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Abstract. Structural equation modeling finds linear relations between exogenous
and endogenous latent and observable random vectors. In this paper, the model
equations are considered as a linear dynamical system to which the celebrated
R. E. Kálmán’s filtering technique is applicable. An artificial intelligence is devel-
oped, where the partial least squares algorithm of H. Wold and the block Cholesky
decomposition of H. Kiiveri et al. are combined to estimate the parameter matri-
ces from a training sample. Then the filtering technique introduced is capable to
predict the latent variable case values along with the prediction error covariance
matrices in the test sample. The recursion goes from case to case along the test
sample, without having to re-estimate the parameter matrices. The algorithm is
illustrated on real life sociological data.
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1. Introduction

We consider structural equation model (SEM) for two latent random vectors that
depend through a linear model on two observable random vectors, respectively (they
usually include exogenous and endogenous variables). This kind of models was first
investigated by T. Haavelmo [1], who obtained the Nobel Prize for it later. Unlike
the traditional factor analysis, where latent variables were introduced and given a
meaning based on the factor loadings, here the latent variables are organic parts of
the model. The latent variables, e.g., alienation, ambition in [2] or mobility in our
example, are given by the experts, and the observed (measurement) variables are
indicators of them. In this way, so-called inner and outer relations are stated between
the latent variables and between the observable and latent ones, respectively.
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The estimation of the parameter matrices of this model was elaborated both in
the Gaussian and distribution-free cases, former by K. G. Jöreskog (LISREL) [2], while
the other by H. Wold (PLS) [8] in the 1970-1980s. These two approaches are sometimes
called covariance-based and component-based SEM. However, we can consider the
model equations as a linear dynamical system to which the celebrated R. E. Kálmán’s
filtering technique [3] is applicable. This technique was developed in the 1960s for time
series to make predictions for the hidden state variables of a state space model, and
was used in the lunar landing, for instance. We will show how to apply this technique
in the more complicated dynamical system, containing two state and two observable
equations, describing inner relations between the observable and latent variables, both
for the exogenous and endogenous ones. Our contribution is that we connect these
two approaches.

The parameter matrices are estimated from a training sample. We combine the
first stage of the PLS algorithm of H. Wold to estimate the case values of the latent
variables and the method of H. Kiiveri et al. [5] to decompose the inverse of the product
moment matrix obtained with the latent case value estimates. At this point, we apply
the block Cholesky decomposition. Then the filtering technique to be introduced is
capable to make predictions for the endogenous variables based on the exogenous
ones, through the latent variables. The driving force is that we propagate the error
covariance matrices of the exogenous and endogenous latent variables in a recursion.

The test sample is a succession of observations coming one by one (like a time
series or just subsequent observations), and the algorithm predicts their endogenous
variables based on their own exogenous ones. Our contribution is that we combine
existing methods for parameter estimation, and then apply filtering technique for pre-
diction, so we develop an artificial intelligence. The computational gain is that the pa-
rameter matrices need not be estimated for every new-coming case in the test sample,
but are estimated only once, in the training sample. The method is distribution-free
(just second moments are used in the linear state equations) and applicable to small
training, and not necessarily independent test samples.

The organization of the paper is as follows. In Section 2, the most important
notions and facts about best linear predictions in Hilbert spaces are introduced. In
Section 3, the prediction and propagation of the error covariance matrices are derived
in two stages. The main results are summarized in Theorem 3.1 of Section 3.3. Then
the proposed algorithm is illustrated on real life sociological data in Section 4. Even-
tually, the last Section 5 discusses the benefits of the proposed method together with
some possible further perspectives.

2. Preliminaries

The following linear dynamical system that resembles the one to which
R. E. Kálmán gave a recursive algorithm is considered:

Bη = Aξ + ζ,

where η is m- and ξ is n-dimensional latent vector, B and A are m×m and m× n
coefficient matrices, and ζ is a random vector of residuals of uncorrelated components.
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It is also uncorrelated with ξ, and B is nonsingular. In the recursive models, B is
upper triangular, with 1s along its main diagonal.

Here η and ξ are not observed, but instead, the p-dimensional Y and the q-
dimensional X are observed such that

X = Cξ + ε, Y = Gη + δ,

where ε and δ are vectors of measurement errors in X and Y, respectively. They are
uncorrelated with each other and ζ. Typically, n ≤ q and m ≤ p.

For the estimation of the matrices A, B, C, G, and the covariance matrices of
the errors, there is the LISREL algorithm of K. G. Jöreskog [2] (assuming multivari-
ate Gaussian distribution of the measurement variables and large sample sizes) and
component-wise SEM algorithms (not postulating normality and being able to treat
small sample sizes), e.g., [7, 8], at our disposal.

In the first stage of his PLS algorithm, H. Wold [8] gives an iteration to find the
case values of the latent variables. He states that this fixed point iteration converges.
We use only this first stage to calculate the product moment estimate of the covariance
matrix of the latent variables. Then we decompose the inverse of this matrix as LDLT

with L and D having the form

L =

(
BT O
−AT I

)
, D =

(
Q−1 O
O F−1

)
, (2.1)

where B is m ×m upper triangular matrix with 1s along its main diagonal, and A
is m × n matrix. The block-diagonal matrix D comprises the inverse of the error
covariance matrix Q of ζ and F of ξ, where Q itself is a diagonal matrix. For this
purpose we use the block Cholesky decomposition with block sizes 1, . . . , 1, n with
number1 m of 1s.

