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Abstract. Real continuous submodular functions, as a generalization of the corre-
sponding discrete notion to the continuous domain, gained considerable attention
recently. The analog notion for entropy functions requires additional properties:
a real function defined on the non-negative orthant of Rn is entropy-like (EL)
if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing
Returns property. Motivated by problems concerning the Shannon complexity of
multipartite secret sharing, a special case of the following general optimization
problem is considered: find the minimal cost of those EL functions which satisfy
certain constraints. In our special case the cost of an EL function is the maximal
value of the n partial derivatives at zero. Another possibility could be the supre-
mum of the function range. The constraints are specified by a smooth bounded
surface S cutting off a downward closed subset. An EL function is feasible if at
the internal points of S the left and right partial derivatives of the function differ
by at least one. A general lower bound for the minimal cost is given in terms of
the normals of the surface S. The bound is tight when S is linear. In the two-
dimensional case the same bound is tight for convex or concave S. It is shown
that the optimal EL function is not necessarily unique. The paper concludes with
several open problems.
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1. Introduction

Continuous submodularity is a generalization of the discrete notion of submod-
ularity to the continuous domain. It has gained considerable attention recently [2, 4]
as efficient convex optimization methods can be extended to find the minimal and
maximal value of special multivariable continuous submodular functions over a com-
pact and convex domain. Such optimization algorithms have important applications
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in many areas of computer science and applied mathematics such as training deep
neural networks [5], design of online experiments [6], or budget allocation [12]. For
more information see [1].

Interestingly, the same class of continuous submodular functions arises when the
continuous version of multipartite secret sharing schemes is considered. In classical
secret sharing [3] each participant receives a piece of information – their shares –
such that a qualified subset of participants can recover the secret from the shares
they received, while unqualified subsets – based on their shares only – should have no
information on the secret’s value at all. In the multipartite case [8, 9] participants are
in n disjoint groups, and members in the same group have equal roles. In particular,
a qualified subset is described uniquely by the n numbers telling how many members
this subset has from each group. The main question in secret sharing is the efficiency
– also called complexity – of the scheme, which is typically defined as the worst-case
ratio of the size of any of the shares (measured by their Shannon entropy) and the
size of the secret. Keeping track of the total entropy of different subsets of shares, tra-
ditional entropy inequalities imply a lower bound on the complexity [9, 10] known as
the Shannon-bound. No general method is known which would effectively determine,
or even estimate, the Shannon bound for an arbitrary collection of qualified subsets,
and numerical computation is intractable even for moderately sized problems. Inves-
tigating the same question in the continuous domain allows applying analytical tools,
and results achieved this way might shed light on the discrete case. This paper, based
partly on the last section of [7], is an attempt to initiate such a line of research.

No notion from secret sharing or from information theory will be used later
as they only serve as motivation for the definitions. The family of real functions
corresponding to the (normalized) multipartite entropy will be called entropy-like
functions and abbreviated as EL. This function family is defined in Section 2; actually
it is the family of pointed, increasing, submodular functions with the “Diminishing
Returns” property, see [4].

The optimization problem corresponding to finding an optimal multipartite se-
cret sharing scheme is discussed in Section 3. It differs from the well-studied optimiza-
tion problem for submodular functions [2, 4], where some member of the continuous
submodular function family is given, and the task is to find its maximal (minimal)
value over a compact, convex set. In our case the optimization problem asks to find
an EL function with the smallest cost satisfying certain constraints. Two cost func-
tions are considered. The first one corresponds to the discrete worst case complexity
discussed above, and it is the maximal partial derivative of the EL function at the
origin. The second possibility is the supremum of the function range; it corresponds
to another frequently investigated complexity measure in the discrete case: the total
randomness used by the scheme. In Section 3 a general lower bound for the worst
case complexity is given as Theorem 3.4. This bound is tight when the constraints
are specified by some linear surface.

Section 4 presents results for the bipartite, two-dimensional case. General con-
structions show that the lower bound of Theorem 3.4 is also tight for strictly convex or
strictly concave constraint curves. An alternate construction shows that the optimal
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EL function is not necessarily unique. Finally, Section 5 concludes the paper with a
list of open problems.

