
Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 2, 421–430
DOI: 10.24193/subbmath.2022.2.16

A criterion of univalence in Cn in terms
of the Schwarzian derivative
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Abstract. Using the Loewner Chain Theory, we obtain a new criterion of uni-
valence in Cn in terms of the Schwarzian derivative for locally biholomorphic
mappings. We as well derive explicitly the formula of this Schwarzian derivative
using the numerical method of approximation of zeros due by Halley.
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1. Introduction

The Schwarzian derivative of a locally univalent analytic function f in a simply
connected domain Ω of the complex plane C is

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

. (1.1)

The quotient f ′′/f ′, denoted by Pf , is the pre-Schwarzian derivative of the
function f .

These two operators come up naturally as the values of the derivatives of the
generating functions of two particular methods for approximating zeros, as we now
explain.

It is well know that the Newton (or the Newton-Raphson method) is a technique
to approximate the zero of a function f via the sequence

zn+1 = zn −
f(zn)

f ′(zn)
, n ≥ 1 , (1.2)
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starting with a guess z0, say.

The function g(z) = z − f(z)/f ′(z) is called the generating function of the
Newton iteration method. It is not difficult to prove that the following identities hold,
assuming that f(α) = 0:

g(α) = α, g′(α) = 0 , g′′(α) = Pf(α) .

The Halley Method can be derived by applying the Newton Method to the

function
f√
|f ′|

= f |f ′|−1/2. In this case, (1.2) becomes

zn+1 = zn −
2f(zn)f ′(zn)

2f ′(zn)2 − f(zn)f ′′(zn)
, n ≥ 1 .

The generating function h of the method is given by

h(z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z)
,

which satisfies

h(α) = α, h′(α) = h′′(α) = 0, h′′′(α) = −Sf(α) ,

where Sf is the Schwarzian derivative (1.1).

In this paper, we analyze the extension of the two methods mentioned to several
complex variables and, in particular, we show that the definition of the Schwarzian
derivative for locally biholomorphic mappings introduced in [3] (which derive from
Oda’s definition given in [8]) is precisely the value of the third coefficient of the
generating function of the corresponding Halley method in several variables. That is,
this operator is a third order differential tensor Sf(z) ∈ L3(Cn).

In addition to this, and using the Loewner chain theory, we obtain a criterion of
univalence for locally biholomorphic mappings in the unit ball of Cn in terms of the
Schwarzian derivative.

2. Preliminaries

2.1. Several complex variables

As usual, Cn is set of points z = (z1, . . . , zn), where zi ∈ C, i = 1, . . . , n. The
inner (dot) product and the norm are defined, respectively, by z ·w =

∑n
i=1 ziwi and

|z| = (z · z)1/2.

We denote by Lk(Cn) the space of continuous k-linear operators from Cn into
Cn. For T ∈ Lk(Cn), we write T 〈·, . . . , ·〉 to denote its placeholders. When k = 1 we
simply write L(Cn) for the space of linear maps and also write Tu instead of T 〈u〉 for
any linear map T . The identity linear operator in Cn is denoted by In.

The standard operator norm in Lk(Cn) is given by

‖T‖ = max
u1,...,uk∈Cn

∣∣∣T 〈 u1

|u1| , . . . ,
uk

|uk|

〉∣∣∣ .
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Let Ω be a domain in Cn and let f be a mapping defined in Ω with values
in L(Cn). If f is k-times (Fréchet) differentiable with respect to z ∈ Ω then its k-
th derivative, denoted by Dkf(z), is a symmetric mapping in Lk+1(Cn), meaning
that the value Dkf(z)〈u1, . . . , uk+1〉 remains unchanged after any permutation of the
entries u1, . . . , uk+1 (see Theorem 14.6 in [6]).

The product rule for the derivative of the product fg of two differentiable map-
pings f, g : Ω→ L(Cn), equals

D(fg)(z)〈·, ·〉 = Df(z)〈·, g(z) ·〉+ f(z)Dg(z)〈·, ·〉, z ∈ Ω. (2.1)

Using the product rule, it is easy to check that if f(z) is invertible for every z ∈ Ω
then the derivative of g(z) = f(z)−1 is given by

Dg(z)〈·, ·〉 = −g(z)Df(z)〈·, g(z) ·〉, z ∈ Ω. (2.2)

If f : Ω→ L(Cn) is holomorphic in Ω, then f can be writen in terms of Taylor’s
formula centered at some α ∈ Ω:

f(z) =

∞∑
k=0

1

k!
Dkf(α)〈z − α〉k, |z − α| < δ(α),

where δ(α) denotes the distance from α to the boundary of Ω (see Theorem 7.13 in
[6]). Here, the notation Dkf(α)wk should be understood as Dkf(α)〈w, . . . , w, ·〉, with
the point w repeated k times and one placeholder left without being evaluated.