Wold’s algorithm also provides the outer relation matrices C and G. In this way,
we can estimate the parameter matrices A,B,C,G based on a training sample and
on adjacency matrices that specify which latent variable is related to which observable
one, both among the exogenous and endogenous variables. This is the point where
the expert can intervene the system. For a detailed description, see Section 4.

In the heart of the estimation and the forthcoming filtering there is the simul-
taneous usage of OLS (ordinary least squares) regression, tracing back to the Gauss
normal equations. We give a short summary of that.

Now we concentrate on linear estimates in Hilbert spaces that are the best
whenever the underlying distribution is multivariate Gaussian, but is also applicable
to second order processes.

Lemma 2.1. Let Y ∈ Rp and X ∈ Rq be random vectors on a joint probability space
with existing second moments and zero expectation. Then
E‖Y −ATX‖2 is minimized with

A = [EXXT ]−[EXYT ], (2.2)

1Number of endogenous latent variables in the model.
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where A is a q × p matrix and we use generalized inverse − if the covariance matrix
EXXT of X is singular. If it is positive definite, then we get a unique estimate for A
with the unique inverse matrix [EXXT ]−1.

Note that the notation − applies to any (not necessarily unique) generalized
inverse, whereas + will be used for the uniquely defined Moore–Penrose generalized
inverse, see [6].

Proof. Observe that minimizing

E‖Y −ATX‖2 =

p∑
i=1

(Y i − aT
i X)2

with respect to A = (a1 . . .ap) falls apart into the following p minimization tasks,
with respect to the q-dimensional column vectors of A:

min
ai

(Y i − aT
i X)2, i = 1, . . . , p.

The solution (e.g., with the help of differentiation) gives the well known Gauss normal
equations from the classical theory of multivariate regression:

[EXXT ]ai = [EXYi], i = 1, . . . , p.

Since this system of linear equations is consistent (the vector EXYi is in the column
space of EXXT ), it always has a solution in the general form:

ai = [EXXT ]−[EXYi], i = 1, . . . , p.

Therefore the matrix A giving the optimum is

A = [EXXT ]−[EXYT ],

that is unique only if EXXT is invertible (positive definite), otherwise (if EXXT is
singular, positive semidefinite) infinitely many versions of the generalized inverse give
infinitely many convenient As. However, these always provide the same optimal linear
prediction (projection) for Y as follows:

ProjH(X)Y = Ŷ =


Ŷ1
Ŷ2
...

Ŷp

 =


aT
1 X

aT
2 X
...

aT
p X

 = ATX,

where ProjH(X) denotes the projection onto the Hilbert space spanned by the lin-

ear combinations of the components of X (the expectations are zeros and the inner
product is the covariance). �

Lemma 2.2. Let Y ∈ Rp and X ∈ Rq be random vectors on a joint probability space
with existing second moments and zero expectation, and let ProjH(X)Y denotes the
best linear prediction of Y based on X, as before. Then with any p× p matrix Φ,

ProjH(X)(ΦY) = ΦProjH(X)Y.
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Proof. We saw that ProjH(X)Y = ATX, where by (2.2), A = [EXXT ]−[EXYT ], and

we use the generalized inverse − if the covariance matrix EXXT of X is singular.
Then

ProjH(X)(ΦY) = {[EXXT ]−[EX(ΦY)T ]}TX = [E(ΦYXT )][EXXT ]−X

= Φ[E(YXT )][EXXT ]−X = ΦProjH(X)Y.

�

The above lemma shows that this projection is linear in Y and it commutes with Φ.
In the Gaussian case, obviously, we have that

ProjH(X)(ΦY) = E(ΦY |X) = ΦE(Y |X) = ΦProjH(X)(Y)

by the properties of the conditional expectation.
The above setup is used for simultaneous (in other words, multiple response)

regressions when we regress the components of a random vector (target) with all the
components of the predictors.

3. The linear dynamical system for the prediction

Discrete time observations Xt, Yt arrive, whereas ξt and ηt are latent state
variables corresponding to them. Starting at time 0, for t = 1, 2, . . . , the estimate of
η̂t is found, while observing X1, . . . ,Xt. Actually, to find η̂t, we only need the estimate

ξ̂t and the last observation Xt. Then to find ξ̂t+1, the preceding estimate η̂t and the
last observation Yt are needed. In this way, a recursion is given via the propagation of
the error covariance matrices. During the calculations, we use the linearity of the state
equations and the predictions, for which we confine ourselves to the second moments
of the underlying distributions (second order processes).

The linear dynamical system is

Bηt = Aξt + ζt

Uξt+1 = V ηt + γt

Xt = Cξt + εt

Yt = Gηt + δt,

(3.1)

where A is m × n, B is m × m, V is n × m, U is n × n, C is q × n, and G is
p×m specified matrix; B and U are non-singular (in recursive models they are upper
triangular with 1s along their main diagonals). Further, ζt is an orthogonal process
with EζtζTs = δstQ with diagonal covariance matrix Q; γt is an orthogonal process
with EγtγT

s = δstR with diagonal covariance matrix R; EξTs ζt = 0 and EηT
s γt = 0

for s ≤ t; εt is independent of ξt, δt is independent of ηt, they are also independent
of each other and of ζt and γt. For simplicity, we assume that all the expectations are
zeros.

