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Abstract. In this paper we develop iterative methods for nonlinear Fredholm inte-
gral equations of the second kind with deviating arguments, by applying Mann’s
iterative algorithm. This proves the existence and the uniqueness of the solution
and gives a better error estimate than the classical Banach Fixed Point Theo-
rem. The iterates are then approximated using a suitable quadrature formula.
The paper concludes with numerical examples.
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1. Preliminaries

Integral equations arise in many fields of mathematics, engineering, physics, etc.,
as they provide a strong tool for modeling various applications, phenomena and pro-
cesses occurring in actuarial sciences, statistical study of dynamic living population,
elasticity theory, diffraction problems, quantum mechanics, etc. In addition, a large
class of initial and boundary value problems can be reformulated as integral equa-
tions. Thus, many researchers aim to find efficient and rapidly convergent algorithms
for the numerical solution of Fredholm integral equations (see e.g. [2], [10], [11], [9]).

In this paper, we consider a Fredholm integral equation of the type

x(t) =

b∫
a

K
(
t, s, x(s), x(g(s))

)
ds+ f(t), t ∈ [a, b], (1.1)

where K ∈ C
(
[a, b]× [a, b]× R2

)
, f ∈ C[a, b] and g ∈ C ([a, b], [a, b]).

Other assumptions will be made on K, g and f later on.
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As is well known, the solvability of (1.1) is based on fixed point theory. We define the
operator F : C[a, b]→ C[a, b] by

Fx(t) =

b∫
a

K
(
t, s, x(s), x(g(s))

)
ds+ f(t). (1.2)

Then finding a solution of the integral equation (1.1) is equivalent to finding a fixed
point for the operator F :

x = Fx. (1.3)

We recall the main results of fixed point theory on a Banach space.

Definition 1.1. Let (X, || · ||) be a Banach space. A mapping F : X → X is called a
q− contraction if there exists a constant 0 ≤ q < 1 such that

||Fx− Fy|| ≤ q||x− y||, (1.4)

for all x, y ∈ X.

We have the classical result, the contraction principle on a Banach space.

Theorem 1.2. Let (X, || · ||) be a Banach space and F : X → X be a q−contraction.
Then

(a) F has exactly one fixed point x∗ ∈ X;
(b) the sequence of successive approximations xn+1 = Fxn, n ∈ N, converges to the

solution x∗, for any arbitrary choice of initial point x0 ∈ X;
(c) the error estimates

||xn − x∗|| ≤
qn

1− q
||x1 − x0||,

||xn − x∗|| ≤
q

1− q
||xn − xn−1||

(1.5)

hold for every n ∈ N.

This result can be improved, using Mann iteration (Altman’s algorithm) instead of
Picard iteration. We recall the main results (see [1], [4]).

Theorem 1.3. Let (X, || · ||) be a Banach space and F : X → X be a q−contraction.
Let 0 < εn ≤ 1 be a sequence of numbers satisfying

∞∑
n=0

εn =∞. (1.6)

Then

(a) equation x = Fx has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 = (1− εn)xn + εnFxn, n = 0, 1, . . . (1.7)

converges to the solution x∗, for any arbitrary choice of initial point x0 ∈ X;
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(c) for every n ∈ N, there holds the error estimate

||xn − x∗|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn , (1.8)

where y0 = 0, yn =

n−1∑
i=0

εi, for n ≥ 1.

Remark 1.4. Theorem 1.3 still holds true if X is replaced by any closed convex subset
Y ⊆ X.

Most of the times (for suitable choices of εn and q), the error estimate in (1.8)
is better than the one in (1.5) and the iterative method (1.7) converges faster than
the classical one.

For more considerations on iterative algorithms, see e.g. [4], [7], [8]. The aim of
this paper is to apply Altman’s Theorem 1.3 to Fredholm integral equations of the
second kind with deviating arguments.

2. Existence and uniqueness of the solution

We want to apply Altman’s iterative algorithm to the operator equation (1.3).
To this end, we consider the space X = C[a, b] equipped with the Chebyshev norm

||x|| := max
t∈[a,b]

|x(t)|, x ∈ X (2.1)

and the ball BR := {x ∈ C[a, b]
∣∣ ||x− f || ≤ R}, for some R > 0. Then (X, || · ||) is a

Banach space and BR ⊆ X is a closed convex subset.

