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Abstract. We obtain some new Shepard type operators based on the classical,
the modified Shepard methods and the least squares thin-plate spline function.
Given some sets of points, we compute some representative subsets of knot points
following an algorithm described by J. R. McMahon in 1986.

Mathematics Subject Classification (2010): 41A05, 41A25, 41A80.

Keywords: Scattered data, Shepard operator, least squares approximation, thin-
plate spline, knot points.

1. Preliminaries

One of the best suited methods for approximating large sets of data is the Shep-
ard method, introduced in 1968 in [16]. It has the advantages of a small storage
requirement and an easy generalization to additional independent variables, but it
suffers from no good reproduction quality, low accuracy and a high computational
cost relative to some alternative methods [14], these being the reasons for finding new
methods that improve it (see, e.g.,[1]-[8], [17], [18]). In this paper we obtain some new
operators based on the classical, the modified Shepard methods and the least squares
thin-plate spline.

Let f be a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X, i = 1, ..., N
some distinct points. Denote by ri (x, y) the distances between a given point (x, y) ∈ X
and the points (xi, yi) , i = 1, ..., N . The bivariate Shepard operator is defined by

(Sµf) (x, y) =

N∑
i=1

Ai,µ (x, y) f (xi, yi) , (1.1)
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where

Ai,µ (x, y) =

N∏
j=1
j 6=i

rµj (x, y)

N∑
k=1

N∏
j=1
j 6=k

rµj (x, y)

, (1.2)

with the parameter µ > 0.
It is known that the bivariate Shepard operator Sµ reproduces only the constants

and that the function Sµf has flat spots in the neighborhood of all data points.
Franke and Nielson introduced in [10] a method for improving the accuracy in

reproducing a surface with the bivariate Shepard approximation. This method has
been further improved in [9], [15], [14], and it is given by:

(Sf) (x, y) =

N∑
i=1

Wi (x, y) f (xi, yi)

N∑
i=1

Wi (x, y)

, (1.3)

with

Wi (x, y) =
[
(Rw−ri)+
Rwri

]2
, (1.4)

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. Rw
is taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw (Nw
is a fixed value) and j as small as possible within the constraint that the jth closest
node is significantly more distant than the (j − 1)st closest node (see, e.g. [14]). As
it is mentioned in [11], this modified Shepard method is one of the most powerful
software tools for the multivariate approximation of large scattered data sets.

2. The Shepard operators of least squares thin-plate spline type

Consider f a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X,
i = 1, ..., N some distinct points. We introduce the Shepard operator based on the
least squares thin-plate spline in four ways.

Method 1. We consider

(S1f)(x, y) =

N∑
i=1

Ai,µ(x, y)Fi(x, y), (2.1)

where Ai,µ, i = 1, ..., N, are defined by (1.2), for a given parameter µ > 0 and the
least squares thin-plate splines are given by

Fi(x, y) =

i∑
j=1

Cjd
2
j log(dj) + ax+ by + c, i = 1, ..., N, (2.2)

with dj =
√

(x− xj)2 + (y − yj)2.
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For the second way, we consider a smaller set of k ∈ N∗ knot points (x̂j , ŷj),
j = 1, ..., k that will be representative for the original set. This set is obtained following
the next steps (see, e.g., [12] and [13]):

Algorithm 2.1. 1. Generate k random knot points, with k < N ;
2. Assign to each point the closest knot point;
3. If there exist knot points for which there is no point assigned, move the knot to

the closest point;
4. Compute the next set of knot points as the arithmetic mean of all corresponding

points;
5. Repeat steps 2-4 until the knot points do not change for two successive iterations.

Method 2. For a given k ∈ N∗, we consider the representative set of knot points
(x̂j , ŷj), j = 1, ..., k. The Shepard operator of least squares thin-plate spline is given
by

(S2f)(x, y) =

k∑
i=1

Ai,µ(x, y)Fi(x, y), (2.3)

where Ai,µ, i = 1, ..., k, are defined by

Ai,µ (x, y) =

k∏
j=1
j 6=i

rµj (x, y)

k∑
p=1

k∏
j=1
j 6=p

rµj (x, y)

,

for a given parameter µ > 0.
The least squares thin-plate spline are given by

Fi(x, y) =
i∑

j=1

Cjd
2
j log(dj) + ax+ by + c, i = 1, ..., k, (2.4)

with dj =
√

(x− x̂j)2 + (y − ŷj)2.

