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1. Introduction

Many research are interested to study the existence of nontrivial solutions of
Kirchhoff type equations for its huge importance. The Kirchhoff equation was intro-
duced for the first time in 1876, which describe the free transverse vibrations of a
tight rope of length L and a constant density (assumed to be equal to 1). The rope
is described by a variable x taking its values in the interval [0, L]. The system of
equations describing this phenomena and which was given by Kirchhoff is

utt −
(
g(λ)ux

)
x

= 0, 0 < x < L, t > 0, (1.1)

vtt −
(
g(λ)(1 + vx)

)
x

= 0, 0 < x < L, t > 0, (1.2)

u(0, t) = u(L, t) = v(0, t) = v(L, t), t ≥ 0, (1.3)

where λ is the deformation of the cord given by λ(x, t) =
(
|1+vx|2 + |ux|2

) 1
2 −1, and

g(λ) = σ(λ)
1+λ with σ(λ) represents the rope (cord) constraint corresponding to λ; finally

and most important, the unknowns u(x, t) and v(x, t) represent the transversal and



522 Melzi Imane and Moussaoui Toufik

longitudinal displacements of the material point x at the time t. In order to separate
the unknowns u and v and under some hypotheses, one can obtain

utt −
(
T0 +

E

2L

∫ L

0

|ux|2 dx
)
uxx = 0, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

which is named the Kirchhoff equation. T0 and E
2L are two physical constants.

Since then, many researchers are interested in the Kirchhoff equation for its impor-
tance and it has been the subject of many studies; we cite here, in particular [4],
which treats the following Kirchhoff type problem −

(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω,

with 4-superlinear growth as |u| → +∞, and using minimax methods, it gives two
interesting results, the existence of nontrivial solutions, and the existence of sign-
changing solutions and multiple solutions. We cite also [3] which treat the existence
and multiplicity of solutions for the semilinear elliptic problem given by{

−∆u+ `(x)u = f(x, u), in Ω,
u = 0, on ∂Ω,

by using the Mountain Pass technique. Note that, our work is practically based on
the papers [3] and [4].

Let us consider the following nonlocal1 Kirchhoff problem −
(
a+ b

∫
Ω

|∇u|p dx
)p−1

∆pu+ `(x)|u|p−2u = f(x, u), in Ω,

u = 0 on ∂Ω,
(1.4)

where ∆p is the p Laplacian operator: −∆pu = div(|∇u|p−2∇u), Ω is a smooth
bounded domain in RN with N ≥ 3, a, b two strictly positive real numbers, ` ∈
L
N
p (Ω) ∩ L∞(Ω) and f is a real continuous function defined on Ω × R. The induced

norm in W 1,p
0 (Ω) is given by

||u|| :=
(∫

Ω

|∇u|p dx
) 1
p

, ∀u ∈W 1,p
0 (Ω).

2. Statement of the main result

The operator L defined by Lu = −(a + b||u||p)p−1∆pu + `|u|p−2u possesses an
unbounded eigenvalues sequence

λ1 < λ2 ≤ · · · ≤ λn → +∞ as n→ +∞,

1It is called nonlocal because of the term M(||u||p) = a+ b||u||p which implies that the equation is

no more a punctual identity [1].
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where λ1 is simple and is characterized by

λ1 = inf
u∈W 1,p

0 (Ω),u 6=0

(a+ b||u||p)p−1||u||p +

∫
Ω

`(x)|u|p dx∫
Ω

|u|p dx
·

Remark 2.1. Our purpose in this remark is to study the following eigenvalue problem

Lφ = −(a+ b||φ||p)p−1∆pφ+ `(x)|φ|p−2φ = λ|φ|p−2φ. (2.1)

Let λk and φ̃k respectively eigenvalues and eigenfunctions of the operator

−∆p + g|φ|p−2 : W 1,p
0 (Ω)→W−1,p′(Ω)

with g ∈ L∞(Ω) (see [5], [6]), which means that

−∆pφ̃k + g(x)|φ̃k|p−2φ̃k = λk|φ̃k|p−2φ̃k; (2.2)

especially for g(x) =
`(x)

(a+ b||φ̃k||p)p−1
, i.e.,

−∆pφ̃k +
`(x)

(a+ b||φ̃k||p)p−1
|φ̃k|p−2φ̃k = λk|φ̃k|p−2φ̃k, (2.3)

multiplying by (a+ b||φ̃k||p)p−1, we obtain

−(a+ b||φ̃k||p)p−1∆pφ̃k + `(x)|φ̃k|p−2φ̃k = λk(a+ b||φ̃k||p)p−1|φ̃k|p−2φ̃k, (2.4)

so the sequence (λ̂k) defined by

λ̂k = λk(a+ b||φ̃k||p)p−1

consist of eigenvalues of the operator L associated to the eigenfunctions φ̃k. Since λ1

is simple and strictly positive (see[5]) , it follows that λ̂1, the first eigenvalue of (2.1),
is also simple and strictly positive.

Proposition 2.1. If λ is an eigenvalue of the operator L, then, there exist λk and φ̃k
such that

λ = λk(a+ b||φ̃k||p)p−1.

