ (zg′)

z(f ∗ g)′
=

(zf ′) ∗ (zg′)

f ∗ (zg′)
.

Because Re{ψ} ≥ 0 if and only if |ψ − 1| ≤ |ψ + 1|, we have that f ∗ g is convex if
and only if

|(zf ′ − f) ∗ (zg′)| ≤ |(zf ′ + f) ∗ (zg′)| .

The correspondences in terms of the kernels are given by

zf ′ − f ←→ z2ζ

(1− zζ)2
, zf ′ + f ←→ z(2− zζ)

(1− zζ)2
,

hence

(zf ′ − f) ∗ (zg′)←→ 2zζξ

(1− zζ)3
, (zf ′ + f) ∗ (zg′)←→ 2

(1− zζξ)3
,

and the theorem follows. �

Corollary 2.3. Let f ∈ co(C) be represented by the measure µ. Then f is convex if
and only if ∣∣∣∣∣∣∣

∫
|ζ|=1

zζ

(1− zζ)3
dµ

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫
|ζ|=1

1

(1− zζ)3
dµ

∣∣∣∣∣∣∣ .
Proof. The corollary follows by letting g = z/(1− z). �

If we let µ =
∑n
k=1 αkδζk be a finite sum of delta functions at points ζk ∈ ∂D,

then f is convex if and only if∣∣∣∣∣
n∑
k=1

αkζkz

(1− zζk)3

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

αk
(1− zζk)3

∣∣∣∣∣ .
This inequality characterizes the finite convex combinations of rotations of a half-plane
mapping that are convex.



On convolution, convex, and starlike mappings 435

Theorem 2.4. The function f ∈ co(C) is convex if and only if∣∣∣∣f(z) ∗ z2

(1− z)3

∣∣∣∣ ≤ ∣∣∣∣f(z) ∗ z

(1− z)3

∣∣∣∣ .
If f(z) = z +

∑∞
k=2 akz

k, then this holds if and only if∣∣∣∣∣
∞∑
k=1

k(k + 1)ak+1z
k

∣∣∣∣∣ ≤
∣∣∣∣∣2 +

∞∑
k=1

(k + 1)(k + 2)ak+1z
k

∣∣∣∣∣ .
Proof. The first part of the theorem follows from parts vi) and vii) of Lemma 2.1,
and the second follows directly from convolution. �

Theorem 2.5. Let f, g ∈ co(S∗) be represented by measures µ, τ , respectively. Then
f ∗ g is starlike if and only if∣∣∣∣∣∣∣

∫∫
|ζ|,|ξ|=1

zζξ

(1− zζξ)2
dµdτ

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫∫
|ζ|,|ξ|=1

2− zζξ
(1− zζξ)2

dµdτ

∣∣∣∣∣∣∣ .
Proof. For f, g ∈ co(S∗) let

φ = z
(f ∗ g)′

f ∗ g
=
f ∗ (zg′)

f ∗ g
.

Then Re{φ} ≥ 0 if and only if

|f ∗ (zg′ − g)| ≤ |f ∗ (zg′ + g)| ,
which proves the theorem from the representing kernels and Lemma 2.1. �

Corollary 2.6. Let f ∈ co(S∗) be represented by the measure µ. Then f is starlike if
and only if ∣∣∣∣∣∣∣

∫
|ζ|=1

zζ

(1− zζ)2
dµ

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫
|ζ|=1

2− zζ
(1− zζ)2

dµ

∣∣∣∣∣∣∣ .
Proof. As before, we let g(z) = z/(1− z). �

Theorem 2.7. The function f ∈ co(S∗) is starlike if and only if∣∣∣∣f(z) ∗ z2

(1− z)2

∣∣∣∣ ≤ ∣∣∣∣f(z) ∗ 1

(1− z)2

∣∣∣∣ .
If f(z) = z +

∑∞
k=2 akz

k, then this holds if and only if∣∣∣∣∣
∞∑
k=2

(k − 1)akz
k

∣∣∣∣∣ ≤
∣∣∣∣∣z +

∞∑
k=2

kakz
k

∣∣∣∣∣ .
Proof. Parts iv) and v) of Lemma 1.1 give the first statement, which corresponds to
the second inequality by convolving directly. �
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3. Correspondences

Let

l(z) =
z

1− z
, L1(z) = log

1

1− z
, k1(z) =

z

(1− z)2
.

Note that k1 = zl′ and l = zL′1. We will use these functions together with convolution
to recover Alexander’s theorem relating convex and starlike mappings.