The A,B,U ,V matrices are estimated from a training sample. Actually, the
matrices A and B together with Q and F come from the block Cholesky decomposi-
tion (2.1), based on the product-moments of the estimated latent scores of the pairs
ξs,ηs, where s < 0 is integer from the past (training sample). Likewise, the matrices
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U and V together with R and F ∗ come from the block Cholesky decomposition (3.2)
below, based on the product-moments of the estimated latent scores of the shifted
pairs ηs, ξs+1 (s < 0). The inverse of this matrix is decomposed as L∗D∗L∗T with
L∗ and D∗ having the form

L∗ =

(
UT O
−V T I

)
, D∗ =

(
R−1 O

O F ∗−1

)
, (3.2)

where recall that, in the recursive model, U is n× n upper triangular matrix with 1s
along its main diagonal, and V is n×m. The block-diagonal matrix D∗ comprises the
inverse of the error covariance matrix R of γ and F ∗ of η, where R itself is a diagonal
matrix. For this purpose we use the block Cholesky decomposition with block sizes
1, . . . , 1,m with number2 n of 1s.

The matrices C ad G are estimated by the PLS algorithm of H. Wold [8]. The
details are given in Section 4.

Now a recursion is introduced for the following problem: starting the observations
at time 0 in the test sample, we want to estimate ηt based on Xt, and ξt+1 based
on Yt component-wise, with minimum mean square error. Former observations also
play role, but only through the last one and through the propagation of the error
covariance matrices. Here X0 and Y0 can be taken from the training sample.

3.1. First stage: Xt → η̂t

For t ≥ 1, letHt−1(X) = Span (X0, . . . ,Xt−1) consists of the linear combinations
of all the components of X0, . . . ,Xt−1 over a common probability space. They are also
in a Hilbert space (L2 space) with the covariance as inner product. We denote the

optimal prediction of ξt based on X0, . . . ,Xt−1 by ξ̂t.

If X0, . . . ,Xt−1 are observed, i.e., Ht−1(X) is known, then the newly observed
(measured) Xt can be orthogonally decomposed as

Xt = ProjHt−1(X)Xt + X̃t = Xt + X̃t, (3.3)

where the orthogonal component X̃t ∈ It(X), and It(X) is the so-called innovation

subspace (actually, the components of X̃t generate It(X)). Assume that It(X) is not
the sole 0 vector, otherwise observing Xt does not give any additional information to
Ht−1(X). If {Xt} is weakly stationary, it means that the process is regular.

Equation (3.3) implies the decomposition of the corresponding subspaces like

Ht(X) = Ht−1(X)⊕ It(X), (3.4)

that is the analogue of multidimensional Wold decomposition when we make one-step
ahead prediction based on finitely many past values. (The Wold decomposition applies
to the stationary and infinite past case. Indeed, when t→∞, i.e., going to the future,
we approach this situation in the stationary case).

2Number of exogenous latent variables in the model.
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Assume that we have already found ξ̂t. We shall give a recursion to find η̂t by
using the new value of Xt. In view of Equation (3.4), we proceed as follows:

Bη̂t = ProjHt(X)(Bηt) = ProjHt−1(X)(Bηt) + ProjIt(X)(Bηt)

= AProjHt−1(X)ξt + ProjHt−1(X)ζt +KtX̃t

= Aξ̂t +KtX̃t,

(3.5)

where we utilized that ζt ⊥ Ht−1(X), Lemma 2.1 and the first state equation of (3.1).
We refer to the linearity of the projection, see Lemma 2.2. Since ProjIt(X)Bηt is

the linear combination of the coordinates of the vector X̃t ∈ It(X), its effect can be

written as a matrix Kt multiplied with X̃t. This m × q matrix Kt is called Kálmán
gain matrix after R. E. Kálmán (in fact, this notation was first used in the paper [4]
of Kálmán and Bucy).

To specify the matrix Kt, we have to write X̃t in terms of ξ̂t and Xt. For this
purpose, let us project both sides of the first observation equation of (3.1), i.e., of
Xt = Cξt + εt, onto Ht−1(X). We get that

Xt = Cξ̂t.

Taking the orthogonal decomposition (3.3) of Xt into consideration yields that

X̃t = Xt −Xt = Xt −Cξ̂t. (3.6)

We substitute this into the last line of Equation (3.5) and obtain that

Bη̂t = Aξ̂t +KtX̃t = (A−KtC)ξ̂t +KtXt.

With the notation

A∗
t = A−KtC (3.7)

for the updated transition matrix, we get the new linear dynamics:

Bη̂t = A∗
t ξ̂t +KtXt. (3.8)

We also have the alternative expression

Bη̂t = Aξ̂t +KtX̃t = Aξ̂t +Kt(Xt −Cξ̂t). (3.9)

The estimation error is also governed by the linear dynamical system. This error
term has two alternative forms. Using (3.8), the one is

Bη̃t = Bηt −Bη̂t = Aξt + ζt −A∗ξ̂t −KtCξt −Ktεt

= A∗
t (ξt − ξ̂t) + ζt −Ktεt = A∗

t ξ̃t + ζt −Ktεt.