Proof. As λ is an eigenvalue of the operator L, one has that there exists φ ∈W 1,p
0 (Ω)

with φ 6≡ 0 which satisfies

−(a+ b||φ||p)p−1∆pφ+ `(x)|φ|p−2φ = λ|φ|p−2φ in Ω, φ = 0 on ∂Ω,

and this implies that

(a+ b||φ||p)p−1

∫
Ω

|∇φ|p dx+

∫
Ω

`(x)|φ|p dx = λ

∫
Ω

|φ|p dx,

as a result

λ =
(a+ b||φ||p)p−1||φ||p +

∫
Ω
`(x)|φ|p dx∫

Ω
|φ|p dx

,
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and that

−∆pφ+
`(x)

(a+ b||φ||p)p−1
|φ|p−2φ =

λ

(a+ b||φ||p)p−1
|φ|p−2φ,

consequently, there exists k ∈ N∗ such that λk = λ

(a+b||φ̃k||p)p−1
and φ = φ̃k for some

eigenfunction associated to λk. λk = λ

(a+b||φ̃k||p)p−1
implies that λ = λk(a+b||φ̃k||p)p−1

and this conclude the proof of the proposition. �

For p < N and concerning the embedding mapping W 1,p
0 (Ω) # Lr(Ω), it is

continuous for r ∈ [1, p∗] and compact for r ∈ [1, p∗) with p∗ = pN
N−p , so we have that

Sr|u|r ≤ ||u|| for all u ∈ W 1,p
0 (Ω), where | · |r denotes the norm in Lr(Ω) and Sr is

the best constant corresponding to the embedding mapping (see [2]).

In this paper, we assume that f is a continuous function on Ω×R and satisfies:

(H1) for every M > 0, there exists a constant LM > 0 such that |f(x, s)| ≤ LM for
|s| ≤M and a.e. x ∈ Ω,

(H2) lim
|s|→∞

f(x, s)

|s|p∗−2s
= 0, uniformly in a.e. x ∈ Ω,

(H3) there exist a function m ∈ L
N
p (Ω), and a subset Ω′ ⊂ Ω with |Ω′| > 0 such that

lim sup
s→0

pF (x, s)

|s|p
≤ m(x) ≤ λ1,

uniformly in a.e. x ∈ Ω, and m < λ1 in Ω′, where F (x, s) =
∫ s

0
f(x, t) dt and | · |

is the Lebesgue measure,

(H4) lim
|s|→∞

F (x, s)

sp2
= +∞ uniformly in a.e. x ∈ Ω,

(H5) let F (x, u) =
1

p2
f(x, u)u − F (x, u), then F (x, u) → +∞ as |u| → +∞ uni-

formly in x ∈ Ω, and there exists σ > max{1, Np } such that |f(x, u)|σ ≤
CF (x, u)(|u|p−1)σ for |u| large.

Furthermore, we suppose that one of the two conditions is satisfied
(
`(x)−m(x) ≥ 0

)
or
(
`(x) ≥ 0 and ap−1 ≥ |m|L∞

Spp
when p ≥ 2

)
.

Example: consider the function

f(x, s) =

{
s3 ln(1 + s) + s4

4(1+s) −
1
4 [s3 + s2 + s], s ≥ 0,

s3 ln(1− s)− s4

4(1−s) −
1
4 [s3 − s2 + s], s < 0,

then f satisfies all the above hypotheses for p = 2 and N = 3.
Our main result is the following theorem

Theorem 2.1. Assume that hypotheses (H1)-(H5) hold, and that sf(x, s) ≥ 0 for
s ∈ R and a.e. x ∈ Ω. Then problem (1.4) has at least a nonnegative solution and a
nonpositive solution.



Existence of solutions for a p-Laplacian Kirchhoff type problem 525

3. Preliminaries

Let E = W 1,p
0 (Ω) and define the functional

Φ(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx−
∫

Ω

F (x, u) dx, u ∈ E,

where M̂(t) =
∫ t

0
[M(s)]p−1 ds and M(s) = a+ bs, in other words,

Φ(u) =
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx−
∫

Ω

F (x, u) dx, u ∈ E.

The variational formulation associated to the problem is[
M(||u||p)

]p−1
∫

Ω

|∇u|p−2∇u∇v dx+

∫
Ω

`(x)|u|p−2uv dx =

∫
Ω

f(x, u)v dx, ∀v ∈ E,

and by (H1) and (H2), one can verify that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 =
[
M(||u||p)

]p−1
∫

Ω

|∇u|p−2∇u∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

f(x, u)v dx, ∀u, v ∈ E;

the weak solutions of the variational formulation are the critical points of Φ in E.
Following the paper [3] and in order to obtain nonnegative and nonpositive solutions,

we let f̃(x, s) = f(x, s)−m(x)|s|p−2s and truncate f̃ above or below s = 0, i.e., let

f̃+(x, s) =

{
f̃(x, s), s ≥ 0,
0, s < 0,

and f̃−(x, s) =

{
f̃(x, s), s ≤ 0,
0, s > 0,

and F̃+(x, s) =
∫ s

0
f̃+(x, t) dt, F̃−(x, s) =

∫ s
0
f̃−(x, t) dt. Under (H1) and (H2), the

functionals Φ̃+ and Φ̃− defined as follows

Φ̃+(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx,

=
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx

− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx,

Φ̃−(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃−(x, u) dx,

=
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

−
∫

Ω

F̃−(x, u) dx,
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belong to C1(E,R) and

〈Φ̃′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃+(x, u)v dx,

〈Φ̃′−(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃−(x, u)v dx,

for all u, v ∈ E.

