Eigenvalues for anisotropic p-Laplacian under a Steklov-like boundary condition

Luminita Barbu


The eigenvalue problem $$-\mbox{div}~\Big(\frac{1}{p}\nabla_\xi \big(F^p\big (\nabla u)\Big)=\lambda a(x) \mid u\mid ^{q-2}u,$$ with $q\in (1, \infty),~ p\in \Big(\frac{Nq}{N+q-1}, \infty\Big),~ p\neq q,$ subject to Steklov-like boundary condition, $$F^{p-1}(\nabla u)\nabla _\xi F (\nabla u)\cdot \nu=\lambda b(x) \mid u\mid ^{q-2}u$$ is investigated on a bounded Lipschitz domain $\Omega\subset \mathbb{R}^ N,~N\geq 2$. Here, $F$ stands for a $C^2(\mathbb{R}^N\setminus \{0\})$ norm and $a\in L^{\infty}(\Omega),~ b\in L^{\infty}(\partial\Omega)$ are given nonnegative functions satisfying
\int_\Omega a~dx+\int_{\partial\Omega} b~d\sigma >0.
Using appropriate variational methods, we are able to prove that the set of eigenvalues of
this problem is the interval $[0, \infty)$.


eigenvalues; anisotropic $p-$Laplacian; Steklov-like boundary condition; Sobolev spaces; variational methods

Full Text:



Fu{a}rcu{a}c{s}eanu, M., emph{Eigenvalues for Finsler $p-$Laplacian with zero Dirichlet boundary condition}, An. Sti. U. Ovid. Co.-Mat., textbf{24}(2016), no. 1, 231-242.

Ferone, V., Kawohl, B., emph{Remarks on Finsler–Laplacian}, Proc. Am. Math. Soc., textbf{137} (2008), no. 1, 247–253.

Finsler, P., emph{Uber Kurven und Flachen in Allgemeinen Raumen}, (Dissertation, Gottingen, 1918), Birkhauser Verlag, Basel, 1951.

Folland, G. B., emph{Real Analysis: Modern Techniques and Their Applications (2nd ed.)}, Pure and Applied Mathematics, John Wiley $&$ Sons, Inc. New York, 1999.

Giga, Y., emph{Surface Evolution Equations. A Level Set Approach}, Birkhauser Verlag, Basel, 2006.

Giusti, E., emph{Direct Methods in the Calculus of Variations}, textbf{7}, World Scientific, Singapore, 2003.

L^{e}, A., emph{Eigenvalue problems for p-Laplacian},Nonlinear Anal. TMA., textbf{64}(2006), 1057-1

Lindqvist P., emph{Notes on p-Laplace equation}, University of Jyväskylä - Lectures notes, 2006.

Minkowski, H.,emph{ Allgemeine Lehrsatze uber die konvexen Polyeder}, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (1897),198–219.

^{O}tani, M., emph{Existence and nonexistence of nontrivial solutions of some

nonlinear degenerate elliptic equations}, J. Funct. Anal., textbf{76} (1988), 140-159.

Taylor, J. E., emph{Crystalline variational problems}, Bulletin of the American Mathematical Society, textbf{84}(1978), 568–588.

Zeidler, E., emph{Nonlinear Functional Analysis and its Applications: II/B, Nonlinear Monotone Operators},

Springer, New York, 1989.

DOI: http://dx.doi.org/10.24193/subbmath.2021.1.07


  • There are currently no refbacks.