Theorem 3.1. If f ∈ C then f ∗ k1 ∈ S∗. Conversely, if g ∈ S∗ then g ∗ L1 ∈ C.

Proof. Let f ∈ C. Then f ∗ k1 = f ∗ (zl′) = z(f ∗ k1)′ = zf ′, hence

1 + z
f ′′

f ′
= z

(f ∗ k1)′

f ∗ k1
, (3.1)

which shows the first claim.
On the other hand, if g ∈ S∗ then z(g ∗ L1)′ = g ∗ (zL′1) = g ∗ l = g, and thus

1 + z
(g ∗ L1)′′

(g ∗ L1)′
= z

g′

g
,

which establishes the second claim. �

The special case when f is a conformal mapping onto a convex polygon P is
interesting. It follows from the Schwarz-Christoffel formula that

z
f ′′

f ′
= −2

n∑
k=1

βkz

z − zk
,

where zk ∈ ∂D are the pre-vertices, and 2πβk are the exterior angles, satisfying
0 < βk < 1 with

∑n
k=1 βk = 1. In [3] it was shown that

z
f ′′

f ′
=

2zB(z)

1− zB(z)
, (3.2)

where B(z) is a finite Blaschke product of degree n−1. Furthermore, the pre-vertices
are the roots of the equation

zB(z) = 1 .

Theorem 3.2. Under the above convolutions, convex polygons correspond to slit map-
pings, with the number of vertices being equal to the number slits. If g is the slit
mapping corresponding to f as above, then the pre-images ζk under g of the finite
endpoints of the slits are given by the root of the equation

zB(z) = −1 ,

while the pre-vertices zk of the polygon are mapped under g to the point at infinity.

Proof. Let f map D onto a convex polygon P. The correspondence of f with a starlike
mapping g given by (3.1) is equivalent to

g = zf ′ .

On an open arc Ak between the pre-vertices zk and zk+1 we have that arg{zf ′} is
constant, hence so is arg{g}. We conclude that g(Ak) lies on a slit. Since f ′(z)→∞
as z approaches any pre-vertex, we see that g =∞ at every pre-vertex zk.
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Let ζk ∈ Ak be the pre-image under g of the finite endpoint of the slit
g−1(f(Ak)). Then g′(ζk) = 0, hence

1 + ζk
f ′′

f ′
(ζk) = 0 .

Using (3.2) we see that

ζkB(ζk) = −1 ,

as claimed. �

Corollary 3.3. Let f be a conformal mapping onto a convex polygon, and let B(z)
be the associated Blaschke product in the representation (3.2). Then the roots of the
equation

zB(z) = −1

correspond to the points between consecutive pre-vertices where |f ′| attains the mini-
mum value on that arc.

Proof. The mapping g in the previous theorem is starlike, therefore |g(ζk)| is the
minimum value of |g| on the arc Ak. The corollary follows because g = zf ′. �

By appropriately modifying L1, k1, these correspondences carry through to sub-
spaces of convex and starlike mappings with symmetries. For this, we begin with the
functions L2, k2 defined by the conditions L2(0) = k2(0) = 0 and

L′2(z) =
1

2
(L′1(z) + L′1(−z)) , k′2(z) =

1

2
(k′1(z) + k′1(−z)) .

Then

z(f ∗ L2)′ =
1

2
f ∗ (L′1(z) + L′1(−z)) =

1

2

(
f ∗ z

1− z
+

z

1 + z

)
.

If f is odd then

f ∗ z

1− z
= f ∗ z

1 + z
,

and we are back in the case when z(f ∗L2)′ = f . Therefore, if f ∈ co(S∗) is odd then

f ∗ L2 ∈ co(C), and is also odd because L2 is odd. A similar analysis shows that if

g ∈ co(C) is odd, then g ∗ k2 ∈ co(S∗) and is also odd.

For the general construction, we introduce the averaging operator An defined by

An(f)(z) =
1

n

n∑
k=1

ω−kf(ωkz) ,

where ω = e
2πi
n . An equivalent definition is that An(f) satisfies An(f)(0) = 0 and

An(f)′(z) =
1

n

n∑
k=1

f ′(ωkz) .

We thus see that L2 = A2(L1) and k2 = A2(k1).
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A function f defined in D is said to be n-symmetric if An(f) = f . It is not
difficult to see that f is n-symmetric if and only if f(ωz) = ωf(z), which holds if and
only if f(z) = z

∑∞
k=0 akz

kn. Furthermore,

An(f) ∗ g = f ∗An(g) ,

a fact that follows immediately from the respective power series expansions. We can
also see that An(f) ∗ g is always n-symmetric. We finally let Ln = An(L1) and
kn = An(k1) stand for the symmetrization of L1 and k1, and define Cn, S

∗
n to be the

set of convex and starlike mappings with n-fold symmetry. It is interesting to note
that all the mappings Ln are univalent since Re{L′n} > 0 in D. On the other hand,
already the function k2 is not even locally univalent in D.