2. Submodular and entropy-like functions

A real function f defined on subsets of a set is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for arbitrary subsets A andB, see [2] and references therein. The same notion extended
to an arbitrary lattice requires

f(A) + f(B) ≥ f(A ∧B) + f(A ∨B)

for any two lattice members A and B. In particular, the n-variable real function f is
submodular if it is submodular in the lattice determined by the partial order on Rn

defined by x ≤ y if and only if xi ≤ yi for all coordinates 1 ≤ i ≤ n. In this case
x∧ y = min(x, y) and x∨ y = max(x, y) where minimization (maximization) is taken
coordinatewise, and the submodularity condition rewrites to

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y)).

Entropy-like real functions, also called EL functions, share additional properties with
discrete Shannon entropy functions [13], and are defined as follows.

Defnition 2.1. The n-variable real function f is entropy-like, or EL function for short,
if it satisfies properties (a) – (e) below.

(a) f is defined on the non-negative orthant Rn
>0 = {x ∈ Rn : x ≥ 0}.

(b) f is submodular.
(c) f(0) = 0 (f is pointed).
(d) f is non-decreasing: if 0 ≤ x ≤ y then f(x) ≤ f(y).
(e) f has the “Diminishing Returns” property [4]. It means that for two points

0 ≤ x ≤ y differing only in their i-th coordinate, increasing that coordinate at x
and also at y by the same amount ε, the gain at y is never bigger than the gain
at x. Formally, if ei is the i-th unit vector and y = x+ λei for some λ > 0, then
for every ε > 0,

f(x+ εei)− f(x) ≥ f(y + εei)− f(y). (2.1)

The “Diminishing Returns” property models the natural expectation that adding
one more unit of some resource contributes more in the case when one has less available
amount of that resource.

The left and right partial derivatives of the n-variable function f at x ∈ Rn are
denoted by f−i (x) and f+i (x), respectively, and their definition goes as

f−i (x) = lim
ε→+0

f(x)− f(x− εei)
ε

and
f+i (x) = lim

ε→+0

f(x+ εei)− f(x)

ε

assuming that the corresponding limits exist. Here ei is the i-th unit vector.
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The following claim summarizes some basic properties of EL functions.

Claim 2.2. Let f be an n-variable EL function.

(a) f is continuous.
(b) f is concave along any positive direction: if 0 ≤ x ≤ y and 0 ≤ λ ≤ 1 then

λf(x) + (1− λ)f(y) ≤ f(λx) + (1− λ)y).

(c) The Diminishing Returns property (2.1) holds for arbitrary pair of points
0 ≤ x ≤ y.

(d) f has both left and right partial derivatives at every point of its domain.
(e) The partial derivatives are non-negative and non-increasing along any positive

direction.

Proof. (a) It is enough to show that f is continuous along every coordinate. By
property (d) it is monotone increasing. The left limit limε→+0 f(x − εei) cannot be
strictly smaller than the right limit limε→+0 f(x + εei) as this would contradict the
Diminishing Returns property.

(b) Continuity and the Diminishing Returns property ensures that f is concave
along each coordinate. It means that statement (b) is true when points x and y
share n − 1 coordinates. Suppose we have two points sharing i coordinates, and the
claim has been established for point pairs sharing i+ 1 or more coordinates. Denote
these points by (c, x, a) and (d, y, a) where a stands for the joint i coordinates, x and
y are real numbers, and c and d are the remaining tuples. The linear combination
λ(c, x, a) + (1−λ)(d, y, a) is shortened to (c |◦ d, x |◦ y, a). Using (c, x, a) ≤ (d, y, a) and
the induction hypothesis for n− 1 (first line) and for i+ 1 (next two lines) we have

λf(c |◦ d, x, a) + (1− λ)f(c |◦ d, y, a) ≤ f(c |◦ d, x |◦ y, a),

λf(c, x, a) + (1− λ)f(d, x, a) ≤ f(c |◦ d, x, a),

λf(c, y, a) + (1− λ)f(d, y, a) ≤ f(c |◦ d, y, a).

From here the required inequality

λf(c, x, a) + (1− λ)f(d, y, a) ≤ f(c |◦ d, x |◦ y, a)

follows as the submodularity for the points (c, y, a) and (d, x, a) gives

f(c, y, a) + f(d, x, a) ≥ f(c, x, a) + f(d, y, a).

(c) Similarly to (b) by induction on how many coordinates x and y have in
common. Observe that if x and y do not differ at their i-th coordinate then (2.1) is
equivalent to submodularity.

