Permanent solutions for some motions of UCM fluids with power-law dependence of viscosity on the pressure
DOI:
https://doi.org/10.24193/subbmath.2021.1.16Keywords:
Permanent solutions, UCM fluids, Pressure-dependent viscosity.Abstract
Steady motion of two types of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure is analytically studied between infinite horizontal parallel plates when the gravity effects are taken into consideration. Simple and exact expressions are established for the permanent components of starting solutions corresponding to two oscillatory motions induced by the lower plate that oscillates in its plane. Such solutions are very important for the experimentalists who want to eliminate the transients from their experiments. The similar solutions for the simple Couette flow of the same fluids, as well as the permanent solutions corresponding to ordinary incompressible Maxwell fluids performing the same motions, are obtained as limiting cases of general solutions. The convergence of starting solutions to their permanent components as well as the influence of physical parameters on the fluid motion is graphically underlined and discussed.Downloads
Published
2021-03-19
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.