Idempotent and nilpotent elements in octonion rings over \(\mathbb{Z}_p\)
DOI:
https://doi.org/10.24193/subbmath.2024.1.01Abstract
In this paper, we show that the set \(\mathbb{O}/\mathbb{Z}_p\), where \(p\) is a prime number, does not form a skew field and discuss idempotent and nilpotent elements in the (finite) ring \(\mathbb{O}/\mathbb{Z}_p\). We provide examples and establish conditions for idempotency and nilpotency.
References
Ankeny, N.C., Sum of three squares, Proc. Amer. Math. Soc., 8(2)(1957), 316-319.
Aristidou, M., Demetre, A., A note on quaternion rings over Zp, Int. J. Alg., 3(15)(2009),
-728.
Aristidou, M., Demetre, A., Idempotent elements in quaternion rings over Zp, Int. J.
Alg., 6(5)(2012), 249-254.
Aristidou, M., Demetre, A., Nilpotent elements in quaternion rings over Zp, Int. J. Alg.,
(14)(2012), 663-666.
Ayoub, R., Ayoub, C., On the commutativity of rings, Am. Math. Mon., 71(3)(1964),
-271.
Baez, J.C., The octonions, Bull. Amer. Math. Soc., 39(2002), 145-205.
Bourbaki, N., Elements of Mathematics { Algebra I, Hermann, 1974.
Cooper, S., Sums of ve, seven and nine squares, Ramanujan J., 6(2002), 469-490.
Cooper, S., Hirschhorn, M., On the number of primitive representations of integers as
sums of squares, Ramanujan J., 13(2007), 7-25.
Ebbinghaus, H.D., Hermes, H., Hirzebruch, F., Koecher, M., Mainzer, K., Neukirch, J.,
Prestel, A., Remmert, R., Numbers, Springer, NY, 1991.
Halici, S., Karatas, A., O=Zp Octonion algebra and its matrix representations, Palest.
J. Math., 6(1)(2017), 307-313.
Hardy, G.H., On the representations of a number as the sum of any number of squares,
and in particular of ve or seven, Proc. Nat. Acad. Sci., U.S.A., 4(1918), 189-193.
Hardy, G.H., On the representation of a number as the sum of any number of squares,
and in particular of ve, Trans. Amer. Math. Soc., 21(1920), 255-284.
Herstein, I.N., Topics in Algebra, 2nd ed., Wiley, 1975.
Herstein, I.N., Wedderburn's theorem and a theorem of Jacobson, Am. Math. Mon.,
(3)(1961), 249-251.
Hirano, Y., Tominaga, H., Rings in which every element is the sum of two idempotents,
Bull. Austral. Math. Soc., 37(2)(1988), 161-164.
Hurwitz, A., Uber die Composition der quadratischen Formen von Beliebig Vielen Variabeln,
Nachr. Ges. Wiss. Gottingen, (1898), 309-316.
Jacobson, N., Structure theory for algebraic algebras of bounded degree, Ann. of Math.,
(1945), 695-707.
Malekian, E., Zakerolhosseini, A., OTRU: A non-associative and high speed public key
cryptosystem, 15th CSI International Symposium on Computer Architecture and Digital
Systems, Iran, 2010, 83-90.
Miguel, C.J., Serodio, R., On the structure of quaternion rings over Zp, Int. J. Alg.,
(27)(2011), 1313-1325.
Mosic, D., Characterizations of k-potent elements in rings, Ann. Mat. Pura Appl.,
(4)(2015), 1157-1168.
Pierce, R.S., Associative Algebras, Springer, 1982.
van der Poorten, A., Concerning commuting, Austral. Math. Soc. Gazette, 194(1994),
Schafer, R., An Introduction to Nonassociative Algebras, Academic Press, 1996.
Serre, J.P., A Course in Arithmetic, Springer, 1973.
Tian, Y., Matrix representations of octonions and their applications, Adv. Appl. Cli ord
Algebr., 10(1)(2000), 61-90.
Trenkler, G., Baksalary, O.M., On k-potent matrices, Electron. J. Linear Algebra,
(2013), 446-470.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.