4. Proof of main results

We recall one critical point theorem which is the Mountain Pass lemma.

Theorem 4.1. Let (X, || · ||X) be a Banach space, suppose that Φ ∈ C1(X,R) satisfies
Φ(0) = 0 and

(i) (the first geometric condition) there exist positive constants R0 and α0 such that

Φ(u) ≥ α0 for all u ∈ X with ||u||X = R0,

(ii) (the second geometric condition) there exists e ∈ X with ||e||X > R0 such that
Φ(e) < 0,

(iii) (the Palais-Smale condition) Φ satisfies the (Cc) condition, that is, for c ∈ R,
every sequence (un) ⊂ X such that

Φ(un)→ c, ||Φ′(un)|| (1 + ||un||)→ 0

has a convergent subsequence. Then c := inf
γ∈Γ

sup
s∈[0,1]

Φ(γ(s)) is a critical value of

Φ, where

Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}.

We need also the following lemmas.

Lemma 4.1. Assume that N ≥ 3 and v ∈ L
N
p (Ω), then the functional

ψ(u) :=

∫
Ω

v(x)|u|p dx, u ∈W 1,p
0 (Ω)

is weakly continuous.

Proof. As in [8], the functional ψ is well defined by the Sobolev and Hölder inequali-

ties. Assume that un ⇀ u in W 1,p
0 (Ω) and consider an arbitrary subsequence (wn) of

(un). Since

wn → u in Lploc(Ω), w+
n → u+ in Lploc(Ω) and w−n → u− in Lploc(Ω)

going if necessary to a subsequence, we can assume that

wn → u a.e. on Ω, w+
n → u+ a.e. on Ω and w−n → u− a.e. on Ω.
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Since both (w+
n ) and (w−n ) are bounded in Lp

∗
(Ω), ((w+

n )p) and ((w−n )p) are bounded

in L
N
N−p (Ω). Hence (w+

n )p ⇀ (u+)p and (w−n )p ⇀ (u−)p in L
N
N−p (Ω), and so∫

Ω

v(x)|wn|p dx→
∫

Ω

v(x)|u|p.

As a result, ψ is weakly continuous. �

Lemma 4.2. Assume that m ∈ L
N
p (Ω), and there exists Ω′ ⊂ Ω with |Ω′| > 0 such

that
m ≤ λ1 in Ω and m < λ1 in Ω′

then

d := inf
u∈W 1,p

0 (Ω),u6=0

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
m(x)|u|p dx

||u||p

is strictly positive (d > 0).

Proof. Since λ1 = inf
u∈W 1,p

0 (Ω),u6=0

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx

|u|pp
and from the

assumption that m ≤ λ1 in Ω, we have that d ≥ 0, because m ≤ λ1 implies that

−
∫

Ω

m|u|p dx ≥ −
∫

Ω

λ1|u|p dx,

and consequently, we have(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
m(x)|u|p dx

||u||p

≥

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
λ1|u|p dx

||u||p

=

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx

||u||p
− λ1

∫
Ω
|u|p dx
||u||p

≥ 0,

by definition of λ1. It remains to prove that d 6= 0; for that, we let

J(u) :=

∫
Ω

`(x)|u|p dx, u ∈W 1,p
0 (Ω),

K(u) :=

∫
Ω

m(x)|u|p dx, u ∈W 1,p
0 (Ω),

L(u) :=
(
a+ b||u||p

)p−1

||u||p + J(u)−K(u), u ∈W 1,p
0 (Ω).

Supposing by contradiction that d = 0, it follows that there exists a sequence (un)n ⊂
W 1,p

0 (Ω) such that
||un|| = 1 and lim

n→+∞
L(un) = 0,
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by the boundedness of (un)n in W 1,p
0 (Ω), we can extract a subsequence such that

un ⇀ u in W 1,p
0 (Ω). Since J and K are weakly continuous, we have

lim
n→+∞

J(un) = J(u), lim
n→+∞

K(un) = K(u), (4.1)

and from the weak lower semicontinuity of L, we obtain

0 ≤ L(u) ≤ lim inf
n

L(un) = lim
n
L(un) = 0,

then we have

L(u) =
(
a+ b||u||p

)p−1

||u||p + J(u)−K(u) = lim
n
L(un) = 0, (4.2)

which implies that(
a+ b||u||p

)p−1

||u||p + J(u) = K(u) =

∫
Ω

m(x)|u|p dx ≤ λ1

∫
Ω

|u|p dx,

so, we have(
a+ b||u||p

)p−1

||u||p + J(u) ≤ λ1

∫
Ω

|u|p dx ≤
(
a+ b||u||p

)p−1

||u||p + J(u),

consequently (
a+ b||u||p

)p−1

||u||p + J(u) = λ1

∫
Ω

|u|p dx. (4.3)