Theorem 2.1. Let F : (X, || · ||)→ (X, || · ||) be defined by (1.2). Assume that

(i) there exist constants l1, l2 > 0 such that

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|, (2.2)

for all t, s ∈ [a, b] and all u1, u2, v1, v2 ∈ [R1 −R,R2 +R], where

R1 := min
t∈[a,b]

f(t), R2 := max
t∈[a,b]

f(t);

(ii)

q := (b− a)(l1 + l2) < 1; (2.3)

(iii)

MK(b− a) ≤ R, (2.4)

where MK := max |K(t, s, u, v)| over all t, s ∈ [a, b] and all u, v ∈ [R1 −R,R2 +R].
Then

(a) equation (1.3) has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 =

(
1− 1

n+ 1

)
xn +

1

n+ 1
Fxn, n = 0, 1, . . . (2.5)

converges to the solution x∗, for any arbitrary initial point x0 ∈ X;
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(c) for every n ∈ N, the error estimate

||xn − x∗|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn (2.6)

holds, where y0 = 0, yn =

n−1∑
i=0

1

i+ 1
, for n ≥ 1.

Proof. We want to use Theorem 1.3 for εn =
1

n+ 1
, which obviously satisfies the

conditions of Theorem 1.3.
Let t ∈ [a, b] be fixed. By (2.2), we have

|(Fx− Fy)(t)| ≤
b∫
a

∣∣K(t, s, x(s), x(g(s))
)
−K

(
t, s, y(s), y(g(s))

)∣∣ ds
≤ l1

b∫
a

|x(s)− y(s)| ds+ l2

b∫
a

|x(g(s))− y(g(s))| ds

≤ l1(b− a)||x− y||+ l2(b− a) max
g(s)∈[a,b]

∣∣x(g(s))− y(g(s))
∣∣

≤ (b− a)(l1 + l2)||x− y||,

since max
g(s)∈[a,b]

∣∣x(g(s))− y(g(s))
∣∣ ≤ max

s∈[a,b]
|x(s)− y(s)|. Hence,

||Fx− Fy|| = max
t∈[a,b]

|(Fx− Fy)(t)| ≤ q||x− y||

and by (2.3), it follows that F is a q−contraction.

Next, for every fixed t ∈ [a, b], we have

|Fx(t)− f(t)| ≤
b∫
a

∣∣∣K(t, s, x(s), x(g(s))
)∣∣∣ ds

≤ MK(b− a).

Thus, by (2.4), we have F (BR) ⊆ BR. Now our result follows from Theorem 1.3 and
Remark 1.4. �

For more considerations on Mann iteration, see e.g. [4].

3. Numerical iterative methods

Altman’s fixed point theorem provides iterative methods for solving equation
(1.3). But, obviously, the iterates in (2.5) cannot be computed analytically, they have
to be approximated numerically.
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Consider a quadrature formula

b∫
a

ϕ(s)ds =

m∑
i=0

aiϕ(si) +Rϕ, (3.1)

with nodes a = s0 < s1 < · · · < sm = b, coefficients ai ∈ R, i = 0, 1, . . . ,m and for
which the remainder satisfies

|Rϕ| ≤M, (3.2)

for some M > 0, with M → 0 as m→∞.
Let a = t0 < t1 < · · · < tm = b be the nodes and let x0 = x̃0 ≡ f be the initial

approximation. Then we use the iteration (2.5) and the numerical integration scheme
(3.1) to approximate xn(tk) and xn (g(tk)) with x̃n(tk) and x̃n (g(tk)), respectively,
for k = 0,m and n = 0, 1, . . . . For simplicity, we make the following notations:

Kk,i,n := K
(
tk, ti, xn(ti), xn(g(ti))

)
,

Kg,k,i,n := K
(
g(tk), ti, xn(ti), xn(g(ti))

)
,

K̃k,i,n := K
(
tk, ti, x̃n(ti), x̃n(g(ti))

)
,

K̃g,k,i,n := K
(
g(tk), ti, x̃n(ti), x̃n(g(ti))

)
,

x̃n+1(tk) :=

[(
1− 1

n+ 1

)
x̃n(tk) +

1

n+ 1

(
m∑
i=0

aiK̃k,i,n + f(tk)

)]
,

x̃n+1(g(tk)) :=

[(
1− 1

n+ 1

)
x̃n(g(tk))

+
1

n+ 1

(
m∑
i=0

aiK̃g,k,i,n + f(g(tk))

)]
,

R̃n,k := xn(tk)− x̃n(tk),

R̃g,n,k := xn(g(tk))− x̃n(g(tk)).

