Certain geometric properties of generalized Bessel-Maitland function
DOI:
https://doi.org/10.24193/subbmath.2023.4.08Keywords:
Univalent, starlike, convex and close-to-convex function, subordination, Bessel functions, Bessel-Maitland functionsAbstract
In the present study, we first introduce Generalized Bessel-Maitland function \(\mathbb{J}^{\xi }_{\zeta,a}(z)\) and then derive sufficient conditions under which the Generalized Bessel-Maitland function \(\mathbb{J}^{\xi}_{\zeta,a}(z)\) have geometric properties like univalency, starlikeness and convexity in the open unit disk \(\mathscr{D}\).References
Baricz, A., Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, Berlin, 2010.
Baricz, A, Kup an, P.A., Sz asz, R., The radius of starlikeness of normalized Bessel function of rst kind, Proc. Amer. Math. Soc., 142(2014), no. 6, 2019-2025.
Baricz, A., Poonusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21(2010), no. 9, 641-653.
Baricz, A, Szasz, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(2014), no. 5, 485-509.
Becker, J., Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, (German), J. Reine Angew. Math., 255(1972), 23-43.
Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften,
Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
MacGregor, T.H., The radius of univalence of certain analytic functions II, Proc. Amer
Math Soc., 14(1963), 521-524.
MacGregor, T.H., A class of univalent functions, Proc. Amer. Math. Soc., 15(1964),
-317.
Marichev, O.I., Handbook of Integral Transform and Higher Transcendental Functions,
Theory and Algorithm Tables, Ellis Horwood, Chichester [John Wiley and Sons], New
York, 1983.
Miller, S.S., Mocanu, P.T., Univalence of Gaussian and con
uent hypergeometric functions, Proc. Amer. Math. Soc., (1990), no. 11, 333-342.
Mocanu, P.T., Some starlike conditions for analytic functions, Rev. Roumaine Math. Pures Appl., 33(1988), 117-124.
Pescar, V., A new generalization of Ahlfors and Beckers criterion of univalence, Bull.
Malays. Math. Sci. Soc. (Second Series), 19(1996), 53-54.
Ponnusamy, S., Vuorinen, M., Univalence and convexity properties for Gaussian hyper-
geometric functions, Rocky Mountain J. Math., 31(2001), 327-353.
Prajapat, J.K., Certain geometric properties of normalized Bessel functions, Appl. Math.
Lett., 24(2011), 2133-2139.
Prajapat, J.K., Certain geometric properties of the Wright functions, Integral Trans-
form. Spec. Funct., 26(2015), no. 3, 203-212.
Ruscheweyh, St., Singh, V., On the order of starlikeness of hypergeometric functions, J.
Math. Anal. Appl., (1986), no. 113, 1-11.
Selinger, V., Geometric properties of normalized Bessel functions, Pure Math Appl.,
(1995), 273-277.
Sz asz, R., About the starlikeness of Bessel functions, Integral Transforms Spec. Funct.,
(2014), no. 9, 750-755.
Sz asz, R., Kup an, P.A., About the univalence of the Bessel functions, Stud. Univ. Babe s-
Bolyai Math, 54(2009), no. 1, 127-132.
Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University
Press, 1962.
Xanthopoulos, X., Subclasses of starlike functions with 0; Stud. Univ. Babes-Bolyai Math., 38(1993), 39-47.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.