If u = 0, from (4.1), (4.2), we have that

lim
n
L(un) = lim

n

((
a+ b||un||p

)p−1

||un||p
)

+ J(0)−K(0) = 0,

which implies that lim
n→+∞

||un|| = 0, and this is a contradiction with ||un|| = 1. So

u 6= 0, then u is an eigenfunction corresponding to λ1; since m ≤ λ1 in Ω and m < λ1

in Ω′ with |Ω′| > 0, it follows that,(
a+ b||u||p

)p−1

||u||p + J(u) = K(u) =

∫
Ω

m(x)|u|p dx

=

∫
Ω′
m(x)|u|p dx+

∫
Ω\Ω′

m(x)|u|p

< λ1

∫
Ω′
|u|p dx+

∫
Ω\Ω′

λ1|u|p dx

=

∫
Ω

λ1|u|p dx,

which is in contradiction with (4.3). Consequently, d > 0. �

Lemma 4.3. Assume (H1), (H2) and (H3) hold, then Φ̃+ satisfies the first geometric
condition.

Proof. In the same way as in the paper [3], by (H3) and for ε ∈
(

0,
dSpp

2

)
, there exists

a positive constant M1 < 1 such that

F+(x, s) = F (x, s+) ≤ 1

p
(m(x) + ε)(s+)p, for |s| ≤M1 and a.e. x ∈ Ω (4.4)
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with s+ = max(s, 0); for the chosen ε and from (H1) and (H2), we have

∃M2 > 1,∃LM2
: |f+(x, s)| = |f(x, s+)| ≤ ε(s+)p

∗−1 + LM2
(4.5)

and

F+(x, s) ≤ 1

p
(m(x) + ε)(s+)p +

(LM2M2

Mp∗

1

+
ε

p∗

)
(s+)p

∗
, (4.6)

for s ∈ R and a.e. x ∈ Ω. From (4.6), we have

Φ̃+(u) =
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx

− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx

=
1

bp2
(a+ b||u||p)p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

=
1

bp2
(a+ b||u||p)p−1(a+ b||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

≥ 1

bp2
(a+ b||u||p)p−1b||u||p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

=
1

p2
(a+ b||u||p)p−1||u||p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx,

=
1

p

[
(a+ b||u||p)p−1||u||p +

∫
Ω

`(x)|u|p dx−
∫

Ω

m(x)|u|p dx
]

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p −

∫
Ω

F̃+(x, u) dx

≥ d

p
||u||p −

∫
Ω

F̃+(x, u) dx− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

=
d

p
||u||p −

∫
Ω

F+(x, u) dx+
1

p

∫
Ω

m(x)|u+|p dx

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

≥ d

p
||u||p − 1

p

∫
Ω

(m(x) + ε)(u+)p dx−
∫

Ω

(LM2
M2

Mp∗

1

+
ε

p∗

)
(u+)p

∗
dx

+
1

p

∫
Ω

m(x)|u+|p dx− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p
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=
d

p
||u||p − 1

p

∫
Ω

ε(u+)p dx−
∫

Ω

(LM2
M2

Mp∗

1

+
ε

p∗

)
(u+)p

∗
dx

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

≥ d

p
||u||p − ε

pSpp
||u||p −

(LM2M2

M2∗
1

+
ε

2∗

)( 1

Sp∗

)
||u||p

∗

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

=
d

2p
||u||p −

(LM2
M2

Mp∗

1

+
ε

p∗

)( 1

Sp∗

)
||u||p

∗
− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p,

∀u ∈W 1,p
0 (Ω).

Let C1 =
(
LM2

M2

Mp∗
1

+ ε
p∗

)(
1
Sp∗

)
, we have that

Φ̃+(u) ≥ d

2p
||u||p − C1||u||p

∗
− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p, ∀u ∈W 1,p

0 (Ω).

For R0 sufficiently small, with ‖u‖ = R0, one can have ||u||p∗ < ||u||p and

(a+ b||u||p)p−1||u||p < ||u||p

and

Φ̃+(u) ≥ d

2p
||u||p− C1||u||p

∗
− ap

bp2
− 1

pp′
(a+b||u||p)p−1||u||p≥α0>0, ∀u ∈W 1,p

0 (Ω).

Consequently, the first geometric condition is satisfied. �

Lemma 4.4. Assume that (H1) and (H4) hold, then Φ̃+ satisfies the second geometric
condition.