(d) This is immediate as f is continuous and non-decreasing.
(e) Non-negativity is clear. Monotonicity: if x ≤ y then, for example,

f+i (x) = lim
ε→+0

f(x+ εei)− f(x)

ε

≥ lim
ε→+0

f(y + εei)− f(y)

ε
= f+i (y),

where the inequality follows from (c). Other cases are similar. �
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The next lemma follows easily from the fact that along each coordinate f is
increasing and concave, and is given without proof.

Lemma 2.3. If ε→ +0, then f+i (x+ εei)→ f+i (x), and f+i (x− εei)→ f−i (x). �

Remark 2.4. The family of EL functions is closed for non-negative linear combination
and truncation: if f1, f2 are EL, then so is λ1f1 + λ2f2 for λ1, λ2 ≥ 0; if f is EL and
M ≥ 0 then min(f,M) is EL. Consequently

f(x) = min
(∑

cixi,M
)

is EL for positive ci and M . Similarly, if f is EL and a ≥ 0, then g(x) = f(min(x, a))
is EL again. Further examples of EL functions will be given in Section 4.

Remark 2.5. If the sequence fk of EL functions converge pointwise, then the limit f
is also an EL function, moreover

f+i (x) ≤ lim inf
k

(fk)+i (x) ≤ lim sup
k

(fk)−i (x) ≤ f−i (x).

3. The optimization problem

According to the intuition discussed in Section 1 the value of n-variable EL
function f at x ∈ Rn

>0 can be considered as the value of the (scaled) entropy of the
set of shares assigned to a subset of participants which has members from the i-th
group proportional to the i-th coordinate of x. The right derivative f+i (x) can be
interpreted as the (scaled) entropy increase if one more member from the i-th group
joins this subset, and f−i (x) as the entropy decrease when one member from the i-th
group leaves the subset (defined only if xi > 0). Consequently the share size of a single
participant from group i can be identified to f+i (0), the i-th right partial derivative
of f at zero. Accordingly, the cost function corresponding to the maximal share size
is

Cost(f) = max{f+1 (0), f+2 (0), . . . , f+n (0) }.
While this cost function will be considered in this paper, there are other possibilities.
In the discrete cases the total entropy (the amount of randomness needed to generate
the whole scheme) is used frequently, this would correspond to the cost function
sup{f(x) : x ∈ Dom(f)}.

In secret sharing the shares of a qualified subset determine the secret, while
the same secret is (statistically) independent of the shares of an unqualified subset.
We call the point x ∈ Rn

>0 qualified if the corresponding subset is qualified. When
decreasing an unqualified subset it remains unqualified, thus the set of unqualified
points are downward closed: if x is unqualified and 0 ≤ y ≤ x then y is unqualified
as well. Suppose the unqualified and qualified points are separated by the smooth
(n − 1)-dimensional surface S. Downward closedness means that the normal vectors
of S pointing outwards (towards qualified points) have non-negative coordinates. This
surface S specifies the secret sharing problem, namely which subsets of the partici-
pants are qualified and which are not, and thus the optimization problem as well. The
definition below requires slightly stronger properties from such a separating surface
excluding certain problematic cases.
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Defnition 3.1. An s-surface (secret sharing surface) is a smooth (n− 1)-dimensional
surface S in the non-negative orthant Rn

>0 satisfying the following properties:

(a) S avoids 0,
(b) S is compact, and
(c) for every x ∈ S the normal vector ∇S(x) pointing outwards has strictly positive

coordinates.

Consider the subset of participants which corresponds to the point x ∈ S of the
s-surface S. If any member from the i-th group leaves this subset, then the subset
becomes unqualified – and then the secret must be independent of the joint collection
of the associated shares. If any new member from the i-th group joins that subset, it
becomes qualified – meaning that the new share collection determines the secret. Thus
the difference between the before and after entropy changes, namely f−i (x)− f+i (x),
must cover the entropy of the secret. The entropy of the secret can be taken to be 1 as
this changes all values up to a scaling factor only. The following definition summarizes
this discussion.

Defnition 3.2. The EL function f is feasible for S, or S-feasible, if for every positive
x ∈ S (that is, xi > 0 for all 1 ≤ i ≤ n),

f−i (x)− f+i (x) ≥ 1 (1 ≤ i ≤ n). (3.1)

(Positivity of x is ensures the existence of f−i (x).)