2.2. Schwarzian derivative in several complex variables

Let f be a holomorphic mapping in the simply connected domain Ω ⊂ Cn. It is
well known that f is locally univalent (biholomorphic) in Ω if and only if its Jacobian,
Jf = det(Df), has no zeros (see Lewy [5]). For such functions, the pre-Schwarzian
derivative and the Schwarzian derivative are linear operators defined, for any u and
v in Cn, as follows:

Pf (z)〈u, v〉 = Df(z)−1D2f(z)〈u, v〉 (2.3)

and

Sf (z)〈u, v〉 = Pf (z)〈u, v〉

− 1

n+ 1
((−∇ log Jf (z) · u)v + (∇ log Jf (z) · v)u) . (2.4)

The pre-Schwarzian derivative (2.3) was introduced by J. Pfaltzgraff in [10]. The
Schwarzian derivative (2.4) was presented in [3]. This higher dimensional Schwarzian
derivative splits into two operators Sf and S0

f of order two and three, respectively.
The fact that, unlike in one single variable, an operator of purely order two must
appear is consistent with the fact that the dimension of the group to be anihilated
by the Schwarzian, namely the special linear projective group in dimension one or
higher, is not big enough to prescribe all jets up to order 2 of a given mapping.

More concretely, we would like to mention that T. Oda in [8] defined the
Schwarzian derivative Sk

ij of a locally biholomorphic mapping f(z) = (f1, . . . , fn)
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by

Sk
ijf =

n∑
l=1

∂2fl
∂zi∂zj

∂zk
∂fl
− 1

n+ 1

(
δki

∂

∂zj
+ δkj

∂

∂zi

)
log Jf , (2.5)

where i, j, k = 1, 2, . . . , n, and δki are the Kronecker symbols. For n > 1 the Schwarzian
derivatives have the following properties:

Sk
ijf = 0 for all i, j, k = 1, 2, . . . , n iff f(z) = M(z)

for some Möbius transformation

M(z) =

(
l1(z)

l0(z)
, . . . ,

ln(z)

l0(z)

)
,

where li(z) = ai0+ai1z1+· · ·+ainzn with det(aij) 6= 0. Furthermore, for a composition

Sk
ij(f ◦ g)(z) = Sk

ijg(z) +

n∑
l,m,r=1

Sr
lmf(w)

∂wl

∂zi

∂wm

∂zj

∂zk
∂wr

, w = g(z) .

Thus, if f is a Mobius transformation then Sk
ij(f ◦ g) = Sk

ijg. The S0
ijf coefficients

are given by

S0
ijf(z) = J

1/(n+1)
f

(
∂2

∂zi∂zj
J
−1/(n+1)
f −

n∑
k=1

∂

∂zk
J
−1/(n+1)
f Sk

ijf(z)

)
. (2.6)

By using these Schwarzian derivatives in Oda’s paper [8], the following definition,
which coincides with (2.4), was presented in [3].

Definition 2.1. The Schwarzian derivative Sf of a locally biholomorphic mapping f :
Cn → Cn equals

Sf (z)(v, v) =
(
v tS1f(z)v , . . . , v tSnf(z)v

)
,

where ~v ∈ Cn and the n× n matrix operator Skf , k = 1, . . . , n, are given by

Skf = (Sk
ijf) , i, j = 1, . . . , n.

It was proved in [3] that it is possible to recover the mapping f from its
Schwarzian components. More explicitly, consider the following overdetermined sys-
tem of partial differential equations,

∂2u

∂zi∂zj
=

n∑
k=1

P k
ij(z)

∂u

∂zk
+ P 0

ij(z)u , i, j = 1, 2, . . . , n , (2.7)

where z = (z1, z2, ..., zn) ∈ Ω and P k
ij(z) are holomorphic functions in Ω, for i, j, k =

0, . . . , n. The system (2.7) is called completely integrable if there are n+ 1 (maximun)
linearly independent solutions, and is said to be in canonical form (see [11]) if the
coefficients satisfy

n∑
j=1

P j
ij(z) = 0 , i = 1, 2, . . . , n.
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T. Oda proved that (2.7) is a completely integrable system in canonical form if and
only if P k

ij = Sk
ijf for a locally biholomorphic mapping f = (f1, . . . , fn), where fi =

ui/u0 for 1 ≤ i ≤ n and u0, u1, . . . , un is a set of linearly independent solutions of

the system. For a given mapping f , u0 = J
− 1

n+1

f is always a solution of (2.7) with

P k
ij = Sk

ijf .

