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Growth properties of solutions of linear difference
equations with coefficients having ϕ-order

Nityagopal Biswas and Pulak Sahoo

Abstract. In this paper, we investigate the relations between the growth of entire
coefficients and that of solutions of complex homogeneous and non-homogeneous
linear difference equations with entire coefficients of ϕ-order by using a slow
growth scale, the ϕ-order, where ϕ is a non-decreasing unbounded function. We
extend some precedent results due to Zheng and Tu (2011) [15] and others.
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1. Introduction and preliminaries

We assume that the readers are familiar with the fundamental results and stan-
dard notations of the Nevanlinna’s value distribution theory of entire and meromor-
phic functions. In addition, let us recall some notations such as m (r, f) and N (r, f)
(see [8, 10]). Let n (r, f) be the number of poles of a function f (counting multiplici-
ties) in |z| ≤ r. Then we define the integrated counting function N (r, f) by

N (r, f) =

∫ r

0

n (t, f)− n (0, f)

t
dt+ n (0, f) log r,

and we define the proximity function m (r, f) by

m (r, f) =
1

2π

∫ 2π

0

log+
∣∣f (reiφ)∣∣ dφ,

where log+ x = max {0, log x} . We should think of m (r, f) as a measure of how close f
is to infinity on |z| = r. Nevertheless, within that context, we recall that T (r, f) stands
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


296 Nityagopal Biswas and Pulak Sahoo

for the Nevanlinna characteristic function of the meromorphic function f defined on
each positive real value r by

T (r, f) = m (r, f) +N (r, f) .

And M (r, f) stands for the so called maximum modulus function defined for each
non-negative real value r by

M (r, f) = max
|z|=r

|f (z)| .

The applications of Nevanlinna’s value distribution theory has been developed since
1960’s. Recently, the properties of meromorphic solutions of complex linear difference
equations have become a subject of great interest from the viewpoint of Nevanlinna’s
theory and its difference analogues. Since then, many authors investigated the linear
difference equations for example, [3, 11, 12]. Moreover, we use notations σ (f) for the
order of a meromorphic function f (z) and defined as

σ (f) = lim sup
r→∞

log T (r, f)

log r
.

We denote the linear measure for a set E ⊂ [0,∞), by m (E) =
∫
E
dt and logarithmic

measure for a set E ⊂ (1,∞) , by ml (E) =
∫
E
dt
t . The upper density of a set E ⊂

[0,∞) is defined as

dens E = lim sup
r→∞

m (E ∩ [0, r])

r
,

and the upper logarithmic density of a set E ⊂ (1,∞) is defined as

log dens (E) = lim sup
r→∞

ml (E ∩ [1, r])

log r
.

Proposition 1.1. [1]For all H ⊂ [1,∞) the following statements hold:

(i) If ml (H) =∞, then m (H) =∞;

(ii) If densH > 0, then m (H) =∞;

(iii) If log densH > 0, then ml (H) =∞.

In 2008, Chiang and Feng [3] investigated the proximity function and point wise

estimates of f(z+η)
f(z) , which are discrete versions of the classical logarithmic deriva-

tive estimates of f (z). They also applied their results to obtain growth estimates
of meromorphic solutions to higher order homogeneous and non-homogeneous linear
difference equations

An(z)f(z + n) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = 0 (1.1)

and

An(z)f(z + n) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = F (z) , (1.2)

where the coefficients A0 (z) , ..., An (z) and F (z) (6≡ 0) are entire functions and they
obtained the following result.
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Theorem 1.2. [3] Let A0 (z) , ..., An (z) be entire functions such that there exists an
integer l (0 ≤ l ≤ n) such that

max
0≤j≤n

{σ (Aj) ; j 6= l} < σ (Al) ,

then every meromorphic solution of equation (1.1) satisfies σ (f) ≥ σ (Al) + 1.

Above results occur when there exists only one dominant coefficient. In the case
that there are more than one dominant coefficients, Laine and Yang [11] obtained the
following result.

Theorem 1.3. [11] Let A0 (z) , ..., An (z) be entire functions of finite order such that
among those having the maximal order σ = max

0≤j≤n
σ (Aj), exactly one has its type

strictly greater than the others. Then for any meromorphic solution f ( 6≡ 0) of equation
(1.1), we have σ (f) ≥ σ + 1.