Then, using (3.9), the other is

Bη̃t = Aξt + ζt −Aξ̂t −Kt(Xt −Cξ̂t) = Aξ̃t + ζt −Kt(Xt −Cξ̂t).

From here, we get the following recursion for the covariance matrix

Pt = Eξ̃tξ̃Tt (3.10)
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of the optimal error (of predicting ξt) and so, of Kt:

B[Eη̃tη̃T
t ]BT = E[Bη̃t][Bη̃t]

T

= E[A∗ξ̃t + ζt][Aξ̃t + ζt −Kt(Xt −Cξ̂t)]T

= A∗
tPtA

T +Q,

(3.11)

where recall that Q = EζtζTt , obtainable by (2.1). We used that ζt is uncorrelated

with ξt and, therefore, with ξ̃t too. We also used that Xt−Cξ̂t is in It(X), and ζt is
uncorrelated with εt.

It remains to find an explicit formula for Kt, and thus, also for A∗
t . Recall that

Kt is the matrix of the linear operation ProjIt(X)Bηt, therefore by the projection

principle (see Lemma 2.1):

Kt = [EBηtX̃T
t ][E(X̃tX̃

T
t ]+,

where + denotes the Moore–Penrose generalized inverse (we use regular inverse if the
underlying matrix is invertible).

Now we calculate the matrices in brackets. By the third equation of (3.1), that

extends to X̃t = Cξ̃t + εt and to their predictions, we get that

EX̃tX̃
T
t = E(Cξ̃t + εt)(Cξ̃t + εt)

T = CPtC
T +E,

where E = EεtεTt . E is obtainable by (2.1) in the following way:

EXtX
T
t = C(EξtξTt )CT +E = CFCT +E.

So E is the difference between EXtX
T
t (estimated as Σ̂XX from the training sample)

and CFCT , where F is the inverse of the second diagonal block of D in (2.1).

By the first and third equation of (3.1) and the orthogonality of ξ̂t and ξ̃t we
get that

E(BηtX̃
T
t ) = AE(ξtX̃

T
t ) = AE[(ξ̂t + ξ̃t)(Cξ̃t)

T ] = APtC
T . (3.12)

Therefore,

Kt = APtC
T [CPtC

T +E]+ (3.13)

with the Moore–Penrose inverse.
With this matrix Kt of Equation (3.13) and using Equation (3.11), we are able

to write the error covariance matrix in the form of a symmetric matrix:

B[Eη̃tη̃T
t ]BT = A∗PtA

T +Q = (A−KtC)PtA
T +Q

=
(
A−APtC

T [CPtC
T +E]+C

)
PtA

T +Q

= A
(
I − PtC

T [CPtC
T +E]+C

)
PtA

T +Q

= APtA
T −APtC

T [CPtC
T +E]+CPtA

T +Q,

so

BP ∗
t B

T = APtA
T −APtC

T [CPtC
T +E]+CPtA

T +Q, (3.14)

where P ∗
t = E(η̃tη̃

T
t ) is the covariance matrix of the error when predicting ηt. In the

next stage, we use it to find Pt+1.



Kálmán’s filtering technique in structural equation modeling 187

3.2. Second stage: Yt → ξ̂t+1

For t ≥ 1, letHt−1(Y) = Span (Y0, . . . ,Yt−1) consists of the linear combinations
of all the components of Y0, . . . ,Yt−1 over a common probability space. We denote
the optimal prediction of ηt based on Y0, . . . ,Yt−1 by η̌t.

If Y0, . . . ,Yt−1 are observed, i.e., Ht−1(Y) is known, then the newly observed
(measured) Yt can be orthogonally decomposed as

Yt = ProjHt−1(Y)Yt + Ỹt = Yt + Ỹt, (3.15)

where the orthogonal component Ỹt ∈ It(Y), and It(Y) is the innovation subspace

(actually, the components of Ỹt generate It(Y)). Assume that It(Y) is not the sole 0
vector, otherwise observing Yt does not give any additional information to Ht−1(Y).

Equation (3.15) implies the decomposition of the corresponding subspaces like

Ht(Y) = Ht−1(Y)⊕ It(Y). (3.16)

Assume that we have already found η̌t. We shall give a recursion to find ξ̌t+1 by
using the new value of Yt. In view of Equation (3.16):

Uξ̌t+1 = ProjHt(Y)(Uξt+1) = ProjHt−1(Y)(Uξt+1) + ProjIt(Y)(Uξt+1)

= V ProjHt−1(Y)ηt + ProjHt−1(Y)γt +MtỸt

= V η̌t +MtỸt,

(3.17)

where we utilized that γt ⊥ Ht−1(Y), Lemma 2.1 and the second state equation
of (3.1). Furthermore, we refer to the linearity of the projection, see Lemma 2.2. Since

ProjIt(Y)Uξt+1 is the linear combination of the coordinates of the vector Ỹt ∈ It(Y),

its effect can be written as a matrix Mt multiplied with Ỹt. This n× p matrix Mt is
another gain matrix.

To specify the matrix Mt, we have to write Ỹt in terms of η̌t and Yt. For this
purpose, let us project both sides of the second observation equation of (3.1), i.e., of
Yt = Gηt + δt, onto Ht−1(Y). We get that

Yt = Gη̌t.

