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A study of tube-like surfaces according to type
2 Bishop frame in Euclidean space
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Abstract. The main goal of this paper is the study of the classical differential
geometry of a special kind of tube surfaces, so-called tube-like surface in 3-
dimensional Euclidean space E3. It is generated by sweeping a space curve along
another central space curve. In particular, the type 2 Bishop frame is considered
and some important theorems are obtained for that one. Finally, an application
is presented and plotted using computer aided geometric design.
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1. Introduction

In the study of the differential geometry of submanifolds, it is prevalent to ex-
amine different types of curvature conditions. Accurately, one is excited to determine
all submanifolds satisfying such a condition. A delectable curvature property to study
for a surface Σ : φ = φ(u, v) in an Euclidean space E3 which requires the existence a
functional relationship Γ(k1, k2) = 0 between the principal curvatures is called Wein-
garten surfaces or W−surfaces. With the use of the Gaussian and mean curvatures K
and H respectively, we can redefine W−surfaces, as surfaces satisfying Γ(K,H) = 0,
or, equivalently, the corresponding Jacobian determinant is identically zero, i.e.,

Γ(K,H) =

∣∣∣∣∂(K,H)

∂(u, v)

∣∣∣∣ = 0.

Besides, if φ satisfies a linear equation aK + bH = c, a, b, c ∈ R, (a, b, c) 6= (0, 0, 0),
then it said to be a linear Weingarten surface or LW−surface.

Here, when a = 0, a LW−surface φ becomes a surface with constant mean
curvature. Also, when b = 0, a LW−surface φ will be a surface with constant Gauss-
ian curvature. From this point, the linear Weingarten surfaces represent a natural
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generalization of surfaces which have constant mean curvature or constant Gaussian
curvature.

As well known, in the differential geometry of curves, the curves are investigated
by the well know Frenet-Serret equations because they are considered as the path of
a moving particle in the Euclidean space. On the other hand, some researchers aimed
to determine another moving frame for a regular curve. In 1975, Bishop pioneered
“Bishop frame” by means of parallel vector fields. This frame is also called a “parallel”
or “alternative” frame of the curves [4]. The important application of Bishop frame is
that it is used in the area of biology and computer graphics. For example, it may be
possible to compute information about the shape of sequences of DNA using a curve
defined by Bishop frame. Also, it may provide a new way to control virtual cameras
in computer animations [20]. In the present time a good deal of research has been
done using Bishop frames [5, 6, 7, 10, 25]. Because of the importance of this frame,
the authors in [29] introduced a new version of the Bishop frame and called it a type
2 Bishop frame which was studied in [11, 19].

Beside the above some geometries were interested with the study of Weingarten
surfaces. For example in [27, 28], the Weingarten surfaces in Euclidean space were
introduced by J. Weingarten in the context of the problem of finding all surfaces
isometric to a given surface of revolution. Further, applications of these surfaces on
computer aided design and shape investigation can be presented in [26]. Also, in
the three dimensional Euclidean space, Munteanu and Nistor [17] and Lopez [14, 15]
studied polynomial translation and cyclic linear Weingarten surfaces, respectively.
In addition, Ro and Yoon [21] studied a tube of Weingarten types satisfying some
equation in terms of the Gaussian curvature, mean curvature and second Gaussian
curvature. Kim and Yoon [13] classified quadric surfaces in Euclidean 3-space in terms
of the Gaussian curvature and the mean curvature while Yoon and Jun [31] classi-
fied non-degenerate quadric surfaces in Euclidean 3-space in terms of the isometric
immersion and the Gauss map. Recently, in [23], the author was studied Weingarten
tube-like surfaces in Euclidean 3-space. In a Minkowski 3-space E3

1, a classification of
these surfaces is given in [1, 2, 8, 12, 16, 24].

This paper is devoted to use the new version of type 2 Bishop frame which was
given in [29] to introduce a study for parametrization of a tube-like surface satisfying
the Jacobi condition in Euclidean 3-space E3. Moreover, for A,Q ∈ {K,H,KII}, we
discuss the (A,Q)-Weingarten and linear Weingarten for that one. Thus, the geom-
etry of such surface in terms of its intrinsic geometric formulas is established. An
application of this surface is considered and plotted.