Optimization problems considered in this paper are of this form: given the s-
surface S, find the minimal cost of the S-feasible functions.

Defnition 3.3. For a given s-surface S ⊆ Rn
>0 OPT(S) is the optimization problem{

minimize: Cost(f)

subject to: f is an S-feasible EL function.

By an abuse of notation, both the problem and its solution – the infimum of the costs
of S-feasible functions – will be denoted by OPT(S).

As an example let us consider the case when S is the intersection of the hyper-
plane

c1x1 + c2x2 + · · ·+ cnxn = M

and the non-negative orthant, here ci and M are positive constants. Observe that the
normal at every x ∈ S is ∇S(x) = (c1, . . . , cn). Feasible EL functions will be searched
among the one-parameter family

f(y) = k ·min
{∑

ciyi,M
}

with positive k. All of them are EL functions by Remark 2.4. Pick the positive point
x ∈ S and consider f(x+ εei) as a function of ε. It has the constant value k ·M for
ε ≥ 0, and it is linear with slope k · ci for ε ≤ 0. Consequently

f−i (x)− f+i = k · ci,



An optimization problem for continuous submodular functions 217

which is ≥ 1 if k ≥ 1/min{ci}. At zero the partial derivatives of f are k · ci, therefore
Cost(f) = k · max{ci}. The k = 1/min{ci} choice gives an S-feasible EL function
with cost max{ci}/min{ci}, thus

OPT(S) ≤ max{ci}
min{ci}

.

According to Theorem 3.4 below the optimal value is actually equal to this amount,
as in this case ∇Si(x) = ci for every x ∈ S.

Theorem 3.4. For every s-surface S, inner point x ∈ S and 1 ≤ i, j ≤ n the following
inequality holds:

OPT(S) ≥ ∇Sj(x)

∇Si(x)
.

Proof. By assumption S behaves linearly on a small neighborhood of x, thus for every
small enough positive w there is a unique positive h such that y = x−wei +hej ∈ S,
and

lim
w→+0

h

w
=
∇Sj(x)

∇Si(x)
.

Let f be any S-feasible EL function, u = min(x, y) = x − wei and v = max(x, y) =
x + hej . The following inequalities follow from the facts that f is monotone and
concave along each coordinate by Claim 2.2:

w · f+i (u) ≥ f(x)− f(u),

h · f+j (x) ≥ f(v)− f(x),

f(y)− f(u) ≥ h · f−j (y),

f(v)− f(y) ≥ 0.

Their sum proves the first inequality in the sequence

w · f+i (u) ≥ h
(
f−j (y)− f+j (x)

)
≥ h

(
1 + f+j (y)− f+j (x)

)
≥ h

(
1 + f+j (v)− f+j (x)

)
.

The second inequality follows from y ∈ S and that f is an S-feasible function. The
third one uses the monotonicity of the derivatives from Claim 2.2 (e). Letting w → +0,
f+i (u)→ f−i (x) and f+j (v)→ f+j (x) by Lemma 2.3, thus

f−i (x) ≥ ∇Sj(x)

∇Si(x)
.

From here the theorem follows as Cost(f) ≥ f+i (0) ≥ f−i (x) by the monotonicity of
the derivatives. �

Theorem 3.5. Suppose OPT(S) < +∞ for an s-surface S. The optimal value is taken
by some S-feasible function f , that is, Cost(f) = OPT(S).
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Proof. Let OPT(S) < M , and choose the sequence of S-feasible functions fk such
that Cost(fk) < M and limk Cost(fk) = OPT(S). Also pick a point a ∈ Rn

>0 such

that S is contained completely in the box B = {x ∈ Rn
>0 : x ≤ a}. The functions

gk(x) = f(min(x, a)) are EL by Remark 2.4, and Cost(gk) = Cost(fk). Each gk is
clearly S-feasible and is bounded by M ·(a1+· · ·+an). The sequence {gk} is uniformly
equicontinuous as all partial derivatives are bounded by M , thus the Arzelà–Ascoli
theorem [11] guarantees a subsequence which converges uniformly on B – and then
converges everywhere. Denote this subsequence also by {gk}, and let the pointwise
limit be g. By Remark 2.5 g is an EL function and Cost(g) ≤ lim infk Cost(gk) =
OPT(S). Also, each gk is S-feasible, that is, at the points of S the difference between
the left and right derivatives is at least 1:

(gk)−i (x)− (gk)+i (x) ≥ 1, x ∈ S.
By Remark 2.5 the same is true for the limit function g. Thus there is an S-feasible
function g with Cost(g) ≤ OPT(S), which proves the theorem. �

4. Two-dimensional cases

We have seen that the bound provided by Theorem 3.4 is sharp when S is linear.
We show that, at least in the two-dimensional case, it is also sharp when S is strictly
convex or strictly concave by constructing matching S-feasible EL functions.