Taking the orthogonal decomposition (3.15) of Yt into consideration yields that

Ỹt = Yt −Yt = Yt −Gη̌t. (3.18)

We substitute this into the last line of Equation (3.17) and obtain that

Uξ̌t+1 = V η̌t +MtỸt = (V −MtG)η̌t +MtYt.

With the notation

V ∗
t = V −MtG (3.19)

for the updated transition matrix, we get the new linear dynamics:

Uξ̌t+1 = V ∗
t η̌t +MtYt. (3.20)

We also have the alternative expression

Uξ̌t+1 = V η̌t +MtỸt = V η̌t +Mt(Yt −Gη̌t). (3.21)
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The estimation error is also governed by the linear dynamical system. This error
term has two alternative forms. Using (3.20), the one is

Uξ̆t+1 = Uξt+1 −Uξ̌t+1 = V ηt + γt − V ∗
t η̌t −MtGηt −Mtδt

= V ∗
t (ηt − η̌t) + γt −Mtδt = V ∗

t η̆t + γt −Mtδt.

Then, using (3.21), the other is

Uξ̆t+1 = V ηt + γt − V η̌t −Mt(Yt −Gη̌t) = V η̆t + γt −Mt(Yt −Mtη̌t).

From here, we get the following recursion for the covariance matrix

P ∗
t = Eη̆tη̆T

t (3.22)

of the optimal error (of predicting ηt) and so, of Mt:

U [Eξ̆t+1ξ̆
T
t+1]UT = E[Uξ̆t+1][Uξ̆t+1]T

= E[V ∗η̆t + γt −Mtδt][V η̆t + γt −Mt(Yt −Gη̌t)]T

= V ∗
t P

∗
t V

T +R,

(3.23)

where recall thatR = EγtγT
t , obtainable by (3.2), and we used that γt is uncorrelated

with ηt and, therefore, with η̆t too; further, V ∗
t = V −MtG. We also used that

Yt −Gη̌t is in It(Y), and that γt is uncorrelated with δt.

Now an explicit formula is found for Mt, and thus, also for V ∗
t . Recall that

Mt is the matrix of the linear operation ProjIt(Y)Uξt+1, therefore by the projection

principle (see Lemma 2.1):

Mt = [E(Uξt+1Ỹ
T
t )][E(ỸtỸ

T
t ]+,

where + denotes the Moore–Penrose generalized inverse (we use regular inverse if the
underlying matrix is invertible). We calculate the matrices in brackets. By the last

equation of (3.1), that extends to Ỹt = Gη̃t +δt and to their predictions, we get that

E(ỸtỸ
T
t ) = E[(Gη̆t + δt)(Gη̆t + δt)

T = GP ∗
t G

T + ∆,

where ∆ = EδtδTt . ∆ is obtainable by (3.2) in the following way:

EYtY
T
t = G(EηtηT

t )GT + ∆ = GF ∗GT + ∆.

So ∆ is the difference between EYtY
T
t (estimated as Σ̂YY from the training sample)

and GF ∗GT , where F ∗ is the inverse of the second diagonal block of D∗ in (3.2).

By the second and fourth equation of (3.1) and the orthogonality of η̌t and η̆t
we get that

E(Uξt+1Ỹ
T
t ) = V E(ηtỸ

T
t ) = V E[(η̌t + η̆t)(Gη̆t)

T ] = V P ∗
t G

T . (3.24)

Therefore,

Mt = V P ∗
t G

T [GP ∗
t G

T + ∆]+ (3.25)

with the Moore–Penrose inverse.
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With this matrix Mt of Equation (3.25) and using Equation (3.23), we are able
to write the error covariance matrix in the form of a symmetric matrix:

U [Eξ̆t+1ξ̆
T
t+1]UT = V ∗

t P
∗
t V

T + ∆ = (V −MtG)P ∗
t V

T +R

= (V − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R

= V (I − P ∗
t G

T )[GP ∗
t G

T + ∆]+GP ∗
t V

T +R

= V P ∗
t V

T − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R,

so

UPt+1U
T = V P ∗

t V
T − V P ∗

t G
T [GP ∗

t G
T + ∆]+GP ∗

t V
T +R, (3.26)

where we assumed that the error covariance matrix of ξ̃t and ξ̆t, akin to that of η̃t
and η̆t is the same. This fact gives rise to a recursion by connecting (3.14) and (3.26).

Finally, with (3.9) and (3.21) we are able to recursively estimate the latent state
variables. During the P1 → P ∗

1 → P2 → P ∗
2 . . . recursion, from Pt, we find Kt

by (3.13) and η̂t by (3.9). Then, from P ∗
t , we find Mt by (3.25) and ξ̌t+1 by (3.21).

As for the relation between ξ̂t and ξ̌t, akin to that between η̂t and η̌t, we can
estimate their cross-covariance matrices from the training sample, and then, linearly

predict η̌t with η̂t and linearly predict ξ̌t with ξ̂t by Lemma 2.1 as follows:

η̌t = Σ̂ηYΣ̂+
YYΣ̂YXΣ̂+

XXΣXη[Eη̂tη̂T
t ]+η̂t

and

ξ̂t+1 = Σ̂ξXΣ̂+
XXΣ̂XYΣ̂+

YYΣ̂Yξ[Eξ̌t+1ξ̌
T
t+1]+ξ̌t+1.