Recently, In 2011, Zheng and Tu [15], studied the growth of meromorphic solu-
tions of homogeneous or non-homogeneous linear difference equations and improved
the previous results due to Chiang and Feng [3] and Laine and Yang [11]. In the case
there are more than one coefficients of equation (1.1) which have the maximal orders
Zheng and Tu [15] obtained the following results.

Theorem 1.4. [15] Let H be a set of complex numbers satisfying
log dens {|z| : z ∈ H} > 0 and let Aj (z) (j = 0, 1, ..., n) be entire functions sat-
isfying max {σ (Aj) , j = 0, 1, ..., n} ≤ α1. If there exists an integer l (0 ≤ l ≤ n) and
a positive constant α2 (α2 < α1) such that for any given ε (0 < ε < α2 − α1), we
have

|Al (z)| ≥ exp
{
rα1−ε

}
and

|Aj (z)| ≤ exp {rα2} , (j 6= l) ,

as |z| = r → +∞ for z ∈ H, then every meromorphic solution f (6≡ 0) of equation
(1.1) satisfies σ (f) ≥ σ (Al) + 1.

Recently, Chyzhykov et al. [4] introduced the definition of ϕ-order of f(z) in a
unit disc, where ϕ : [0, 1)→ (0,∞) is a non-decreasing unbounded function and f(z) is
a meromorphic function in the unit disc and Shen et al. [14], introduced [p, q]−ϕ order
of entire and meromorphic functions in the complex plane C where ϕ : [0,∞)→ (0,∞)
is a non-decreasing unbounded function. Since then many researchers investigated
the growth oscillation of solutions of linear differential equations and linear difference
equations {cf. [2, 5, 6, 13]}. Revisiting their ideas of ϕ-order we would like to prove
some results using the concepts of slow growth scale, the ϕ-order in the complex plane.
To investigate the growth of meromorphic solutions of equations (1.1) and (1.2) more
precisely, we recall the following definitions.

Definition 1.5. ([14, 4]) Let ϕ : [0,+∞) → (0,+∞) be a non-decreasing unbounded
function, the ϕ-order of a meromorphic function f is defined as

σ (f, ϕ) = lim sup
r→∞

log T (r, f)

logϕ (r)
.
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If f is an entire function, then

σ (f, ϕ) = lim sup
r→∞

log logM (r, f)

logϕ (r)
.

Definition 1.6. ([4]) If f be a meromorphic function satisfying 0 < σ (f, ϕ) = σ <∞.
Then ϕ-type of f is defined as

τ (f, ϕ) = lim sup
r→∞

T (r, f)

ϕ (r)
σ .

If f is an entire function, then

τ (f, ϕ) = lim sup
r→∞

logM (r, f)

ϕ (r)
σ .

Remark 1.7. If ϕ (r) = r in the Definitions 1.5 and 1.6, then we obtain the standard
definition of the order and type of a function f respectively.

Remark 1.8. Throughout this paper, we assume that ϕ : [0,∞) → (0,∞) is a non-
decreasing unbounded function and always satisfies the following two conditions with-
out special instruction:

(i) lim
r→+∞

log log r
logϕ(r) = 0.

(ii) lim
r→+∞

logϕ(αr)
logϕ(r) = 1 for some α > 1.

Thus, a natural problem arises that: how to express the growth of solutions of
homogeneous and non-homogeneous linear difference equations (1.1) and (1.2) when
the coefficients Aj (z) (j = 0, 1, ..., n) and F (z) (6≡ 0) be entire functions of ϕ-order
in a slow growth scale ϕ-order. The main purpose of this paper is to make use of the
concept of ϕ-order due to Chyzhykov et al. [4] to extend previous results for solutions
to equations (1.1) and (1.2) in the complex plane C.

2. Main results

The main purpose of this paper is to used the concept of ϕ-order in the complex
plane C to investigate the growth of solutions of homogeneous and non-homogeneous
linear difference equations (1.1) and (1.2). In this direction we obtain the following
results.