We have:

xn+1(tk) =

(
1− 1

n+ 1

)
xn(tk) +

1

n+ 1

 b∫
a

K (tk, s, xn(s), xn(g(s))) ds+ f(tk)


=

(
1− 1

n+ 1

)(
x̃n(tk) + R̃n,k

)
+

1

n+ 1

(
m∑
i=0

aiKk,i,n +RK + f(tk)

)
(3.3)

=

(
1− 1

n+ 1

)(
x̃n(tk) + R̃n,k

)
+

1

n+ 1

(
m∑
i=0

aiK̃k,i,n +

m∑
i=0

ai(Kk,i,n − K̃k,i,n) +RK + f(tk)

)

=

[(
1− 1

n+ 1

)
x̃n(tk)+

1

n+ 1

(
m∑
i=0

aiK̃k,i,n + f(tk)

)]
+R̃n+1,k= x̃n+1(tk)+R̃n+1,k.
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Similarly, we derive

x̃n+1(g(tk)) =

(
1− 1

n+ 1

)
x̃n(g(tk))

+
1

n+ 1

(
m∑
i=0

aiK̃g,k,i,n + f(g(tk))

)
+ R̃g,n+1,k (3.4)

= x̃n+1(g(tk)) + R̃g,n+1,k.

Let

R̃(n,m) = max
tk∈[a,b]

{
∣∣xn(tk)− x̃n(tk)

∣∣, ∣∣xn(g(tk))− x̃n(g(tk))
∣∣}. (3.5)

Suppose that for the quadrature formula (3.1), condition (3.2) ensures the fact that

R̃(n,m) defined above depends only on m and that R̃(n,m) = R̃(m) → 0, as m → ∞.
Then the exact solution x∗ can be approximated by the iterates x̃n at the nodes tk and
g(tk) and we can give an error estimate for our numerical iterative method. To better
illustrate the approximations, we consider below one of the most popular numerical
integration schemes, the trapezoidal rule.

3.1. Approximation using the trapezoidal rule

As in [5], [6], consider the composite trapezoidal rule

b∫
a

ϕ(s) ds =
b− a
2m

ϕ(a) + 2

m−1∑
j=1

ϕ(sj) + ϕ(b)

+Rϕ,

where the m+ 1 nodes are sj = a+
b− a
m

j, j = 0,m and the remainder is given by

Rϕ = − (b− a)3

12m2
ϕ′′(η), η ∈ (a, b).

We use it to approximate the integrals in (2.5), as in (3.3) and (3.4), with ini-
tial approximation x0 = x̃0 ≡ f . For the error, we need the second derivative
[K(tk, s, xn(s), xn(g(s)))]

′′

s . We have

[K(tk, s, u, v)]
′

s =
∂K

∂s
+
∂K

∂u
u′ +

∂K

∂v
v′

[K(tk, s, u, v)]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
u′ + 2

∂2K

∂s∂v
v′ + 2

∂2K

∂u∂v
u′v′

+
∂2K

∂u2
(u′)2 +

∂2K

∂v2
(v′)2 +

∂K

∂u
u′′ +

∂K

∂v
v′′
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i.e.

[K(tk, s, xn(s), xn(g(s)))]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
x′n(s) + 2

∂2K

∂s∂v
x′n(g(s))g′(s)

+ 2
∂2K

∂u∂v
x′n(s)x′n(g(s))g′(s) +

∂2K

∂u2
(x′n(s))2

+
∂2K

∂v2
[
x′n(g(s))g′(s)

]2
+
∂K

∂u
x′′n(s) (3.6)

+
∂K

∂v

(
x′′n(g(s))(g′(s))2 + x′n(g(s))g′′(s)

)
For any t ∈ [a, b],

xn(t) =

(
1− 1

n

)
xn−1(t)

+
1

n

 b∫
a

K (t, s, xn−1(s), xn−1(g(s)) ds+ f(t))

 ,

x′n(t) =

(
1− 1

n

)
x′n−1(t)

+
1

n

 b∫
a

∂K

∂t
(t, s, xn−1(s), xn−1(g(s)) ds+ f ′(t))

 ,

x′′n(t) =

(
1− 1

n

)
x′′n−1(t)

+
1

n

 b∫
a

∂2K

∂t2
(t, s, xn−1(s), xn−1(g(s)) ds+ f ′′(t))

 .