2. Geometric preliminaries

Let E3 be a Euclidean 3-space with the scalar product given by

g = dx21 + dx22 + dx23,

where (x1, x2, x3) is a standard rectangular coordinate system of E3. In particular,

the norm of a vector U ∈ E3 is given by ‖U‖ =
√
〈u, u〉. If u = (u1, u2, u3) and



A study of tube-like surfaces 251

v = (v1, v2, v3) are arbitrary vectors in E3, we define the vector product of u and v
as the following

u ∧ v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) . (2.1)

Let α = α(t) : I → E3 be a space curve in E3. Denote by {e(t), p(t), q(t)} the moving
Frenet frame along the curve α, then the Frenet formulas are given by [22]

∂

∂t

 e(t)
p(t)
q(t)

 =

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 e(t)
p(t)
q(t)

 , (2.2)

where e = α′(t)
‖α′(t)‖ , p = e′(t)

‖e′(t)‖ and q = e(t)∧p(t) are the tangent, the principal normal

and the binormal vector fields of the curve α, respectively. The functions κ and τ are
called curvature and torsion of α, respectively. The prime´denotes the differentiation
with respect to the t−parameter.

The type 2 Bishop formulas of α are defined by

∂

∂t

 N1(t)
N2(t)
q(t)

 =

 0 0 −κ1(t)
0 0 −κ2(t)

κ1(t) κ2(t) 0

 N1(t)
N2(t)
q(t)

 . (2.3)

For this frame, the vectors N1, N2 and q are the tangent, the principal normal, and
the binormal vector fields of the curve α.

Here, the type 2 Bishop curvatures are defined by

κ1(t) = −τ cos θ(t), (2.4)

κ2(t) = −τ sin θ(t). (2.5)

It can be also shown that

θ′ = κ =
f ′

1 + (f)2
, f =

κ2
κ1
.

We shall call the set {N1, N2, q, κ1, κ2} as type 2 Bishop invariants of the curve α =
α(t).

The Bishop frame or parallel transport frame is an alternative to the Frenet
frame. Thus, the matrix relation between type 2 Bishop and Frenet-Serret frames can
be expressed as  e(t)

p(t)
q(t)

 =

 sin θ(t) − cos θ(t) 0
cos θ(t) sin θ(t) 0

0 0 1

 N1(t)
N2(t)
q(t)

 .
We denote a surface M in E3 by

φ = φ(s, t).

Let ζ be the standard unit normal vector field on the surface M defined by

ζ =
φs ∧ φt
‖φs ∧ φt‖

, φs =
∂φ

∂s
, φt =

∂φ

∂t
. (2.6)
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Thus, we have the metric gij and the coefficients of the second fundamental form
hij , i, j = 1, 2

g11 = 〈φs, φs〉, g12 = 〈φs, φt〉, g22 = 〈φt, φt〉. (2.7)

h11 = 〈φss, ζ〉, h12 = 〈φst, ζ〉, h22 = 〈φtt, ζ〉, (2.8)

where 〈, 〉 is the Euclidean inner product.

Under this parametrization of the surface M , the Gaussian curvature K and the
mean curvature H have the following forms [18]

K =
Det (hij)

Det (gij)
, (2.9)

H =
1

2
tr(gijhjk), (2.10)

where (gkl) is the associated contravariant metric tensor field of the covariant metric
tensor field (gkl); that is, gikgjk = δij .

A surface M in a three-dimensional Euclidean space E3 with positive Gaussian
curvature K possesses a positive definite second fundamental form II if appropriately
orientated. Therefore, the second fundamental form defines a new Riemannian metric
on M . In turn, we can consider the Gaussian curvature KII of the second fundamental
form which is regarded as a Riemannian metric. If a surface has non-zero Gaussian
curvature everywhere, KII can be defined formally and it is the curvature of the
Riemannian manifold (M, II).