3. On the Schwarzian derivative and the Halley method of
approximation of zeros

As was mentioned in the introduction, the Halley Method, to find zeros of a
function f : C→ C, can be obtained by applying the Newton Method to f · |f ′|− 1

2 .
By considering a function f : Cn → Cn, now with n ≥ 1, whis is locally biholo-

morphic in a simply connected domain Ω with f(α) = 0 for some α ∈ Ω, the Newton
Iteration Method is given by

zn+1 = zn −Df(zn)−1〈f(zn)〉, n ≥ 0.

The generating function of this method, then, equals

F (z) = z −Df(z)−1〈f(z)〉 . (3.1)

By applying the Newton iteration method to g = f · J−
1

n+1

f , the corresponding

function in (3.1) becomes

G(z) = z −Dg(z)−1〈g(z)〉 . (3.2)

The next theorem shows how this function in (3.2) is related to the Schwarzian
derivative in several complex variables.

Theorem 3.1. Let f : Ω ⊂ Cn → Cn be a locally biholomorphic mapping defined in
the simply connected domian Ω, such that f(α) = 0 for some α ∈ Ω. Then

G(α) = α, DG(α) = 0, D2G(α) = Sf (α) ,

where Sf is given by equation (2.4).

Proof. By (3.2), we have that G(α) = α (since g(α) = 0). Moreover, a straightforward
calculation shows that (suppressing the variable z),

DG = Id +D(Dg−1)〈g, ·〉 − Id = −Dg−1D2g〈Dg−1〈g〉, ·〉,
which gives DG(α) = 0.

Notice that

Dg = J
− 1

n+1

f Df −
J
− 1

n+1

f f

(n+ 1)Jf
(∇Jf )t = J

− 1
n+1

f Df − g

n+ 1
(∇ log Jf )t.

Now let u and v be two vectors in Cn. Then

D2g〈u, v〉 = J
− 1

n+1

f D2f〈u, v〉 − J
− 1

n+1
f Df(u)

n+1 ∇ log Jf · v

− J
− 1

n+1
f Df(v)

n+1 ∇ log Jf · u−
J

− 1
n+1

f f

n+1 u(Hess log Jf )vt.
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On the other hand, differentiating DF and using equations (2.1) and (2.2), we obtain

D2F 〈·, ·〉 = Dg−1D2g〈·, Dg−1D2g〈Dg−1〈g〉, ·〉〉 −Dg−1D3g〈Dg−1〈g〉, ·, ·〉

+ Dg−1D2g〈Dg−1D2g〈Dg−1〈g〉, ·〉, ·〉 −Dg−1D2g〈·, ·〉.

Therefore,

D2F (α)〈u, v〉 = −Dg−1(α)D2g(α)〈u, v〉

= −Df(α)−1D2f〈u, v〉 − ∇ log Jf · u
n+ 1

v − ∇ log Jf · v
n+ 1

u.

= −Sf (α)〈u, v〉.

This ends the proof of the theorem. �

4. Univalence Criterion on the unit ball of Cn

In this section we obtain the main result in this paper. Namely, we get a new
sufficient condition for the univalence of a locally biholomorphic mapping defined in
the unit ball Bn of Cn in terms of the Schwarzian derivative defined by (2.4).

Recall that in the setting of functions in the complex plane, there are different
applications of the Loewner chain theory to get univalence criteria. In particular, we
can mention that for a given locally univalent function f defined in the unit disk D
in the complex plane, the conditions

|Pf (z)| ≤ 1

1− |z|2
or |Sf (z)| ≤ 2

(1− |z|2)2
, ∀z ∈ D,

are sufficient to guarantee the univalence of f in D .

These sufficient conditions for the global univalence of a function defined on the
unit disk are due to Becker and Nehari, respectively (see [1] and [7]). Actually, these
results can be proved by using the Loewner chain theory, as is shown in the great
survey book “Geometric Function Theory in one and higher dimension” by Gabriela
Kohr and Ian Graham [2].