The Theorem 2.1 investigate the order of meromorphic solutions of homogeneous
linear difference equation (1.1) in the case when there are more than one coefficients
which have the maximal orders.

Theorem 2.1. Let H be a set of complex numbers satisfying log dens {|z| : z ∈ H} > 0
and let Aj (z) (j = 0, 1, ..., n) be entire functions satisfying

max {σ (Aj , ϕ) , j = 0, 1, ..., n} ≤ σ.
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If there exists an integer l (0 ≤ l ≤ n) such that for some constants α and β with
0 ≤ β < α and ε (0 < ε < σ) sufficiently small, we have

T (r,Al) ≥ exp
{
α (ϕ (r))

σ−ε
}

(2.1)

and

T (r,Aj) ≤ exp
{
β (ϕ (r))

σ−ε
}
, (j 6= l) , (2.2)

as z → ∞ for z ∈ H, then every meromorphic solution f ( 6≡ 0) of equation (1.1)
satisfies σ (f, ϕ) ≥ σ (Al, ϕ) + 1.

Remark 2.2. By the assumptions of Theorem 2.1, we obtain that σ (Al, ϕ) = σ.
Indeed, we have σ (Al, ϕ) ≤ σ, suppose that σ (Al, ϕ) = η < σ. Then by Definition
1.5 of ϕ-order and (2.1) , we have for any given ε

(
0 < ε < σ−η

2

)
exp

{
α (ϕ (r))

σ−ε
}
≤ T (r,Al) ≤ exp

{
(ϕ (r))

η+ε
}
, (2.3)

as |z| = r → ∞ for z ∈ H. So by ε
(
0 < ε < σ−η

2

)
we get a contradiction from (2.3)

as r →∞. Hence σ (Al, ϕ) = σ.

The following example illustrate the sharpness of Theorem 2.1.

Example 2.3. The function f (z) = ez
2−3z satisfies the equation

e−zf (z + 2) + ezf (z + 1)− 2e3z−2f (z) = 0.

Here A2 (z) = e−z, A1 (z) = ez, A0 (z) = −2e3z−2, we take ϕ (z) = z, then we
obtain that σ (A2, ϕ) = σ (A1, ϕ) = σ (A0, ϕ) = 1. Now set H = {z : arg z = π} and
l = 2, then it is clear that dens {|z| = r : z ∈ H} = 1 > 0. Moreover, A2 (z) , A1 (z)
and A0 (z) satisfy the assumptions (2.1) and (2.2) of Theorem 2.1. Therefore, we get
σ (f, ϕ) = 2 = σ (A2, ϕ) + 1.

Secondly, we consider the growth of entire solutions of non-homogeneous linear
difference equation (1.2). Note that the above result may not be applicable to the
equation (1.2) to which equation (1.1) is the corresponding homogeneous equation (see
the following Example 2.5). But we can obtain similar results with some additional
conditions.

Theorem 2.4. Let Aj (z) (j = 0, 1, ..., n) and F (z) (6≡ 0) be entire functions such that
there exists an integer l (0 ≤ l ≤ n) satisfying

b = max {σ (Aj , ϕ) , σ (F,ϕ) , j 6= l, } < σ (Al, ϕ) <
1

2
, (2.4)

then every nontrivial entire solution f ( 6≡ 0) of equation (1.2) satisfies σ (f, ϕ) ≥
σ (Al, ϕ) + 1.

Example 2.5. Take ϕ (z) = z and the function f (z) = ez satisfies the equation

f (z + 2)− ef (z + 1) + f (z) = ez

and
f (z + 2)− ef (z + 1) + e−zf (z) = 1.

Though there is only one dominant coefficient such that the assumptions in Theorems
2.1 hold, we cannot get similar results in the non-homogeneous equation case.
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Theorem 2.6. Let Aj (z) (i = 0, 1, ..., n) and F (z) (6≡ 0) entire functions such that
there exists an integer (0 ≤ l ≤ n) satisfying

b = max {σ (Aj , ϕ) , σ (F,ϕ) , j 6= l, } < σ (Al, ϕ) <∞.