Here, from Equation (3.11), we conclude that

Eη̂tη̂T
t = Σ̂ηη −B−1[(A−KtC)PtA

T +Q](B−1)T .

Likewise, from Equation (3.23), we conclude that

Eξ̌tξ̌Tt = Σ̂ξξ −U−1[(V −MtG)P ∗
t V

T
t +R](U−1)T .

3.3. The main result

We assume that the system was at rest until time 0. The parameter matrices are
estimated from the past, whereas newer and newer estimates for the latent variables
are given, as observations arrive at time t (t = 1, 2, . . . up to the end of the exper-
imental time T ). Thus, we can summarize the results in the subsequent theorem. It
is important that in the derivation of the formulas we used the best linear prediction
theory of Hilbert spaces.

Theorem 3.1. In the linear dynamical system (3.1), the optimal estimate η̂t of ηt and
ξ̌t+1 of ξt+1 given X1, . . . ,Xt and Y1, . . . ,Yt is generated by the new linear dynamical
system

Bη̂t = A∗
t ξ̂t +KtXt

and

Uξ̌t+1 = V ∗
t η̌t +MtYt.

The expected quadratic losses are trP ∗
t and trPt+1, where P ∗

t and Pt+1 are the prop-
agated covariance matrices of the estimation errors. The minimizing matrices and the
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one-step ahead predictions η̂t and ξ̂t+1 together with the error covariance matrices P ∗
t

and Pt+1 are uniquely determined by the initial conditions

ξ̂1 = ProjX0
ξ1, ξ̃1 = ξ1 − ξ̂1, P1 = Eξ̃1ξ̃T1

and the recursions for t = 1, 2, . . . as follows.

Kt = APtC
T [CPtC

T +E]+

η̂t = B−1[Aξ̂t +Kt(Xt −Cξ̂t)]

Ŷt = Gη̂t

η̌t = Σ̂ηXΣ̂+
XXΣ̂XYΣ̂+

YYΣ̂Yη

[
Σ̂ηη −B−1((A−KtC)PtA

T +Q)(B−1)T
]+
η̂t

P ∗
t = B−1[APtA

T −APtC
T [CPtC

T +E]+CPtA
T +Q]B−1T

Mt = V P ∗
t G

T [GP ∗
t G

T + ∆]+

ξ̌t+1 = U−1[V η̌t +Mt(Yt −Gη̌t)]

ξ̂t+1 = Σ̂ξYΣ̂+
YYΣ̂YXΣ̂+

XXΣ̂Xξ

[
Σ̂ξξ −U−1((V −MtG)P ∗

t V
T +R)(U−1)T

]+
ξ̌t+1

X̂t+1 = Cξ̂t+1

Pt+1 = U−1[V P ∗
t V

T − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R]U−1T ,

where + denotes the Moore–Penrose generalized inverse (usual inverse if the matrix
is invertible).

Note that ξ̂1 = ProjX0
ξ1 = Σ̂ξXΣ̂+

XXX0, by Lemma 2.1, where the last training
sample entry can be chosen for X0. To initialize P1, the whole training sample can be

used: if the L learning sample entries are indexed by `, then ξ̂` = Σ̂ξXΣ̂+
XXX` and

ξ̃` = ξ`−ξ̂`, where ξ` is the `th case estimate of ξ, based on the forthcoming PLS algo-

rithm in Section 4. Finally, the product moment estimate of P1 is 1
L

∑L
`=1 ξ̃`ξ̃

T
` if the

variables have zero expectation (otherwise, the sample means should be subtracted).
Note that the matrices U,V are also estimated from the learning sample with

the shifted product moments, as discussed in the next section.

4. Application

Using data from three Egyptian villages, we applied our proposed algorithm to
examine and predict to what extent parental views affect their daughters’ thinking
on two empowerment issues. Figure 1 visualizes the hypothesized outer and inner
relations. The inner model examines the cause-effect structure between the latent
variables (LVs): parental views on girls’ participation in decision making and girls’
mobility (exogenous: P-DM=ξ1 and P-Mob=ξ2) and the daughters’ views on the
same issues (endogenous: G-DM=η1 and G-Mob=η2), respectively. The outer model
links LVs and observed variables (OVs) together. Mode A is used to construct all
LVs in the model. To clarify, ξ1 is composed of four independent xs (OVs) that
measure parental views on girl’s responsibility in making decisions related to marriage,
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choosing a husband, entering and continuing schooling. ξ2 is linked to three xs that
ask parents whether girls can go alone to places such as market, field, and friends’
home. In the same manner, η1 and η2 are connected to the same number of OVs, but
the dependent ys that reflect the daughters’ views on the same indicators. Note, all
the OVs are on the same ordinal scale.

x7

x6

x5

P-Mob

ξ2

P-DM

ξ1

x4

x3

x2

x1

G-Mob

η2

G-DM

η1

y6

y7

y5

y3

y4

y2

y1

Figure 1. Schematic re-
presentation of the SEM
that considers the effect
of parental views on girls’
views related to empower-
ment issues.