Proof. Note that, using the following standard inequality, for α, β ≥ 0 and p ≥ 1, we
have (α+ β)p ≤ 2p−1(αp + βp), then,

M̂(||u||p) =
1

pb

[
(a+ b||u||p)p − ap

]
≤ 1

pb

[
2p−1

(
ap + bp||u||p

2
)
− ap

]
≤ 1

pb

[
(2p−1 − 1)ap + 2p−1bp||u||p

2
]
;

let c1 = 2p−1 − 1 and c2 = 2p−1bp, we have

M̂(||u||p) ≤ 1

pb

[
c1a

p + c2||u||p
2
]
. (4.7)

From (H1) and (H4), we have

∀Λ > 0, ∃M3 > 0, F+(x, s) ≥ Λ(s+)p
2

− LM3M3,

for s ∈ R and a.e. x ∈ Ω.
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Then for t > 0, φ1 > 0, the first eigenfunction and using (4.7), we have

Φ̃+(tφ1) =
1

p
M̂(||tφ1||p) +

1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx−
∫

Ω

F̃+(x, tφ1) dx

≤ 1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx

−
∫

Ω

F̃+(x, tφ1) dx

=
1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx

+
1

p

∫
Ω

m(x)((tφ1)+)p dx−
∫

Ω

F (x, (tφ1)+) dx

≤ 1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx− Λ

∫
Ω

tp
2

φp
2

1 dx+ LM3M3|Ω|

= tp
2
[ c2
p2b
||φ1||p

2

− Λ

∫
Ω

φp
2

1 dx
]

+
tp

p

∫
Ω

`(x)φp1 dx+
c1a

p

p2b
+ LM3

M3|Ω|

= Atp
2

+Btp + C = P (t),

where

A =
c2
p2b
||φ1||p

2

− Λ

∫
Ω

φp
2

1 dx, B =
1

p

∫
Ω

`(x)φp1 dx, and C =
c1a

p

p2b
+ LM3M3|Ω| > 0;

by choosing

Λ >
c2||φ1||p

2

p2b
∫

Ω
φp

2

1 dx
,

we then have A < 0. For t0 sufficiently large, we have that P (t0) < 0 and then by
taking

e = t0φ1 ∈W 1,p
0 (Ω),

we conclude that Φ̃+ satisfies the second geometric condition. �

Lemma 4.5. Assume that (H1), (H2) and (H5) hold, then Φ̃+ satisfies the Palais-
Smale condition.

Proof. Claim 1: Under the same hypotheses in the above lemma, any (Cc) sequence
is bounded.
Indeed, for c ∈ R, and (un)n ⊂W 1,p

0 (Ω), such that

Φ̃+(un)→ c and (1 + ||un||)Φ̃′+(un)→ 0, (4.8)
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we have for n large, that

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

=
1

p
M̂(||un||p) +

1

p

∫
Ω

`(x)|un|p dx−
1

p

∫
Ω

m(x)|un|p dx−
∫

Ω

F̃+(x, un) dx

− 1

p2

[[
M(||un||p)

]p−1

||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f̃+(x, un)un dx
]

=
1

p
M̂(||un||p) +

1

p

∫
Ω

`(x)|un|p dx−
1

p

∫
Ω

m(x)|un|p dx+
1

p

∫
Ω

m(x)(u+
n )p dx

−
∫

Ω

F+(x, un) dx− 1

p2

[[
M(||un||p)

]p−1

||un||p +

∫
Ω

`(x)|un|p dx

−
∫

Ω

m(x)|un|p dx+

∫
Ω

m(x)(u+
n )p dx−

∫
Ω

f+(x, un)un dx
]

because,

F̃+(x, s) = F (x, s+)−m(x)
(s+)p

p

and

f̃+(x, s) = f(x, s+)s+ −m(x)(s+)p = f(x, s+)s−m(x)(s+)p,

then

C0 ≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx−
∫

Ω

F+(x, un) dx+
1

p2

∫
Ω

f+(x, un)un dx

=
1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx+

∫
Ω

F (x, u+
n ) dx;

note that the quantity 1
pM̂(||un||p)− 1

p2

[
M(||un||p)

]p−1

||un||p is positive, so we obtain

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

≥
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx+

∫
Ω

F (x, u+
n ) dx.
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If `(x)−m(x) ≥ 0 and since (u−)p ≤ |u|p, we have

C0 ≥
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx−
(1

p
− 1

p2

)∫
Ω

m(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

=
(1

p
− 1

p2

)∫
Ω

(`(x)−m(x))|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥
∫

Ω

F (x, u+
n ) dx.

If `(x) ≥ 0 and ap−1 ≥ |m|L∞
Spp

where p ≥ 2, and using the fact that∣∣∣ ∫
Ω

m(x)upn dx
∣∣∣ ≤ |m|L∞ |un|pp

≤ |m|L∞
1

Spp
||un||p,

we have

C0 ≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p −
(1

p
− 1

p2

)
|m|L∞

1

Spp
||un||p

+
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥
∫

Ω

F (x, u+
n ) dx.

So, in both cases, one can obtain

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

≥
∫

Ω

F (x, u+
n ) dx; (4.9)

let suppose by contradiction that ||un|| → +∞, and set

vn =
un
||un||

.