Also suppose that Al (z) =
∑∞
n=1 Cλn

zλn satisfies that the sequence of exponents

{λn} satisfies the Fabry gap condition λn

n → ∞ as n → ∞, then every nontrivial
entire solution f (6≡ 0) of equation (1.2) satisfies σ (f, ϕ) ≥ σ (Al, ϕ) + 1.

3. Preliminary lemmas

To prove the above theorems, we need some lemmas as follows.

Lemma 3.1. [3] Let f be a meromorphic function, η be a non-zero complex number and
let γ > 1 and ε > 0 be given real constants. Then there exist a subset E1 ⊂ (1,+∞)
of finite logarithmic measure and a constant A depending only on γ and η, such that
for all |z| = r /∈ E1 ∪ [0, 1] , we have∣∣∣∣log

∣∣∣∣f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+
n (γr)

r
logγ r log+ n (γr)

)
,

where n (t) = n (t,∞, f) + n
(
t,∞, 1f

)
.

Lemma 3.2. [7] Let f be a transcendental meromorphic function and let j be a non-
negative integer, let a be a value in the extended complex plane and let α > 1 be a real
constant. Then there exists a constant R > 0 such that for all r > R, we have

n
(
r, a, f (j)

)
≤ 2j + 6

logα
T (αr, f) .

Lemma 3.3. Let f be a meromorphic function and η be a non-zero complex number
and let ε > 0 be given real constants. Then there exists a subset E2 ⊂ (1,+∞) of
finite logarithmic measure, such that if f has finite ϕ-order σ, then for all |z| = r /∈
E2 ∪ [0, 1] , we have

exp

{
− (ϕ (r))

σ+ε

r

}
≤
∣∣∣∣f (z + η)

f (z)

∣∣∣∣ ≤ exp

{
(ϕ (r))

σ+ε

r

}
.

Proof. By Lemma 3.1, there exist a subset there exist a subset E2 ⊂ (1,+∞) of finite
logarithmic measure and a constant A depending only on γ and η, such that for all
|z| = r /∈ E2 ∪ [0, 1] , we have∣∣∣∣log

∣∣∣∣f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+
n (γr)

r
logγ r log+ n (γr)

)
, (3.1)

where n (t) = n (t,∞, f) + n
(
t,∞, 1f

)
.

Using (3.1) and Lemma 3.2, we obtain that∣∣∣∣log

∣∣∣∣f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+

12

logα

T (αγr, f)

r
logγ r log+

(
12

logα
T (αγr, f)

))
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≤ B

(
T (βr, f)

r
+

logβ r

r
T (βr, f) log T (βr, f)

)
, (3.2)

for all |z| = r 6∈ [0, 1] ∪ E2 with ml (E2) < +∞, where B > 0 is some constant and
β = αγ > 1.

Again, since f has finite ϕ-order σ (f, ϕ) = σ < +∞, so given ε (0 < ε < 2) , for
sufficiently large r, we have

T (r, f) < (ϕ (r))
σ+ ε

2 . (3.3)

Then by substituting (3.3) into (3.2) , we get that∣∣∣∣log

∣∣∣∣f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ B
(

(ϕ (βr))
σ+ ε

2

r
+

logβ r

r
(ϕ (βr))

σ+ ε
2 log (ϕ (βr))

σ+ ε
2

)

≤ (ϕ (r))
σ+ε

r
. (3.4)

From (3.4), we obtain that

exp

{
− (ϕ (r))

σ+ε

r

}
≤
∣∣∣∣f (z + η)

f (z)

∣∣∣∣ ≤ exp

{
(ϕ (r))

σ+ε

r

}
.

This proves the lemma. �

Lemma 3.4. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2 and let f be
a meromorphic function of finite ϕ-order σ and let ε > 0 be given. Then there exists a
subset E3 ⊂ (1,+∞) of finite logarithmic measure such that for all |z| = r /∈ [0, 1]∪E3,
we have

exp

{
− (ϕ (r))

σ+ε

r

}
≤
∣∣∣∣f (z + η1)

f (z + η2)

∣∣∣∣ ≤ exp

{
(ϕ (r))

σ+ε

r

}
.