In two dimensions S is a strictly decreasing continuous curve. Write S as
{(x, α(x)) : 0 ≤ x ≤ a}, and also as {(β(y), y) : 0 ≤ y ≤ b}, see Figure 1.

•Tty

0 tx a

b

α(x)

β(y)

Figure 1. The curve S

If S is either convex or concave, then ∇Si(x)/∇Sj(x) is increasing or decreasing
along the curve, thus attains its maximal value at one of the endpoints.

First assume that S is strictly convex. In this case both α and β are convex
functions. Let T = (tx, ty) be the point on S where the normal is (1, 1). On the
[0, tx] interval the derivative α′(x) is ≤ −1, and, similarly, β′(y) ≤ −1 on [0, ty]. The
function f depicted on Figure 2 is defined as follows.

If both x ≥ tx and y ≥ ty then f(x, y) = C, otherwise

f(x, y) =

 C + min{x− β(y), 0} if x ≥ tx,
C + min{y − α(x), 0} if y ≥ ty,
a− α(x) + b− β(y) otherwise,
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•T

Figure 2. Convex case

where C = a− tx + b− ty. Clearly f has a flat plateau of height C beyond the curve
S. It is a routine to check that f is an EL function; one has to use that −α(x) and
−β(y) are concave functions and have derivative 1 at x = tx and y = ty, respectively.
The left and right partial derivatives of f at (x, y) ∈ S are (1, 0) and (−β′(y), 0) when
x ≥ tx, and (−α′(x), 0) and (1, 0) when y ≥ ty. In all cases the values in the pair
differ by at least one, thus f is a feasible S-function. The partial derivatives of f at
zero are −α′(0) and −β′(0), thus

Cost(f) = max{−α′(0),−β′(0)}
matching the lower bound of Theorem 3.4.

In the case when no point on S has normal (1, 1) the simpler construction using
only the first (or second) line in the definition of the function f works.

A different construction is illustrated on Figure 3 which also meets the lower
bound of Theorem 3.4. It also shows that the optimal EL function, if exists, is not
necessarily unique. Using the same notation as above,

•T

Figure 3. Alternate construction for the convex case

the function f is defined analogously: f(x, y) = C if x ≥ tx and y ≥ ty, otherwise

f(x, y) =

 C + min{y − α(x), 0} if x ≥ tx,
C + min{x− β(y), 0} if y ≥ ty,
x+ y otherwise,

where C = tx+ty. This is again an EL function, its cost is clearly 1. The difference bet-
ween the left and right partial derivatives at points of S are −α′(x) and 1 when x ≥ tx,
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and 1 and −β′(y) when y ≥ ty, thus the difference is at least k = min{−α′(a),−β′(b)}.
Consequently the EL function k−1f(x, y) is feasible for S, and its cost, 1/k, matches
the lower bound in Theorem 3.4.

The third construction, depicted on Figure 4, works for any strictly concave
curve S. In this case the plateau is not flat any more. Using the same notations as
before, the decreasing functions α(x) and β(y) are strictly concave, and T = (tx, ty) is
the curve point with normal (1, 1). The function f(x, y) is defined as f(x, y) = tx + ty

• T

Figure 4. Concave case

if both x ≥ tx and y ≥ ty, otherwise

f(x, y) =

 y + min{x, β(y)} if x ≥ tx,
x+ min{y, α(x)} if y ≥ ty,
x+ y otherwise.

This is an EL function. For example, for a fixed x ≥ tx it is increasing and concave
as y+β(y) is increasing on the [0, ty] interval (β′(y) ≤ −1 here), and is concave since
β is concave. The left and right partial derivatives of f at a point (x, y) of S with
x ≥ tx are 1 and 0, and 1 and 1 + β′(y), respectively. The difference between the
corresponding pairs is at least −β′(y) ≥ −β′(0). Choosing the multiplier k such that
k · (−α′(0)) ≥ 1 and k · (−β′(0)) ≥ 1, the EL function k · f will be S-feasible. The
minimal such k gives a cost k EL function which again matches the lower bound of
Theorem 3.4.