Then ||vn|| = 1, and

|vn|s ≤
1

Ss
||vn|| =

1

Ss
,

for s ∈ [1, p∗].
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Observe that

Φ̃′+(un)un = (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f̃(x, u+
n )un dx

= (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f(x, u+
n )un dx+

∫
Ω

m(x)(u+
n )p dx

= (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)(u−n )p dx

−
∫

Ω

f(x, u+
n )un dx

= ||un||p
2
( (a+ b||u||p)p−1||u||p

||un||p2
+

∫
Ω
`(x)|un|p dx
||un||p2

−
∫

Ω
m(x)(u−n )p dx

||un||p2

−
∫

Ω
f(x, u+

n )vn dx

||un||p2−1

)
.

From (4.8), Φ̃′+(un)→ 0 as n→ +∞, so we have

lim
n

( (a+ b||u||p)p−1||u||p

||un||p2
+

∫
Ω
`(x)|un|p dx
||un||p2

−
∫

Ω
m(x)(u−n )p dx

||un||p2
−
∫

Ω
f(x, u+

n )vn dx

||un||p2−1

)
=0.

Let’s show that

lim
n

∫
Ω
`(x)|un|p dx
||un||p2

= 0

and

lim
n

∫
Ω
m(x)(u−n )p dx

||un||p2
= 0.

We have ∫
Ω
`(x)|un|p dx
||un||p2

=

∫
Ω
`(x)|vn|p dx
||un||p

and ∫
Ω
m(x)(u−n )p dx

||un||p2
=

∫
Ω
m(x)(v−n )p dx

||un||p
;

since vn → v in Lr (r ∈ [1, p∗)) and from Lemma 4.1, we deduce that

lim
n

∫
Ω

`(x)|vn|p dx =

∫
Ω

`(x)|v|p dx and lim
n

∫
Ω

m(x)(v−n )p dx =

∫
Ω

m(x)(v−)p dx,

and since ||un|| → +∞, we conclude that

lim
n

∫
Ω
`(x)|un|p dx
||un||p2

= lim
n

∫
Ω
m(x)(u−n )p dx

||un||p2
= 0.
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We have also that

lim
n→+∞

(a+ b||un||p)p−1||u||p

||un||p2
= lim
n→+∞

bp−1||u||p(p−1)+p

||un||p2
= bp−1.

Then

lim
n

∫
Ω

f(x, u+
n )vn dx

||un||p2−1
= bp−1. (4.10)

Set for r ≥ 0,

g(r) = inf{F (x, u+) : x ∈ Ω and u+ ∈ R+ with u+ ≥ r}.
(H5) implies that g(r) > 0 for all r large, and g(r) → +∞ as r → +∞. Set for
0 ≤ α < β ≤ +∞,

Λn(α, β) := {x ∈ Ω : α ≤ |u+
n (x)| < β}

and

σβα := inf
{F (x, u+)

|u+(x)|p
: x ∈ Ω and u+ ∈ R+ with α ≤ u+ < β

}
.

For large α, we have F (x, u+) > 0, σβα > 0 and

F (x, u+
n ) ≥ σβα|u+

n |p, for x ∈ Λn(α, β).

It follows from (4.9) that

C0 ≥
∫

Λn(0,α)

F (x, u+
n ) +

∫
Λn(α,β)

F (x, u+
n ) +

∫
Λn(β,+∞)

F (x, u+
n )

≥
∫

Λn(0,α)

F (x, u+
n ) + σβα

∫
Λn(α,β)

|u+
n |p + g(β) |Λn(β,+∞)|.

Since g(r)→ +∞ as r → +∞,

|Λn(β,+∞)| → 0, as β → +∞, uniformly in n,

which implies that, by the Hölder inequality, that for any s ∈ [1, p∗),∫
Λn(β,+∞)

|vn|s ≤
(∫

Λn(β,+∞)

(|vn|s)
p∗
s

) s
p∗ |Λn(β,+∞)|

p∗−s
p∗

≤ 1

Ssp∗
|Λn(β,+∞)|

p∗−s
p∗

→ 0 (4.11)

as β → +∞ uniformly in n. Furthermore, for any fixed 0 < α < β,∫
Λn(α,β)

|v+
n |p =

1

||un||p

∫
Λn(α,β)

|u+
n |p =

1

||un||p

∫
Λn(α,β)

σβα|u+
n |p

σβα

≤ 1

||un||pσβα

∫
Λn(α,β)

F (x, u+
n )

≤ C0

||un||pσβα
→ 0. (4.12)
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Set 0 < η < bp−1

3 . From (4.5) (from (H1) and (H2)), we have∫
Λn(0,α)

f(x, u+
n )un

||un||p2
≤
∫

Λn(0,α)

|f(x, u+
n )un|

||un||p2
=

∫
Λn(0,α)

|f(x, u+
n )| (u+

n + u−n )

||un||p2

=

∫
Λn(0,α)

|f(x, u+
n )|u+

n

||un||p2
+

∫
Λn(0,α)

|f(x, u+
n )|u−n

||un||p2

≤
∫

Λn(0,α)

(ε(u+
n )p

∗
+ LM2u

+
n ) dx

||un||p2

+

∫
Λn(0,α)

(ε(u+
n )p

∗−1 + LM2)u−n dx

||un||p2

≤
∫

Λn(0,α)