Definition 2.1. Given a surface M in the three- dimensional Euclidean space E3, the
second Gaussian curvature is defined by [3]

KII =
1

(h11h22 − h212)
2 (2.11)

×



∣∣∣∣∣∣
− 1

2 (h11)vv + (h12)uv − 1
2 (h22)uu

1
2 (h11)u (h12)u − 1

2 (h11)v
(h12)v − 1

2 (h22)u h11 h12
1
2 (h22)v h12 h22

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2 (h11)v
1
2 (h22)u

1
2 (h11)v h11 h12
1
2 (h22)u h12 h22

∣∣∣∣∣∣


Now, to serve our study it is important to consider the following definition:

Definition 2.2. [30] (1) A regular surface is flat (developable) if and only if its Gaussian
curvature is identically zero.

(2) A regular surface for which the mean curvature vanishes identically is minimal
surface.

(3) A non -developable surface is said to be II-flat if the second Gaussian cur-
vature is equal to zero.

(4) A non- developable surface is called II -minimal if the second mean curvature
is vanished.
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3. Tube-like surface with type 2 Bishop frame in E3

In this section, we study a special case of surfaces in 3 dimensions, i.e., a tube-
like surface that is generated by sweeping a space curve along another central space
curve.

The tube-like surface can be obtained from the tube surface which is a special
kind of the canal surface.

A canal surface is the envelope of a moving sphere with varying radius defined
by the trajectory α(t) (center curve) of its center and a radius function r(t). If the
radius function r(t) is a constant, then the canal surface is called a tube [9].

For a sufficiently small parameter r > 0 and by α(t) as a center curve with
nonzero curvature, the tube-like surface of radius r with type 2 Bishop formulas (2.3)
can be written as

φ(s, t) = α(t) + r[cos s N2(t)− sin s q(t)], (3.1)

where in general r can be a function of t. For fixed t, when s runs from 0 to 2π,
we have a circle around the point α(t) in the N2B plane. As we change t, this circle
moves along the space curve α, and we will generate a tube-like surface along α.

Then, the two tangent vectors and the unit normal vector to the surface are
given by  φs = −r[sin s N2 + cos s q],

φt = ΩN1 − rκ2[sin s N2 + cos s q],
ζ = − cos s N2 + sin s q, Ω = 1− rκ1 sin s,

(3.2)

respectively. From (2.2) and (2.7) it is easily checked that the coefficients of the first
fundamental form g11, g12 and g22 of φ are given by

g11 = r2, g12 = r2κ2, g22 = Ω2 + r2κ22,

From this, we have

g = r2(Ω2 + r2κ22)− (r2κ2)2. (3.3)

This leads to the coefficients of the second fundamental form h11, h12 and h22 of φ
given by

h11 = r, h12 = rκ2, h22 = rκ22 − κ1 sin s+ rκ21 sin2 s.

It follows that

h = r(rκ22 − κ1 sin s+ rκ21 sin2 s)− (rκ2)2. (3.4)

Besides, the Gaussian curvature K and the mean curvature H of (3.1) are respectively,
given by

K = −κ1 cos s

Ωr
, (3.5)

H =
1− 2rκ1 cos s

2Ωr
. (3.6)

If the second fundamental form of φ is non-degenerate, i.e., h11h22− (h12)2 6= 0, then
the second Gaussian curvature KII on φ(s, t) can be obtained

KII =
1

4Ω4r sin2 s
[1 + sin2 s− 6rκ1 sin3 s+ 4r2κ21 sin4 s]. (3.7)
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3.1. Tube-like surface of W- type

In the following, we study the tube-like surface φ in E3 satisfying the Jacobi
equation Γ(X,Y ) = 0, X 6= Y , of the curvatures K, H and KII of φ and we formulate
the main results in the next theorems.

Theorem 3.1. Let M be a tube-like surface in E3 defined by Eq. (3.1), then M is a
(K,H) W−surface.

Proof. Let M be a tube-like surface in E3. Differentiating K and H with respect to
s and t respectively, then we obtain

Ks = −κ1 cos s

rΩ2
, Kt = −κ

′
1 sin s

rΩ2
, (3.8)

Hs = −κ1 cos s

2Ω2
, Ht = −κ

′
1 sin s

2Ω2
. (3.9)

By using (3.8) and (3.9), M satisfies identically the Jacobi equation

φ(K,H) = KsHt −KtHs = 0.