Theorem 3.4. If f ∈ Cn then f ∗ kn ∈ S∗n. If g ∈ S∗n then g ∗ Ln ∈ Cn.

Proof. If f ∈ Cn then z(f ∗k′n) = (f ∗kn)′ = (An(f)∗k1)′ = (f ∗k1)′, which allows us
to conclude that f ∗kn ∈ S∗ as argued in Theorem 2.2. Since it is also also symmetric,
the first claim follows. The second claim is established in similar fashion. �

These results carry through to establish correspondences between the spaces
co(C) and co(S∗), and the respective subspaces with n-fold symmetry co(C)n =

{An(f) : f ∈ co(C)} and co(S∗)n = {An(g) : g ∈ co(S∗)}. We have:

Theorem 3.5. If f ∈ co(C) then f ∗ k1 ∈ co(S∗). Conversely, if g ∈ co(S∗) then

g ∗ L1 ∈ co(S∗).

Proof. The proof is very similar to that of Theorem 3.1, and we will give the details
for the first claim. If f ∈ co(C) then for some probability measure µ we have

f(z) =

∫
|ζ|=1

z

1− zζ
dµ .

Hence

(f ∗ k1)(z) =

∫
|ζ|=1

z

1− zζ
∗ k1(z)dµ =

∫
|ζ|=1

z

1− zζ
∗ (zl′(z)) dµ

=

∫
|ζ|=1

z

(
z

1− zζ
∗ l(z)

)′
dµ =

∫
|ζ|=1

z

(
z

1− zζ

)′
dµ

=

∫
|ζ|=1

z

(1− zζ)2
dµ ,

showing that f ∗ k1 ∈ co(S∗). �

We state without proof the last result in this section.

Theorem 3.6. If f ∈ co(C)n then f ∗ kn ∈ co(S∗)n. Conversely, if g ∈ co(S∗)n then

g ∗ Ln ∈ co(S∗)n.
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4. On the Pólya-Schoenberg Conjecture

The Pólya-Schoenberg Conjecture (PSC) states that the convolution of convex
mappings is again convex. Our point of departure for the discussion here is the rep-
resentation formula for convex mappings f , namely

f ′′

f ′
=

2zφ

1− zφ
, (4.1)

for some holomorphic φ with |φ| ≤ 1 in D. For example, for φ a unimodular constant,
the resulting f is a rotation of the half-plane mapping, while for φ = z we obtain
the mapping onto a parallel strip. The representation formula can be derived from
the classical characterization of convexity via positive real part, and Schwarz’s lemma.
Any choice of such a function φ will determine a unique (normalized) convex mapping.

Let now f, g be convex and represented as above by functions φ, ψ bounded by
1 in D. By PSC f ∗ g is also convex, and thus must be represented by another such
function χ, which can be thought of as determined by the functions φ and ψ. This
dependence yields therefore a certain “product” in the unit ball of H∞(D) inherited
from convolution being associative and commutative. An independent proof that this
product does indeed preserve the unit ball in H∞(D) would provide an alternative
proof of the PSC.

To be more precise, for f convex we define the operator

Φ(f) =
f ′′/f ′

2 + zf ′′/f ′
,

which comes from expressing φ in terms of f in (4.1). As an example, we compute
Φ(f ∗ g) when f, g are Möbius transformations. If

f(z) =
az + b

cz + d
, ad− bc = 1 ,

then a simple calculation yields

Φ(f) = − c
d

=
1

f−1(∞)
.

If

g(z) =
αz + β

γz + δ
, αδ − βδ = 1 ,

then

f ∗ g =
1

γδ
f (−(γ/δ)z)− α

γ
f(0)

=
1

γδ

(aγ/δ)z − b
(cγ/δ)z − d

− α

γ
f(0)

is again a Möbius transformation with denominator cγ2z − γδd. Therefore

Φ(f ∗ g) =
1

(f ∗ g)−1(∞)
=
cγ

dδ
= Φ(f)Φ(g) .

That the convolution corresponds to the actual product in H∞(D) is exceptional and
can be readily seen not to hold in general. But we find the problem of understanding
and determining the properties of the Φ-operator in relation to convolution appealing.
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