(εαp
∗

+ LM2α) dx

||un||p2
+

∫
Λn(0,α)

LM2 u
−
n dx

||un||p2
→ 0,

because ∫
Λn(0,α)

LM2
u−n dx

||un||p2
=

LM2

||un||p2−1

∫
Λn(0,α)

v−n dx

≤ LM2

||un||p2−1
|Ω|

1
p′ |v−n |Lp

≤ LM2
|Ω|

1
p′

||un||p2−1
|vn|Lp

≤ LM2 |Ω|
1
p′

Sp||un||p2−1
→ 0,

so there exists n1, such that for n > n1,∫
Λn(0,α)

f(x, u+
n )un

||un||p2
< η. (4.13)

Set σ′ = σ
σ−1 . Since σ > max{1, Np }, one can see that pσ′ ∈ (p, p∗). By ||un|| → +∞,

we take n2 > n1 such that ||un|| ≥ 1, if n ≥ n2, and by (4.11), (H5) and Hölder
inequality, one can take β large such that∫

Λn(β,+∞)

f(x, u+
n )vn

||un||p2−1
≤

∫
Λn(β,+∞)

f(x, u+
n )

|un|p−1
vpn

≤
∫

Λn(β,+∞)

f(x, u+
n )

|u+
n |p−1

vpn (4.14)

≤
(∫

Λn(β,+∞)

∣∣∣f(x, u+
n )

|u+
n |p−1

∣∣∣σ) 1
σ
(∫

Λn(β,+∞)

vpσ
′

n

) 1
σ′

≤
(∫

Λn(β,+∞)

CF (x, u+
n )
) 1
σ
(∫

Λn(β,+∞)

vpσ
′

n

) 1
σ′

< η. (4.15)



Existence of solutions for a p-Laplacian Kirchhoff type problem 537

Note that there is C = C(α, β) independent of n such that ( because of the continuity

of (x, s) 7→ f(x,s)
s on the compact Ω× [α, β], so it is bounded)

|f(x, u+
n )| ≤ Cu+

n ≤ C|un|, for x ∈ Λn(α, β).

So by (4.12), there is n0 > n2 such that∫
Λn(α,β)

f(x, u+
n )vn

||un||p2−1
≤

∫
Λn(α,β)

C|u+
n | |vn|

||un||p2−1

=
C

||un||p2−2

∫
Λn(α,β)

v+
n |vn|

=
C

||un||p2−2

∫
Λn(α,β)

v+
n (v+

n + v−n )

=
C

||un||p2−2

∫
Λn(α,β)

(v+
n )2

≤ C

||un||p2−2

∫
Λn(α,β)

(vn)2

≤ C

||un||p2−2

1

S2
2

||vn||2

=
C

||un||p2−2

1

S2
2

< η, (4.16)

for all n > n0. Now, combining (4.13), (4.14) and (4.16), we obtain that for n > n0,∫
Ω

f(x, u+
n )un

||un||p2
< 3η < bp−1,

which contradicts (4.10). As a result, (un)n is bounded in W 1,p
0 (Ω).

Claim 2: Assume the same hypotheses as in the last lemma, then any (Cc) condition
has a convergent subsequence.
Indeed, let (un) be the (Cc) sequence such that

Φ̃+(un)→ c, (1 + ||un||)Φ̃′+(un)→ 0.

We have

Φ̃′+(un)(u− un) = (a+ b||un||p)p−1

∫
Ω

|∇un|p−2∇un∇(u− un) dx

−
∫

Ω

f(x, u+
n )(u− un) dx+

∫
Ω

`(x)|un|p−2un(u− un) dx

−
∫

Ω

m(x)|un|p−2un(u− un) dx+

∫
Ω

m(x)|u+
n |p−2u+

n (u− un) dx.
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Since (un) is bounded, one can extract a subsequence, named in the same way (un),
that satisfies

un ⇀ u in W 1,p
0 (Ω),

un → u in Ls(Ω), for 1 ≤ s < p∗, (4.17)

un → u a.e. in Ω,

u−n ⇀ u− in W 1,p
0 (Ω),

u−n → u− in Ls(Ω), for 1 ≤ s < p∗,

u−n → u− a.e. in Ω.

For ε in (4.5), and from (4.17), there exists a positive constant N(ε) such that

|u− un|1 ≤ ε, ∀n > N(ε); (4.18)

from this, (4.5), Hölder inequality and |u+
n | ≤ |un|, it follows that for n > N(ε),∣∣∣ ∫

Ω

f(x, u+
n )(u− un) dx

∣∣∣ =
∣∣∣ ∫

Ω

f+(x, un)(u− un) dx
∣∣∣

≤
∫

Ω

(
ε(u+

n )p
∗−1 + LM2

)
|u− un| dx

=

∫
Ω

ε(u+
n )p

∗−1|u− un| dx+ LM2
|u− un|1

≤ ε|un|p
∗−1
p∗ |u− un|p∗ + LM2

ε,

using the fact that |un|p∗ ≤ 1
Sp∗
||un||, |u−un|p∗ ≤ 1

Sp∗
||u−un||, also the boundedness

of (un) in W 1,0
0 (Ω) i.e. there exists C3 > 0 such that ||un|| ≤ C3 and the following

inequality

||u− un|| ≤ ||u||+ ||un||
≤ lim inf

n
||un||+ ||un||

≤ 2C3,

we obtain ∣∣∣ ∫ f(x, u+
n )(u− un)

∣∣∣ ≤ 2ε
( C3

Sp∗

)p∗
+ LM2

ε;

this implies that lim
n

∫
Ω

f(x, u+
n )(u− un) dx = 0.

