Eigenvalues for anisotropic p-Laplacian under a Steklov-like boundary condition
DOI:
https://doi.org/10.24193/subbmath.2021.1.07Keywords:
eigenvalues, anisotropic $p-$Laplacian, Steklov-like boundary condition, Sobolev spaces, variational methodsAbstract
The eigenvalue problem $$-\mbox{div}~\Big(\frac{1}{p}\nabla_\xi \big(F^p\big (\nabla u)\Big)=\lambda a(x) \mid u\mid ^{q-2}u,$$ with $q\in (1, \infty),~ p\in \Big(\frac{Nq}{N+q-1}, \infty\Big),~ p\neq q,$ subject to Steklov-like boundary condition, $$F^{p-1}(\nabla u)\nabla _\xi F (\nabla u)\cdot \nu=\lambda b(x) \mid u\mid ^{q-2}u$$ is investigated on a bounded Lipschitz domain $\Omega\subset \mathbb{R}^ N,~N\geq 2$. Here, $F$ stands for a $C^2(\mathbb{R}^N\setminus \{0\})$ norm and $a\in L^{\infty}(\Omega),~ b\in L^{\infty}(\partial\Omega)$ are given nonnegative functions satisfying
\[
\int_\Omega a~dx+\int_{\partial\Omega} b~d\sigma >0.
\]
Using appropriate variational methods, we are able to prove that the set of eigenvalues of
this problem is the interval $[0, \infty)$.
References
Fu{a}rcu{a}c{s}eanu, M., emph{Eigenvalues for Finsler $p-$Laplacian with zero Dirichlet boundary condition}, An. Sti. U. Ovid. Co.-Mat., textbf{24}(2016), no. 1, 231-242.
Ferone, V., Kawohl, B., emph{Remarks on Finsler–Laplacian}, Proc. Am. Math. Soc., textbf{137} (2008), no. 1, 247–253.
Finsler, P., emph{Uber Kurven und Flachen in Allgemeinen Raumen}, (Dissertation, Gottingen, 1918), Birkhauser Verlag, Basel, 1951.
Folland, G. B., emph{Real Analysis: Modern Techniques and Their Applications (2nd ed.)}, Pure and Applied Mathematics, John Wiley $&$ Sons, Inc. New York, 1999.
Giga, Y., emph{Surface Evolution Equations. A Level Set Approach}, Birkhauser Verlag, Basel, 2006.
Giusti, E., emph{Direct Methods in the Calculus of Variations}, textbf{7}, World Scientific, Singapore, 2003.
L^{e}, A., emph{Eigenvalue problems for p-Laplacian},Nonlinear Anal. TMA., textbf{64}(2006), 1057-1
Lindqvist P., emph{Notes on p-Laplace equation}, University of Jyväskylä - Lectures notes, 2006.
Minkowski, H.,emph{ Allgemeine Lehrsatze uber die konvexen Polyeder}, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (1897),198–219.
^{O}tani, M., emph{Existence and nonexistence of nontrivial solutions of some
nonlinear degenerate elliptic equations}, J. Funct. Anal., textbf{76} (1988), 140-159.
Taylor, J. E., emph{Crystalline variational problems}, Bulletin of the American Mathematical Society, textbf{84}(1978), 568–588.
Zeidler, E., emph{Nonlinear Functional Analysis and its Applications: II/B, Nonlinear Monotone Operators},
Springer, New York, 1989.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.