It is clear from our work so far, that if the functions K, g and f are C2 functions with
bounded second order derivatives, then for R̃(n,m) defined in (3.5), we have

R̃(n,m) ≤ (b− a)3

12m2
M0, (3.7)

where M0 depends on a, b, l1, l2 and the functions K, g and f , but not on n or m.
We can now give an error estimate for our approximation.

Theorem 3.1. Assume the conditions of Theorem 2.1 hold. Further, assume that K, g
and f are C2 functions with bounded second order derivatives. Then for the true solu-
tion x∗ of (1.3) and the approximations x̃n given by (3.3)− (3.4), the error estimate

||x∗ − x̃n|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn +

(b− a)3

12m2
M0 (3.8)

holds for every n ∈ N, where y0 = 0, yn =

n−1∑
i=0

1

i+ 1
, for n ≥ 1, ||x∗ − x̃n|| denotes

max
tk∈[a,b]

{
∣∣x∗(tk)− x̃n(tk)

∣∣, ∣∣x∗(g(tk))− x̃n(g(tk))
∣∣} and M0 is described in (3.7).
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Proof. Since∣∣x∗(tk)− x̃n(tk)
∣∣ ≤ ∣∣x∗(tk)− xn(tk)

∣∣+
∣∣xn(tk)− x̃n(tk)

∣∣,∣∣x∗(g(tk))− x̃n(g(tk))
∣∣ ≤ ∣∣x∗(g(tk))− xn(g(tk))

∣∣+
∣∣xn(g(tk))− x̃n(g(tk))

∣∣,
the assertion follows from (3.7) and Theorem 2.1. �

4. Numerical examples

Example 4.1. Consider the nonlinear Fredholm integral equation

x(t) =
3

64

π∫
0

x(s)

(
1

2
cos t cos

s

2
+ x

(s
2

)
sin t

)
ds

+
1

64
(31 sin t− cos t), (4.1)

for t ∈ [0, π].

The exact solution of (4.1) is x∗(t) =
1

2
sin t.

Here,

K(t, s, u, v) =
3

64
u

(
1

2
cos t cos

s

2
+ v sin t

)
,

g(t) =
t

2
,

f(t) =
1

64
(31 sin t− cos t).

Let R = 1. We have R1 = − 1

64
and R2 =

√
962

64
.

Then, on [a, b]× [a, b]× [R1 −R,R2 +R]2 = [0, π]× [0, π]× [−65/64, 1 +
√

962/64]2,
we have

MK ≤
3

64
(R2 +R)

(
1

2
+R2 +R

)
and, so,

MK(b− a) ≤ 0.434 < 1 = R.

Also, on [0, π]× [0, π]× [−65/64, 1 +
√

962/64]2,

∂K

∂u
=

3

64

(
1

2
cos t cos

s

2
+ v sin t

)
,

so l1 ≤
3

64

(
1

2
+R2 +R

)
and

∂K

∂v
=

3

64
u sin t,

so l2 ≤
3

64
(R2 +R). Hence,

q = (b− a)(l1 + l2) ≈ 0.551 < 1.
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Thus, conditions (2.2), (2.3) and (2.4) hold, which means the hypotheses of Theorem
3.1 are satisfied. Also, for R = 1, we have that x∗ ∈ BR.

We consider the trapezoidal rule with m = 12, m = 16 and m = 24, with the

corresponding nodes tk =
π

m
k, k = 0,m. Table 1 contains the errors

||x∗ − x̃n|| = max
tk∈[a,b]

{
∣∣x∗(tk)− x̃n(tk)

∣∣, ∣∣x∗(g(tk))− x̃n(g(tk))
∣∣},

with initial approximation x0(t) = f(t) =
1

64
(31 sin t− cos t).