The generalization of the classical Loewner chain theory to several complex
variables was first introduced by J. Pfaltzgraff in [9]. We again refer the reader to
[2, Ch. 8] for a beautiful review of this theory. Pfaltzgraff himself generalized the
analogous of the Becker criterion of univalence to several variables in [10]. Specifically,
it is proved in [10] that given a locally univalent function f : Bn → Cn normalized by
the conditions f(0) = 0 and Df(0) =Id, if the inequality

(1− ‖z‖2)‖Df(z)−1D2f〈z, ·〉‖ ≤ 1

holds for all z ∈ Bn, then f is univalent in the unit ball. The reader can be found
in [4] another univalence criterion that involves the Schwarzian derivative in several
complex variables.

Here is the new criterion of univalence, now in terms of the Schwarzian derivative
of functions in several complex variables.
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Theorem 4.1. Let f : Bn → Cn be a locally biholomorphic mapping normalized by
f(0) = 0 and Df(0) =Id. Assume that f satisfies the following inequality (where Sf

and S0
f are evaluated in z) for all z ∈ Bn, where p = ∇ log Jf (z):

‖Sf 〈z, ·〉‖
(1− ‖z‖2)

+

∥∥∥∥ (z · p)Sf 〈z, ·〉 − (Sf 〈z, z〉 · p) Id

n+ 1
+ S0

f 〈z, z〉Id

∥∥∥∥
≤ 1

(1− ‖z‖2)2
. (4.1)

Then, f is univalent in Bn.

Proof. We shall prove that

f(z, t) =
u(e−tz) + (e2t − 1)Du(e−tz)〈e−tz〉
u0(e−tz) + (e2t − 1)∇u0(e−tz) · e−tz

, (4.2)

where u = (u1, . . . , un) and ui, i = 0, . . . , n, are the independent solutions of (2.7)

with P k
ij = Sk

ijf (where Sk
ijf are defined by (2.5) and (2.6)) and u0 = J

− 1
n+1

f , is a

Loewner chain in Bn. To do so, we will show that f(z, t) satisfies the hypothesis of
Theorem 8.1.6. in [2, p. 308] by following the same arguments as in the proof of [2,
Thm. 8.4.1].

By differentiating f(z, t) with respect to the variable z, we have

Df(z, t) =
e−tDu+ (e2t − 1)(e−tDu+ e−tD2u〈e−tz, ·〉)

u0 + (e2t − 1)∇u0 · e−tz

− (u+ (e2t − 1)Du〈e−tz〉)(et∇u0 + e−t(e2t − 1)Hess u0(e−tz, ·)
(u0 + (e2t − 1)∇u0 · e−tz)2

,

where all the functions u0, u, ∇u0, Du, and D2u are evaluated at e−tz.

By (2.7) we have that D2u〈·, ·〉 = Du · Sf 〈·, ·〉 + S0
f 〈·, ·〉u and Hess u0(·, ·) =

Sf 〈·, ·〉 · ∇u0 + S0
f 〈·, ·〉u0. Therefore, we get

etDf(z, t) =
u0Du− u∇u0 + (e2t − 1)A+ (e2t − 1)2B

(u0 + (e2t − 1)∇u0 · e−tz)2
, (4.3)

where A is the differential operator (evaluated in e−tz) given by

A = (e−tz · ∇u0)Du+ u0[Du+DuSf 〈e−tz, ·〉]

− u[∇u0 + Sf 〈e−tz, ·〉 · ∇u0〉]−Du〈e−tz〉∇u0.

Notice that

A〈e−tz〉 = [u0Du− u(∇u0)t]〈e−tz + Sf 〈e−tz, e−tz〉〉.

In the same way, the linear operator B given by

B = [Du+DuSf 〈e−tz, ·〉+ uS0
f 〈e−tz, ·〉]∇u0 · e−tz

− Du〈e−tz〉[∇u0 · (·) +∇u0 · Sf 〈e−tz, ·〉+ S0
f 〈e−tz, ·〉u0]

,
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satisfies
B〈e−tz〉 = (∇u0 · e−tz)Du〈Sf 〈e−tz, e−tz〉〉

− (Sf 〈e−tz, e−tz〉 · ∇u0)Du〈e−tz〉
− S0

f 〈e−tz, e−tz〉[u0Du− u(∇u0)t]〈e−tz〉.
On the other hand, u0f = u, and then, u0Du − u∇u0 = u20Df . Therefore, the

derivative Df(z, t) in (4.3) of the function f(z, t) in (4.2) satisfies

etDf(z, t)〈e−tz〉 =
u20Df〈e−tz)〉+ (e2t−1)A〈e−tz〉+ (e2t − 1)2B〈e−tz〉

(u0 + (e2t − 1)∇u0 · e−tz)2
.