5. Conclusion

A continuous version of the discrete Shannon entropy functions, called entropy-
like, or EL functions, has been defined in Definition 2.1. They form a natural subclass
of multivariate continuous submodular functions which gained considerable attention
recently [2]. Interestingly, the same subclass emerged as a crucial one when investi-
gating possible parallelization of traditional submodular optimization algorithms [4].

Motivated by difficult problems in multipartite secret sharing [8], points in the
non-negative orthant are flagged as either qualified or unqualified, separated by a
secret sharing surface S, see Definition 3.1. An EL function is feasible for such a
surface S if at internal points of S all partial derivatives drop by at least one when
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passing from left to right. The following optimization problem was considered: for a
given s-surface S find the minimal cost of an S-feasible EL function. The first open
problem is to prove that this function set is never empty.

Problem 5.1. Prove that for every s-surface S there exists at least one S-feasible
function.

The cost of an EL function f is the maximum of its partial derivatives at zero, thus
it can be +∞. Definition 3.1 stipulates that for every S-surface there is a positive
constant c such that 1/c < ∇Si(x) < c at each point x ∈ S. The value in Theorem
3.4 bounding the cost of any S-feasible function from below is smaller than c2, thus
it does not exclude the following strengthening of Problem 5.1:

Problem 5.2. Prove that for every s-surface S there is at least one S-feasible function
with finite cost.

The lower bound on the cost of S-feasible EL functions proved in Theorem 3.4
was shown to be tight for linear s-surfaces, and also for two-dimensional convex and
concave s-surfaces.

Problem 5.3. Find an s-surface S for which the bound in Theorem 3.4 is not tight.

As a strenghtening of Problem 5.3 we offer a bold conjecture which might easily turn
out to be false.

Problem 5.4. If S is neither convex nor concave, then the bound of Theorem 3.4 is
not tight.

Constructions in Section 4 settled the problem of finding the optimal values for
two-dimensional convex and concave s-surfaces. It would be interesting to see optimal
solutions for convex and concave surfaces in higher dimensions.

Problem 5.5. Determine the optimal costs of convex and concave s-surfaces in dimen-
sion > 2.

As mentioned in Section 3, the cost function considered in this paper stems from the
worst case complexity of general secret sharing schemes. An alternate cost function
corresponding to the total entropy would be Costt(f) = sup{ f(x) : x ∈ Dom(f) }.
As an EL function can be truncated, the sup here can be limited to the points of S.
The two costs functions are obviously related, but it is not clear how this relationship
can be used to connect the corresponding optimization problems.

Problem 5.6. Prove lower bounds, similar to Theorem 3.4, for the optimization prob-
lem OPTt(S) using the Costt function.

By Theorem 3.5, if there is any S-feasible function at all then there is one with
minimal cost. The proof relied on the fact that finite cost EL functions have bounded
derivatives. For Costt this property does not hold anymore.

Problem 5.7. If there is an S-feasible function, then there is one with

Costt(f) = OPTt(S).
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Finally, extend the quite meager collection of s-surfaces from Section 4 for which the
exact bound is known.

Problem 5.8. Find optimal solutions for additional “interesting” s-surfaces for both
cost functions.
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19-045798, and by the Lendület program of the HAS.
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[9] Farràs, O., Metcalf-Burton, J.R., Padró, C., Vázquez, L., On the optimization of bipartite
secret sharing schemes, Des. Codes Cryptog., 63(2012), no. 2, 255-271.

[10] Metcalf-Burton, J.R., Information rates of minimal non-matroid-related access struc-
tures, CoRR, 2008.

[11] Rudin, W., Principles of Mathematical Analysis, McGraw-Hill Book Co., New York, 3rd
edition, 1976.

[12] Staib, M., Jegelka, S., Robust budget allocation via continuous submodular functions,
In: Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, vol. 70 of Proceedings of Machine Learning Research, 3230-3240.

[13] Yeung, R.W., A First Course in Information Theory, Information Technology: Trans-
mission, Processing and Storage, Springer US, 2012.

Laszlo Csirmaz
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