A total sample of 349 parents and their daughters are considered. Prior to the
analysis, the data were standardized to have zero mean and unit variance. Then,
it was divided randomly into a training sample of size 279 and a test sample of
the remaining cases. We apply our proposed estimation algorithm on the training
sample to obtain the specified parameter matrices (A,B,C,G, Q, F , U ,V ,R, and
F ∗). These matrices are used in the derivation of the proposed prediction recursion
algorithm. Specifically, the filtering technique in Theorem 3.1 predicts the future
values for the test sample observations that come sequentially.

Recall that our integrated estimation algorithm to obtain the model specified
matrices combines the first stage of Wold’s PLS technique and the block Cholesky
decomposition of Kiiveri et al. The detailed explanation follows:

1. The first stage uses stage I of Wold’s PLS algorithm, in which the outer relations
and the LV case values are obtained from the training sample. It is an iterative
process that consists of the following steps:

i. Initialize the LV scores for each case as the weighted sum of the observed
indicators in the block that correspond to each LV:

H = NZ,

where H is the exogenous and endogenous LV scores matrix, N is the
training sample data matrix of size 279×14, and Z is the 14×4 adjacency
matrix of the measurement model. The entries zkj are ones, if the indicator
nkj belongs to the block that defines the corresponding LV; and zeros,
otherwise. After each step, the LV scores are standardized.

ii. Update the obtained matrix H with the inner weights

H̃ = HW ,

where W is the LV inner weights matrix which is computed for each LV to
indicate how strong it is connected to the other LVs in the model. There
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are three schemes to obtain these weights, for more details, see [7] and [8].
We used the centroid scheme.

iii. Use the obtained LV scores H̃ to estimate the outer relations (load-
ings/weights). There are two modes of constructing the measurement
model:
• Mode A (reflective), where the arrows point outward from the LV to

the OVs, as in our case, see Figure 1. The outer scores are called load-
ings (λkj) and estimated by OLS simple linear regression between each
observed indicator of the measurement block and the corresponding
LV score h̃j .
• Mode B (formative), where the arrows point inward from the observed

variables to the corresponding LVs. The outer estimated scores called
weights (wkj) and are calculated by OLS multiple linear regression in

which each LV score h̃j is regressed on all the observed indicators of
the corresponding block.

All the outer estimates λkjs and wkjs are collected in the updated weight

matrix Ŵ .
iv. Using the obtained weight matrix Ŵ to update the LV scores

H = NŴ ,

where H contains the LV scores of the last iteration process.
This stage iterates sequentially from Step i. to Step iv. until convergence. At the
convergence, the final LV case values H are obtained as well as the estimated
outer matrices C and G

C =



ξ1 ξ2

x1 .6759 0
x2 .7477 0
x3 .7739 0
x4 .7093 0
x5 0 .5326
x6 0 .8217
x7 0 .7356


, G =



η1 η2

y1 .6881 0
y2 .7408 0
y3 .7574 0
y4 .7287 0
y5 0 .4929
y6 0 .8132
y7 0 .7206


.

The matrices C and G contain the loadings that link the latent vectors ξ and
η with X and Y, respectively.

2. The second stage runs the block Cholesky decomposition of Kiiveri et al. two
times on the obtained LV case values. The first decomposition is applied on the
inverse of the product moment of the covariance matrix of the LV final scores Σ−1

H

that is obtained at the convergence of the Wold algorithm, see Equation (2.1).
The resulting block matrix L gives the estimated path coefficient matrices of the
inner relations,

B =

( η1 η2

η1 1 .107
η2 0 1

)
, A =

( ξ1 ξ2

η1 .337 .156
η2 −.068 .577

)
;
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whereas, the block matrix D yields the error covariance matrices

Q = cov(ζ) =

(
.869 0

0 .663

)
, F = cov(ξ) =

(
1 −.024

−.024 1

)
.

The second decomposition is performed on the inverse of the product mo-
ments of the shifted LV score pairs Σ−1

Hs,s+1
, see Equation (3.2). The resulting

block matrix L∗ contains

U =

( ξ1 ξ2

ξ1 1 .014
ξ2 0 1

)
, V =

( η1 η2

ξ1 .037 −.074
ξ2 .051 .145

)
;

while, the matrix D∗ gives the error covariance matrices

R = cov(γ) =

(
.992 0

0 .984

)
, F ∗ = cov(η) =

(
1 −.041

−.041 1

)
.

At this point, the specified parameter matrices are obtained from the training
sample. The estimated matrices C and G show the loadings of each OV on the
corresponding LV. The matrix B displays the extent to which girls’ views on mobility
affect her views on participating in making decisions; while A shows how parental
views on girls’ mobility and decision making influence their daughters’ opinions on
these issues. There is a direct effect of parental views on their daughters’ opinions in
the same domain, i.e., parents who reported a conservative view on girls’ participation
in making decisions tend to lead their daughters to think alike. The same scenario
is true for mobility, where daughters tend to reproduce their parents’ views. On the
contrary, the effect is small when we consider parental opinions of one domain on
their daughters’ views of the other domain.