Also we have by Hölder inequality, that∫
Ω

`(x)|un|p−2un(u− un) dx→ 0,∫
Ω

m(x)|un|p−2un(u− un) dx→ 0

and ∫
Ω

m(x)|u+
n |p−2u+

n (u− un) dx→ 0.
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In addition, let A(∇un) = |∇un|p−2∇un, then

(a+ b||un||p)p−1

∫
Ω

|∇un|p−2∇un · ∇(u− un) dx

= (a+ b||un||p)p−1

∫
Ω

A(∇un)∇(u− un) dx.

(4.19)

Taking account all the previous estimations and limits, we obtain that∫
Ω

A(∇un)∇(u− un) dx→ 0, n→ +∞.

From the fact that∫
Ω

A(∇un)∇(un − u) dx =

∫
Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx

+

∫
Ω

A(∇u)∇(un − u) dx

and ∫
Ω

A(∇u)∇(un − u) dx→ 0, n→ +∞,

we deduce ∫
Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx→ 0, n→ +∞.

From the following inequality

Cp

∫
Ω

|∇(u− un)|p dx ≤
∫

Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx,

we deduce that un → u in W 1,p
0 (Ω). �

Proof of Theorem 2.1. By Lemmas 4.3, 4.4 and 4.5 and by applying theorem 4.1, one

can deduce that Φ̃+ has a nontrivial critical point u, that is, for any v in E,

〈Φ̃′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃+(x, u)v dx = 0.

Taking as a test function v = u− in the precedent equation, we obtain

〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

`(x)|u|p−2uu− dx

−
∫

Ω

m(x)|u|p−2uu− dx−
∫

Ω

f̃+(x, u)u− dx

= 0;
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from the definition of f̃+, we have
∫

Ω
f̃+(x, u)u− dx = 0, so

〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

`(x)|u|p−2uu− dx

−
∫

Ω

m(x)|u|p−2uu− dx

= (a+ b||u||p)p−1

∫
Ω

|∇u|p−2(∇u+ −∇u−) · ∇u− dx

+

∫
Ω

`(x)|u|p−2(u+ − u−)u− dx−
∫

Ω

m(x)|u|p−2(u+ − u−)u− dx

= −(a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx−
∫

Ω

`(x)|u|p−2|u−|2 dx

+

∫
Ω

m(x)|u|p−2|u−|2 dx

= 0.

If `(x)−m(x) ≥ 0, then, one can have that

(a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx+

∫
Ω

(
`(x)−m(x)

)
|u|p−2|u−|2 dx = 0,

consequently, each term in the last equation is equal to zero, especially∫
Ω

|∇u|p−2|∇u−|2 dx = 0,

since ∫
Ω

|∇u|p−2|∇u−|2 dx =

∫
Ω

|∇u−|p dx,

one can deduce that ||u−|| = 0. If `(x) ≥ 0 and ap−1 ≥ |m|L∞
Spp

, then

0 = −〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx+

∫
Ω

`(x)|u|p−2|u−|2 dx

−
∫

Ω

m(x)|u|p−2|u−|2 dx

= (a+ b||u||p)p−1

∫
Ω

|∇u−|p dx+

∫
Ω

`(x)|u−|p dx−
∫

Ω

m(x)|u−|p dx

≥ (a+ b||u||p)p−1||u−||p − |m|L∞(Ω)
1

Spp
||u−||p +

∫
Ω

`(x)|u−|p dx

≥ 0,

as a result each term is equal to zero, consequently ||u−|| = 0.
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So one can say that u = u+ ≥ 0. Then u is also a critical point of Φ+, which means
that,

〈Φ′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f+(x, u)v dx

= 0, ∀v ∈ E.

In addition, from (H1), (H2) and ` ∈ L∞(Ω), we obtain that there exists a positive
constant Cε such that

| − a(x)u+ f(x, u)| ≤ Cε
(

1 + |u|p
∗−1
)
, for s ∈ R and a.e. x ∈ Ω.

Now, consider

b(x) :=
−`(x)|u(x)|p−2u(x) + f(x, u(x))

(a+ b||u||p)p−1(1 + |u(x)|)
,

then b ∈ L
N
p (Ω) and

−∆pu = b(x)(1 + |u(x)|).

Remark 4.1. Following [7], we believe that one can obtain a positive and negative
solutions for our problem. Note that, for the case p = 2 and using the same techniques
as in [3], we have proved the existence of positive and negative solutions.

In a similar way, one can obtain a nonpositive solution for problem (1.4) by treating

with Φ̃−.
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