Table 1. Error estimates ||x∗ − x̃n|| for Example 4.1

@
@@n
m

12 16 24

1 1.942720e− 00 1.354476e− 00 4.983236e− 01
2 8.223781e− 01 4.405026e− 01 6.338715e− 02
3 3.015578e− 01 9.174332e− 02 7.990126e− 03
4 7.997435e− 02 1.989751e− 02 8.986247e− 04
5 1.963239e− 02 7.428768e− 03 1.422981e− 04
10 9.795423e− 04 8.012446e− 05 3.116458e− 06

Example 4.2. Next, consider the nonlinear two-point boundary-value problem

x′′(t)− ex(t) = 0, t ∈ [0, 1]; x(0) = x(1) = 0, (4.2)

which is used in magnetohydrodynamics (see [3]). The unique solution of (4.2) is given
by

x∗(t) = − ln (2) + 2 ln

(
c

cos (c (t− 1/2) /2)

)
,

where c is the only solution of c/ cos (c/4) =
√

2.

Problem (4.2) can be reformulated as the Fredholm integral equation

x(t) =

1∫
0

k(t, s)ex(s) ds, t ∈ [0, 1], (4.3)

where the kernel

k(t, s) = −min {t, s}(1−max {t, s}) =

{
−s(1− t), s ≤ t,
−t(1− s), s > t

(4.4)

is Green’s function for the homogeneous problem

x′′(t) = 0, t ∈ [0, 1]; x(0) = x(1) = 0.

We have

K(t, s, u, v) = k(t, s)eu,

g(t) = f(t) ≡ 0.
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Again, we take R = 1. In this case, R1 = R2 = 0 and max |K| = max

∣∣∣∣∂K∂u
∣∣∣∣ =

1

4
· e,

for (t, s, u, v) ∈ [0, 1]2 × [−1, 1]2. Thus,

q = (b− a)(l1 + l2) = l1 =
1

4
· e < 1,

MK(b− a) = MK =
1

4
· e < 1 = R,

so the hypotheses of Theorem 3.1 are satisfied.
As before, we use the trapezoidal rule with m = 12, m = 16 and m = 24 and

nodes tk =
1

m
k, k = 0,m. The errors ||x∗− x̃n|| = max

k=0,m
|x̃n(tk)− x∗(tk)| are given in

Table 2, with initial approximation x0 ≡ 0.

Table 2. Error estimates ||x∗ − x̃n|| for Example 4.2

@
@@n
m

12 16 24

1 1.080564e− 02 1.080564e− 02 1.080564e− 02
2 1.094821e− 03 1.066866e− 03 1.023419e− 03
3 4.890231e− 04 4.178235e− 04 6.098823e− 05
4 5.712236e− 05 5.014429e− 05 2.082737e− 05
5 2.034852e− 05 9.640748e− 06 6.161384e− 06
10 2.026459e− 07 1.678721e− 07 8.890239e− 08

5. Conclusions and future work

We have developed a numerical iterative method for approximating solutions of
Fredholm integral equations of the second kind, with deviating arguments, using a
combination of successive approximations (Mann iteration) for fixed points of integral
operators and quadrature formulas (the trapezoidal rule). Compared to other recent
numerical methods for solving these integral equations – such as collocation, Galerkin,
Nyström or other projection methods, wavelets-based approximations methods, Ado-
mian decomposition, etc – the present method has two major advantages, the relative
simplicity in proving the convergence of the approximate solutions to the exact so-
lution (using fixed point theory) and the low cost of implementation (as it uses a
well known quadrature formula, which is already implemented in most mathematical
software). Yet, as the examples show, it gives a good approximation even with a rel-
atively small number of iterations and of quadrature nodes. In the examples chosen,
the numerical results are quite good and the errors decrease rapidly as n (the number
of iterations) and/or m (the number of quadrature nodes) increase.

As for future work, similar ideas to the ones described in this paper can be
applied to other types of integral equations, integral equations with more complicated
kernels, or kernels satisfying other conditions than the ones considered in this work.
Also, other fixed point successive approximations can be considered, which, under
certain conditions, may converge faster. Last, but not least, more accurate numerical
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integration schemes can be employed in order to increase the speed of convergence of
the method.
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