As new cases come one by one at a time sequence (t = 1, 2, . . . T ), instead of
re-running the estimation algorithm, we give a recursion to predict the LV case values
for the new observation. To do so, the estimated parameter matrices based on the
training sample and the Kálmán filtering technique will be used. Theorem 3.1 discusses
the recursion from which the optimal prediction of the latent case values is obtained
along with the covariance matrix of the prediction error. Specifically, the prediction

of η̂t utilizes the estimated ξ̂t and the new observation Xt, while the new Yt and the

obtained η̂t are necessary to find ξ̂t+1. To start the recursion, the first propagated
matrix P1 ought to be initialized from the training sample. Then, the Kálmán gain
matrices Kt and Mt are obtained. The succession of calculations follows the order:

Pt →Kt → η̂t → η̌t → P ∗
t →Mt → ξ̌t+1 → ξ̂t+1 → X̂t+1 → Pt+1.

For t = 1, we show the results of the highlighted matrices of the recursion as
they are derived in Section 3.1 and Section 3.2.
First stage: X1 → η̂1

P1 =

( ξ1 ξ2

.007 .005

.005 .003

)
,
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K1 =

( x1 x2 x3 x4 x5 x6 x7

−.018 −.036 −.036 −.022 .022 .064 .051
−.013 −.025 −.025 −.015 .015 .045 .036

)
,

η̂1 =
( η1 η2

.601 −.377
)
, P ∗

1 =

( η1 η2

.878 −.070
−.070 .664

)
.

where η̂1 show the predicted case values based on the information X1 of the new
observation; and P ∗

1 is the covariance matrix of the prediction error of η̂1.

Second stage: Y1 → ξ̂2

M1 =

( y1 y2 y3 y4 y5 y6 y7

.005 .016 .019 .009 −.022 −.042 −.034

.032 .011 .007 .018 .041 .086 .064

)
,

ξ̂2 =
( ξ1 ξ2

−.595 −1.460
)
, P2 =

( ξ1 ξ2

.993 −.014
−.014 .985

)
.

where ξ̂2 presents the estimated case values for the exogenous LVs at t = 2 based

on the new information Y1. Then the covariance matrix of the prediction error ξ̂2 is
obtained. From this we can calculate the propagation matrix P2 to start the recursion
once again at t = 2 for the next new observation.

The root mean square error (RMSE) statistic measures the prediction errors.
For the test sample of size 70 observations, we compared the predicted LV case values
that are obtained from the Wold algorithm and the filtering technique, simultaneously.
Table 1 shows the values of RSME. It indicates that the prediction capability of the
filtering technique and that of the Wold algorithm are quite homogeneous. Moreover,
the difference (in Frobenius norm) between the error covariance and gain matrices in
the tth and (t+ 1)th consecutive steps of the recursion are displayed in Table 2. This
shows that these matrices are stabilized after the first few steps.

Table 1. RMSE for the predictions of the test sample.

Test Obs. at Wold Prediction (W) Filtering Prediction (F)

Sequence “t” ξ̂1t ξ̂2t η̂1t η̂2t ξ̂1t ξ̂2t η̂1t η̂2t
1 -.44005 -.28108 -.25305 -.46325 -.33149 -.52816 -.32865 -.14788
2 .68377 .28108 .84937 -.46325 .89402 .30331 .44740 -.34648
3 .68377 .28108 .84937 -.46325 .35488 .18442 .46531 -.36156
4 .59157 1.50271 .18313 1.18603 .59467 2.43277 .73569 2.05939
...

...
...

...
...

...
...

...
...

70 -.53202 -.28108 -.69213 -.46325 -.47413 -.54895 -.59782 -.31266

RMSE:
√

1
T

∑T
t=1(W (LVt)− F (LVt))2 .3075 .4033 .3117 .3229
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Table 2. Consecutive norm for gain and propagation of predictions.

Sequence Frobenius Norm ||.||F
“t” Pt+1 − Pt Kt+1 −Kt P ∗

t+1 − P ∗
t Mt+1 −Mt

1 - - - -
2 1.391595 .5148828 .008475387 8.145129e-5
3 7.044589e-7 7.491063e-9 1.094965e-10 1.138605e-12
4 9.341999e-15 1.487013e-16 4.388542e-17 1.357636e-17
5 1.734723e-18 0 0 0
6 0 0 0 0
...

...
...

...
...

70 0 0 0 0

In sum, the numerical results show a good performance of our proposed algo-
rithm. Once the specified matrices are obtained from the training sample, the Kálmán
filtering technique yields an optimal prediction for the LV case values along with the
error covariance matrices for the test sample.

5. Discussion and Conclusion

It should be emphasized that the PLS method of Wold is applicable to a given
sample, where estimates for the endogeneus variables are given through the exogenous
latent ones, and the case values of the LVs are also estimated. The algorithm uses
a lot of OLS regressions and so, the estimation of the coefficient matrices is time
demanding akin to the block Cholesky decomposition we use. This is the case when we
have a long time series with small time intervals or data when the observations come
frequently in subsequent order. Our point is that for the new observations, we need
not to repeat the whole estimation procedure to obtain the model parameters, but
instead we can update the latent variable scores with the help of the new observable
data, the estimated matrices, and the Kálmán filtering technique.

In this way, an artificial intelligence is developed. The parameter matrices are
estimated from a training sample at the beginning, and the latent variable scores are
estimated as observable variables arrive one by one from the test sample. Moreover,
there is no need for any distribution assumptions and the data are not necessarily
independent. It should be noted that in the possession of a stationary time series, the
matrix sequences Kt and Mt (as t→∞) tend to fixed points of an iteration finding
the solution of a matrix Riccati equation (see [4]), but this is the topic of a further
research.
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