Using that

A〈e−tz〉 = u20Df〈e−tz + Sf 〈e−tz, e−tz〉〉,
and

B〈e−tz〉 = (∇u0 · e−tz)u0Df〈Sf 〈e−tz, e−tz〉〉
− S0

f 〈e−tz, e−tz〉u20Df〈e−tz〉
− ∇u0 · Sf 〈e−tz, e−tz〉u0Df〈e−tz〉 ,

it follows that

etDf(z, t)〈e−tz〉 = Df 〈 e−tz + (e2t − 1)(e−tz + Sf 〈e−tz, e−tz〉)

+ (e2t − 1)2(∇ log u0 · e−tzSf 〈e−tz, e−tz〉
− ∇ log u0 · Sf 〈e−tz, e−tz〉e−tz

− S0
f 〈e−tz, e−tz〉e−tz) 〉 (1 + (e2t − 1)〈∇ log u0, e

−tz〉)−2

= e2tDf [ Id + (1− e−2t)Sf 〈e−tz, ·〉

+ e2t(1− e−2t)2(∇ log u0 · e−tzSf 〈e−tz, ·〉

− ∇ log u0 · Sf 〈e−tz, e−tz〉Id)

− S0
f (e−tz, e−tz)Id ] 〈e−tz〉/(1 + (e2t − 1)∇ log u0 · e−tz)2

=
e2tDf [Id− E(z, t)]〈e−tz〉

(1 + (e2t − 1)∇ log u0 · e−tz)2
,

where

E(z, t) = (e−2t − 1)Sf 〈e−tz, ·〉 − e2t(1− e2t)2(∇ log u0 · e−tzSf 〈e−tz, ·〉

− ∇ log u0 · Sf 〈e−tz, e−tz〉Id− S0
f 〈e−tz, e−tz〉Id).

Since
∂e−tz

dz
= e−t and

∂e−tz

dt
= −e−tz,

we have
∂f

∂t
(z, t) =

e2tDf [Id + E(z, t)] 〈e−tz〉
(1 + (e2t − 1)∇ log u0 · e−tz)2

.
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Notice that (n+ 1) log u0 = − log Jf and that (1− e−2t) < 1− ‖e−tz‖2. Hence, using
(4.1), we conclude that ‖E(z, t)‖ < 1. As a consequence, we see that Id − E(z, t) is
an invertible operator. Therefore, its follows that

∂f

∂t
(z, t) = Df(z, t) (Id− E(z, t))

−1
(Id + E(z, t)) 〈z〉.

Thus, f(z, t) satisfies the differential equation

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ Bn, t ≥ 0,

where h(z, t) = [Id− E(z, t)]−1[Id + E(z, t)]〈z〉. This shows that f(z, t) is a Loewner
chain with the intial value f(z, 0) = f(z), which completes the proof. �

Remark 4.2. If f is a locally univalent analytic function defined in the unit disk
D ⊂ C, the correspondig Sk

ijf and S0
ijf given, respectively, by (2.5) and (2.6), satisfy

that Sk
ijf = 0 and

S0
11f = −1

2
Sf, S0

12f = 0, S0
22f = 0.

Therefore, univalence criterion given by inequality (4.1) becomes the classical criterion
of univalence in the unit disk due to Nehari: if such function f satisfies that

|Sf(z)| ≤ 2

(1− |z|2)2

for all |z| < 1, then f is univalent in the unit disk.

Corollary 4.3. Let f be as in previous theorem have constant (non-zero) Jacobian Jf .
If

(1− ‖z‖2)‖Sf (z)〈z, ·〉‖ ≤ 1,

then f is univalent in Bn.

Proof. Since Jf is a constant,∇ log Jf = 0. Furthermore, in this case, the correspondig
solution u0 in the proof of Theorem 4.1 is a constant too. Then the system (2.7) asserts
that S0

ijf are identically zero for all i, j, and k. Thus, the inequality (4.1) equals

(1− ‖z‖2)‖Sf (z)〈z, ·〉‖ ≤ 1.

A direct application of Theorem 4.1 ends the proof. �
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