Proof. We can write∣∣∣∣f (z + η1)

f (z + η2)

∣∣∣∣ =

∣∣∣∣f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣ , (η1 6= η2) .

Then by using Lemma 3.3, there exists a subset E3 ⊂ (1,+∞) such that for any ε > 0
and all |z + η2| = R /∈ E3 ∪ [0, 1] , with ml (E3) <∞, we get

exp

{
− (ϕ (r))

σ+ε

r

}
≤ exp

{
− (ϕ (|z|+ |η2|))σ+

ε
2

|z + η2|

}

= exp

{
− (ϕ (R))

σ+ ε
2

R

}
≤
∣∣∣∣f (z + η1)

f (z + η2)

∣∣∣∣
=

∣∣∣∣f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣ ≤ exp

{
(ϕ (R))

σ+ ε
2

R

}

≤ exp

{
(ϕ (|z|+ |η2|))σ+ε

|z + η2|

}
≤ exp

{
(ϕ (r))

σ+ε

r

}
,
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where |z| = r /∈ [0, 1] ∪ E3.
This proves the lemma. �

Lemma 3.5. [5]Let η1, η2 be two arbitrary complex numbers such that η1 6= η2, and let
f be a meromorphic function of finite ϕ-order. Let σ be the ϕ-order of f(z). Then for
each ε > 0, we have

m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
(ϕ (r))

σ−1+ε
)
.

Lemma 3.6. [9] Let f (z) =
∑∞
n=1 Cλnz

λnbe an entire function and the sequence of

exponents {λn} satisfies the Fabry gap condition λn

n → ∞ as n → ∞. Then for any
given ε > 0

logL (r, f) > (1− ε) logM (r, f) ,

holds outside a set E4 of finite logarithmic measure, where M (r, f) = sup
|z|=r

|f (z)| and

L (r, f) = inf
|z|=r

|f (z)| .

Lemma 3.7. Let f (z) be an entire function of finite ϕ-order satisfying 0 < σ (f, ϕ) <

∞, where ϕ (r) only satisfies lim
r→+∞

logϕ(αr)
logϕ(r) = 1 for some α > 1. Then for any given

β < σ (f, ϕ) , there exists a set E5 ⊂ (1,∞) having infinite logarithmic measure such
that for all |z| = r ∈ E5 we have

M (r, f) > exp
{

(ϕ (r))
β
}
.

Proof. By the Definition 1.5 of the ϕ-order, there exists an increasing sequence {rn}
(rn →∞) satisfying

(
1 + 1

n

)
rn < rn+1 and

σ (f, ϕ) = lim
rn→∞

log logM (rn, f)

logϕ (rn)
.

Then, there exists a positive integer n0 such that for all n ≥ n0 and for any given
ε > 0, we have

M (rn, f) > exp
{

(ϕ (rn))
σ(f,ϕ)−ε

}
. (3.5)

Now we have

lim
n→∞

logϕ
((

1 + 1
n

)
r
)

logϕ (r)
= 1.

Since β < σ (f, ϕ) , then we can choose sufficiently small ε > 0 to satisfy 0 < ε <
σ (f, ϕ)− β, so there exists a positive integer n1 such that for all n > n1, we have

logϕ
((

1 + 1
n

)
r
)

logϕ (r)
>

β

σ (f, ϕ)− ε
,

which implies that

(σ (f, ϕ)− ε) logϕ

((
1 +

1

n

)
r

)
> β logϕ (r)

⇒
(
ϕ

((
1 +

1

n

)
r

))(σ(f,ϕ)−ε)

> ϕ (r)
β
. (3.6)
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Taking n ≥ n2 = max {n0, n1} and E5 =
∞⋃

n=n2

In, where In =
[
rn,
(
1 + 1

n

)
rn
]
. Then

by (3.5) and (3.6) , we get for r ∈
[
rn,
(
1 + 1

n

)
rn
]

that

M (r, f) ≥M (rn, f) > exp
{

(ϕ (rn))
σ(f,ϕ)−ε

}
≥ exp

{(
ϕ

((
1 +

1

n

)
r

))σ(f,ϕ)−ε}
> exp

{
ϕ (r)

β
}
.