Therefore M is a W−surface.

Theorem 3.2. Let M be a tube-like surface parameterized by (3.1) with non-degenerate
second fundamental form in the Euclidean 3-space E3. If M is a (K,KII) W−surface,
then κ′1 = 0, i.e., the curvature of α(t) is a non-zero constant.

Proof. Let M be a tube-like surface in E3 parameterized by (3.1). If we take derivative
of KII given by (3.7) with respect to s and t respectively, and using Eq. (3.8) then
we have

(KII)s =
−1

2rΩ3 sin3 s
[1− rκ1(2 cos2 s+ rκ1 sin3 s) sin s] cos s, (3.10)

(KII)t =
κ′1

2Ω3 sin s
[cos2 s− sin2 s+ rκ1 sin3 s]. (3.11)

We consider the tube-like surface (3.1) in E3 satisfying the Jacobi equation

φ(K,KII) = Ks(KII)t −Kt(KII)s = 0, (3.12)

with respect to the Gaussian curvature K and the second Gaussian curvature KII .
Then, substituting from (3.10) and (3.11) into (3.12), we get

κ′1 cos s = 0.

Since this polynomial is equal to zero for every s, its coefficient must be zero. There-
fore, we conclude that κ′1 = 0.

Theorem 3.3. Let M be a tube-like surface parameterized by (3.1) with non-degenerate
second fundamental form in the Euclidean 3-space E3. If M is a (H,KII) W−surface,
then κ′1 = 0. This means that the curvature of α(t) is a non-zero constant.
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Proof. We assume that the tube-like surface given by (3.1) with non-degenerate sec-
ond fundamental form in E3 is a (H,KII) W−surface. Then, it satisfies the Jacobi
equation

φ(H,KII) = Hs(KII)t −Ht(KII)s = 0. (3.13)

Equations (3.9), (3.10), (3.11) and (3.13) lead to

κ′1 cos s = 0. (3.14)

From (3.14), one can get κ′1 = 0. Thus, the curvature of α(t) is a non-zero constant.

4. Tube-like surface of LW- type

Now, to examine the linear Weingarten property of the tube-like surface φ defined
along the space curve α(t). Let us analyze the following theorems.

Theorem 4.1. Suppose that the tube-like surface defined by (3.1) in E3 is a
LW−surface satisfying aK + bH = c, then κ1 = 0 and M is an open part of a
circular-like cylinder.

Proof. Consider the parametrization (3.1) with K and H given by (3.5) and (3.6)
respectively, then the relation

aK + bH = c,

implies
2κ1(a+ br − cr2) sin s− b+ 2cr = 0. (4.1)

Since sin s and 1 are linearly independent, we have

2κ1(a+ br − cr2) = 0, b = 2cr.

This leads to
κ1(a+ cr2) = 0.

If a+ cr2 6= 0, then κ1 = 0. Thus, M is an open part of a circular-like cylinder.

Theorem 4.2. Let (A,Q) ∈ {(K,KII), (H,KII)}, then there are no (A,Q) LW−tube-
like surfaces in Euclidean 3-space E3.

Proof. Firstly, we suppose that the tube-like surface (3.1) with non-degenerate second
fundamental form in E3. satisfies the equation

aK + bKII = c. (4.2)

By the aid of (3.5) and (3.7), the equation (4.2) takes the form

−1

4rΩ2 sin2 s
[−4rκ21(a+ br − cr2) sin4 s

+2κ1(2a+ 3br − 4cr2) sin3 s− (b− 4cr) sin2 s− b] = 0.

Since the identity holds for every s, all the coefficients must be zero. Therefore, we
obtain

4rκ21(a+ br − cr2) = 0,

2κ1(2a+ 3br − 4cr2) = 0,

(b− 4cr) = 0, b = 0.
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Thus, we get b = 0, c = 0 and κ1 = 0. In this case, the second fundamental form of
M is degenerate.

Secondly, let the tube-like surface (3.1) with non-degenerate second fundamental
form in E3 satisfy the relation

aH + bKII = c. (4.3)

From Equations (3.6), (3.7) and (4.3), we get

−1

4rΩ2 sin2 s
[−4r2κ21(a+ b− cr) sin4 s

+2rκ1(3a+ 3b− 4cr) sin3 s

−(2a+ b− 4cr) sin2 s− b] = 0.