For Methods 1 and 2, the coefficients Cj , a, b, c of Fi are found such that to
minimize the expressions

E =
N ′∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2,

considering N ′ = N for the first case and N ′ = k for the second one. There are
obtained systems of the following form (see, e.g., [12]):



0 d212 log d12 · · · d2
1N′ log d1N′ x1 y1 1

d221 log d21 0 · · · d2
2N′ log d2N′ x2 y2 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
d2
N′1 log dN′1 d2

N′2 log dN′2 · · · 0 xN′ yN′ 1
x1 x2 · · · xN′ 0 0 0
y1 y2 · · · yN′ 0 0 0
1 1 · · · 1 0 0 0


·



C1

C2

.

.

.
CN′
a
b
c


=



f1
f2
.
.
.

fN′
0
0
0


with d2ij = (xi − xj)2 + (yi − yj)2 , fi = f(xi, yi), i, j = 1, ..., N ′.
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Next we consider the improved form of the Shepard operator given in (1.3).

Method 3. We consider Shepard operator of least squares thin-plate spline type of the
following form:

(S3f)(x, y) =

N∑
i=1

Wi (x, y)Fi(x, y)

N∑
i=1

Wi (x, y)

, (2.5)

with Wi given by (1.4), Fi given by (2.2), for i = 1, ..., N .

The coefficients Cj , a, b, c of Fi, i = 1, ..., N are determined in order to minimize
the expression

E =
N∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2.

Method 4. For a given k ∈ N∗, we consider the representative set of knot points
(x̂j , ŷj), j = 1, ..., k, obtained applying the Algorithm 2.1. In this case, we introduce
the Shepard operator of least squares thin-plate spline type by the following formula:

(S4f)(x, y) =

k∑
i=1

Wi (x, y)Fi(x, y)

k∑
i=1

Wi (x, y)

, (2.6)

with Wi given by (1.4) and Fi given by (2.4), for i = 1, ..., k.

The coefficients Cj , a, b, c of Fi, i = 1, ..., k are determined in order to minimize
the expression

E =
k∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2.

3. Numerical examples

We consider the following test functions (see, e.g., [9], [15], [14]):

Gentle: f1(x, y) = exp[− 81
16 ((x− 0.5)2 + (y − 0.5)2)]/3,

Saddle: f2(x, y) =
(1.25 + cos 5.4y)

6 + 6(3x− 1)2
,

Sphere: f3(x, y) =
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5.

(3.1)

Table 1 contains the maximum errors for approximating the functions (3.1) by
the classical and the modified Shepard operators given, respectively, by (1.1) and
(1.3), and the errors of approximating by the operators introduced in (2.1), (2.3),
(2.5) and (2.6). We consider three sets of N = 100 random points for each function
in [0, 1]× [0, 1], k = 25 knots, µ = 3 and Nw = 19.
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Remark 3.1. The approximants S2fi, S4fi, i = 1, 2, 3 have better approximation
properties although the number of knot points is smaller than the number of knot
points considered for the approximants S1fi, S3fi i = 1, 2, 3, so this illustrates the
benefits of the algorithm of choosing the representative set of points.

In Figures 2, 4, 6 we plot the graphs of f1, f2, f3 and of the corresponding
Shepard operators S1fi, S2fi, S3fi and S4fi, i = 1, 2, 3, respectively.

In Figures 1, 3, 5 we plot the sets of the given points and the corresponding sets
of the representative knot points.

Table 1. Maximum approximation errors.

f1 f2 f3
Sµf 0.0864 0.1095 0.1936
Sf 0.0724 0.0970 0.1770
S1f 0.1644 0.4001 0.6595
S2f 0.1246 0.2858 0.3410
S3f 0.1578 0.3783 0.6217
S4f 0.1212 0.2834 0.3399

First set of given points. First set of representative knot points.

Figure 1. First sets of points.
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Function f1.

S1f1 S2f1

S3f1 S4f1

Figure 2. Graphs for f1.

Second set of given points. Second set of representative knot points.

Figure 3. Second sets of points.
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Function f2.

S1f2 S2f2

S3f2 S4f2

Figure 4. Graphs for f2.

Third set of given points. Third set of representative knot points.

Figure 5. Third sets of points.
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Function f3.

S1f3 S2f3

S3f3 S4f3

Figure 6. Graphs for f3.
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