Now we obtain that

ml (E5) =
∞∑

n=n2

∫
In

dr
r =

∞∑
n=n2

(
log 1

1−r

)(1+ 1
n )rn

rn
=

∞∑
n=n2

log n+1
n =∞.

This proves the lemma. �

Lemma 3.8. Let f (z) =
∑∞
n=1 Cλn

zλnbe an entire function with 0 < σ (f, ϕ) < ∞
where ϕ (r) only satisfies lim

r→+∞
logϕ(αr)
logϕ(r) = 1 for some α > 1. If the sequence of

exponents {λn} satisfies the Fabry gap condition λn

n → ∞ as n → ∞. Then for any
given β < σ (f, ϕ) , there exists a set E6 ⊂ (1,∞) having infinite logarithmic measure
such that for all |z| = r ∈ E6 we have

|f (z)| > exp
{
ϕ (r)

β
}
.

Proof. By Lemma 3.6, for any ε > 0, there exists a set E4 of finite logarithmic measure
such that for all |z| = r 6∈ E4, we have

logL (r, f) > (1− ε) logM (r, f) ,

which implies that

L (r, f) > [M (r, f)]
(1−ε)

.

For any given β < σ (f, ϕ) , we can choose δ > 0 such that β < δ < σ (f, ϕ) and

sufficiently small ε satisfying 0 < ε < δ−β
2 . Then by Lemma 3.7, there exists a set E5

of infinite logarithmic measure such that for all |z| = r ∈ E5, we have

|f (z)| > L (r, f) > [M (r, f)]
(1−ε)

>
(

exp
{
ϕ (r)

β
})(1−ε)

> exp
{
ϕ (r)

β
}
,

where E6 = E5\E4 is a set with infinite logarithmic measure.
Thus the lemma is established. �

4. Proof of main results

Proof of Theorem 2.1. By Remark 2.2, we know that σ (Al, ϕ) = σ. Let f 6≡ 0 be a
meromorphic solution of equation (1.1) . Now let us suppose that σ (f, ϕ) < σ (Al, ϕ)+
1 = σ + 1 < ∞. From the conditions of Theorem 2.1, there is a set H of complex
numbers satisfying log dens {|z| : z ∈ H} > 0 such that for z ∈ H, we have (2.1) and
(2.2) as |z| = r → ∞. Set H1 = {|z| = r : z ∈ H} , since log dens {|z| : z ∈ H} > 0,
then by Proposition 1.1, H1 is a set with

∫
H1

dr
r =∞.
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We divide equation (1.1) by f (z + l) to get

−Al (z) =

n∑
j=0
i 6=l

Aj (z)
f (z + j)

f (z + l)
. (4.1)

Since Aj (z) (j = 0, 1, ..., n) are entire functions, then by equation (4.1) , we get that

m (r,Al) = T (r,Al) ≤
n∑
j=0
i 6=l

m (r,Aj) +

n∑
j=0
i6=l

m

(
r,
f (z + j)

f (z + l)

)
+O (1)

=

n∑
j=0
i 6=l

T (r,Aj) +

n∑
j=0
i 6=l

m

(
r,
f (z + j)

f (z + l)

)
+O (1) . (4.2)

Now by Lemma 3.5, for any ε
(

0 < ε < σ+1−σ(f,ϕ)
2

)
, we have

m

(
r,
f (z + j)

f (z + l)

)
= O

(
(ϕ (r))

σ(f,ϕ)−1+ε
)
. (4.3)

Substituting (2.1) , (2.2) and (4.3) into (4.2) , we get for |z| = r →∞, z ∈ H that

exp
{
α (ϕ (r))

σ−ε
}
≤ n exp

{
β (ϕ (r))

σ−ε
}

+O
(

(ϕ (r))
σ(f,ϕ)−1+ε

)
⇒ exp

{
(ϕ (r))

σ−ε
}
{exp (α)− exp (β)} ≤ O (1) (ϕ (r))

σ(f,ϕ)−1+ε
.

Since, (exp (α)− exp (β)) > 0, so it follows that

1 ≤ O (1) (ϕ (r))
σ(f,ϕ)−1+2ε−σ → 0 as r →∞, (4.4)

which is a contradiction since 0 < ε < σ+1−σ(f,ϕ)
2 .