Based on the above, one can obtain b = 0, c = 0 and κ1 = 0. It indicates that the
second fundamental form of the tube-like surface is degenerate. Then, there are no
(H,KII)-linear Weingarten tube-like surfaces in E3.

5. Application

Now, as an application of our main results, we give the following example

Example 5.1. Consider the surface given by

φ(s, t) = α(t) + r(cos s N2(t)− sin s q(t)), (5.1)

where α(t) is given by

α(t) = (cos t, sin t, t). (5.2)

The Bishop frame {N1(t), N2(t), q(t)} of the curve α is expressed as
N1(t) = 1√

2
(− sin t, cos t, 1),

N2(t) = −(cos t, sin t, 0),
q(t) = 1√

2
(sin t,− cos t, 1)

(5.3)

Thus, the parametric form of the tube-like surface φ(s, t) can be written as

φ(s, t) = (λ1(s, t), λ2(s, t), λ3(s, t)), (5.4)

where 
λ1 = ((1− r cos s) cos t− 1√

2
r sin s sin t),

λ2 = ((1− r cos s) sin t+ 1√
2
r sin s cos t),

λ3 = (t− 1√
2
r sin s).

(5.5)

For this parametrization surface, the components of the first fundamental form are
given by {

g11 = r2, g12 = −1
2 r

2 sin θ(t),
g22 = 1

4 [(2 + r sin s cos θ(t))2 + r2 sin2 θ(t)].
(5.6)

The unit normal vector of φ is obtained from (2.6) as

ζ = cos s N2(t)− sin s q(t). (5.7)
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Then the second fundamental form components of φ are as follows:{
h11 = −r, h12 = 1

2r sin θ(t),
h22 = 1

4 (−2 sin s cos θ(t)− r(sin2 s+ cos2 sin2 θ(t)).
(5.8)

In addition, the Gaussian curvature K and the mean curvature H of φ are respectively,
given by

K =
sin s cos θ(t)

2r + r2 sin s cos θ(t)
, (5.9)

H =
−1

r
+

1

r(2 + r sin s cos θ(t))
. (5.10)

Since h11h22−h212 6= 0, then we can get the second Gaussian curvature KII on φ(s, t)
as follows:

KII = −cos2 s + 2 sin2 s + 3r sin3 s cos θ(t) + r2 sin4 s cos θ(t)

r(2 + r sin s cos θ(t))2 sin2 s
. (5.11)

From aforementiomed data, one can deduce that when sin s = 0, then from (5.9) and
(5.10), we get K = 0 and H = −1

2r = const., respectively.

Therefore, in the three dimensional Euclidean space E3, equations (5.9)-(5.11)
show that:

The surface (5.4) is a (K,H) W−surface (Theorem 3.1.).
Besides, it is (K,KII) and (H,KII) W−surface (Theorems 3.2 and 3.3).
Moreover, it is an open part of a circular-like cylinder (Theorem 4.1).
In addition, there are no tube-like surfaces of types (K,KII) and (H,KII)

LW−surface (Theorem 4.2).
We can easily see the graph of some tube-like surfaces generated by circular helix

in Figures 1, 2, 3.

Figure 1. Tube-like surface

generated by circular helix
with s ∈ [0, 1.1π], t ∈ [0, 1.2π]

Figure 2. Tube-like surface

generated by circular helix
with s ∈ [0, 1.2π], t ∈ [0, 1.7π]

Figure 3. Tube-like surface

generated by circular helix
with s ∈ [0, 2π], t ∈ [0, 2π]
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6. Conclusion

In this paper, we proposed a definition of a tube-like surface in the three-
dimensional Euclidean space E3. It is generated by sweeping a space curve along
another central space curve. We investigated the meant surface on satisfying some
equations in terms of the Gaussian curvature K, the mean curvature H and the sec-
ond Gaussian curvatures KII using a new version of Bishop frame. As an application
to demonstrate our theoretical results, we have given an example.
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