Hence, we get σ (f, ϕ) ≥ σ (Al, ϕ) + 1.
This completes the proof of the theorem. �

Proof of Theorem 2.2. If σ (f, ϕ) = ∞, then the result is trivial. Now let us suppose
that σ (f, ϕ) < σ (Al, ϕ) + 1 <∞. We divide equation (1.2) by f (z + l) to get

−Al (z) =

n∑
j=0
i 6=l

Aj (z)
f (z + j)

f (z + l)
− F (z)

f (z)
· f (z)

f (z + l)
,

which implies that

|Al (z)| ≤
n∑
j=0
i 6=l

|Aj (z)|
∣∣∣∣f (z + j)

f (z + l)

∣∣∣∣+

∣∣∣∣F (z)

f (z)

∣∣∣∣ · ∣∣∣∣ f (z)

f (z + l)

∣∣∣∣ . (4.5)

By Lemma 3.4, for any given ε
(

0 < ε < σ(Al,ϕ)+1−σ(f,ϕ)
2

)
, there exists a subset E3 ⊂

(1,∞) of finite logarithmic measure such that for all r 6∈ [0, 1] ∪ E3, we have∣∣∣∣f (z + j)

f (z + l)

∣∣∣∣ ≤ exp

{
(ϕ (r))

σ(f,ϕ)+ε

r

}
, (j = 0, 1, ..., n, j 6= l) . (4.6)
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Now by the assumption (2.4), we have that for sufficiently large r,

|Aj (z)| ≤ exp
{

(ϕ (r))
σ(Al,ϕ)+ε

}
, (j = 0, 1, ..., n, j 6= l) , (4.7)

and

|F (z)| ≤ exp
{

(ϕ (r))
σ(Al,ϕ)+ε

}
.

Since M (r, f) > 1 for sufficiently large r, we have that

|F (z)|
M (r, f)

≤ |F (z)| ≤ exp
{

(ϕ (r))
σ(Al,ϕ)+ε

}
. (4.8)

Now by the Definition 1.5 of ϕ-order and for above ε > 0, we get that

|Al (z)| ≥ exp
{

(ϕ (r))
σ(Al,ϕ)−ε

}
. (4.9)

Substituting (4.6)-(4.9) into (4.5) for all r 6∈ [0, 1]∪E3 and |f (z)| = M (r, f) , we have

exp
{

(ϕ (r))
σ(Al,ϕ)−ε

}
≤ |Al (z)|

≤ (n+ 1) exp
{

(ϕ (r))
σ(Al,ϕ)+ε

}
· exp

{
(ϕ (r))

σ(f,ϕ)+ε

r

}
. (4.10)

Since ε
(

0 < ε < σ(Al,ϕ)+1−σ(f,ϕ)
2

)
, so we obtain a contradiction from (4.10) by apply-

ing the same procedure we applied in (4.4) . Hence we get that σ (f, ϕ) ≥ σ (Al, ϕ)+1.

This proves the theorem. �

Proof of Theorem 2.3. If σ (f, ϕ) = ∞, then the result is trivial. Now let us suppose
that σ (f, ϕ) < σ (Al, ϕ) + 1 <∞. Now by Lemma 3.8, there exists a set E6 ⊂ (1,∞)
having infinite logarithmic measure such that for all |z| = r ∈ E6 we have

|Al (z)| > exp
{

(ϕ (r))
β
}
. (4.11)

Substituting (4.6)-(4.8) and (4.11) into (4.5) for all r ∈ E6\ [0, 1] ∪ E3 and |f (z)| =
M (r, f) , we have

exp
{

(ϕ (r))
β
}
≤ |Al (z)| ≤ (n+ 1) exp

{
(ϕ (r))

σ(Al,ϕ)+ε
}
· exp

{
(ϕ (r))

σ(f,ϕ)+ε

r

}
.

(4.12)
We we get a contradiction from (4.12) by applying the same procedure we applied in
(4.4) . Hence we get that σ (f, ϕ) ≥ σ (Al, ϕ) + 1.

This proves the theorem. �
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