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Weingarten tube-like surfaces in Euclidean
3-space

Adel H. Sorour

Abstract. In this paper, we study a special kind of tube surfaces, so-called tube-
like surface in 3-dimensional Euclidean space E3. It is generated by sweeping a
space curve along another central space curve. This study investigates a tube-
like surface satisfying some equations in terms of the Gaussian curvature, the
mean curvature, the second Gaussian curvature and the second mean curvature.
Furthermore, some important theorems are obtained. Finally, an example of tube-
like surface is used to demonstrate our theoretical results and graphed.
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1. Introduction

Weingarten surfaces are surfaces whose Gaussian and mean curvatures satisfy a
functional relationship (of class C0 at least). The class of Weingarten surfaces contains
already mentioned surfaces of constant curvatures K or H. Furthermore, a Cr-surface,
r > 3, is Weingarten if and only if KsHt −KtHs = 0. On the other hand, let A and
B be smooth functions on a surface M(s, t) in Euclidean 3-space E3. The Jacobi
function Φ(A,B) formed with A and B is defined by:

Φ(A,B) = det

(
As At
Bs Bt

)
,

where As =
∂A

∂s
and At =

∂A

∂t
.

For the pair (A,B) of curvatures K, H and KII of M in E3, if M satisfies
Φ(A,B) = 0 and aA + bB = c, then we call (A,B)-Weingarten surface (W-surface)
and (A,B)-linear Weingarten surface (LW-surface), respectively, where a, b, c ∈ R,
(a, b, c) 6= (0, 0, 0).
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The classification of the Weingarten surfaces in Euclidean space is almost com-
pletely open today. These surfaces were introduced by J. Weingarten [21, 22] in the
context of the problem of finding all surfaces isometric to a given surface of revolution.
Applications of Weingarten surfaces on computer aided design and shape investigation
can seen in [19].

The authors in [9, 25] have investigated ruled Weingarten surfaces and ruled lin-
ear Weingarten surfaces in E3. Besides, a classification of ruled Weingarten surfaces
and ruled linear Weingarten surfaces in a Minkowski 3-space E3

1 is given in [4, 7, 16].
Munteanu and Nistor [13] studied polynomial translation linear Weingarten surfaces
in Euclidean 3-space. Also, Lopez [10, 11] studied cyclic linear Weingarten surface
in Euclidean 3-space. In [12] Lopez classified all parabolic linear Weingarten surfaces
in hyperbolic 3-space. Ro and Yoon [15] studied a tube of Weingarten types in Eu-
clidean 3-space satisfying some equation in terms of the Gaussian curvature, mean
curvature and second Gaussian curvature. Kim and Yoon [8] classified quadric surfaces
in Euclidean 3-space in terms of the Gaussian curvature and the mean curvature. In
addition to, Yoon and Jun [26] classified non-degenerate quadric surfaces in Euclidean
3-space in terms of the isometric immersion and the Gauss map. Furthermore in [1, 2],
Weingarten timelike tube surfaces around spacelike and timelike curves were studied
in Minkowski 3-space E3

1.

Several geometers [15, 1, 18] have studied tubes in Euclidean 3-space and
Minkowski 3-space satisfying some equations in terms of the Gaussian curvature K,
the mean curvature H and the second Gaussian curvature KII . Following the Jacobi
function and the linear equation with respect to the Gaussian curvature K, the mean
curvature H and the second Gaussian curvature KII an interesting geometric question
is raised: Classify all surfaces in Euclidean 3-space satisfying the conditions

Φ(A,B) = 0, (1.1)

aA+ bB = c, (1.2)

where A,B ∈ {K,H,KII}, A 6= B and (a, b, c) 6= (0, 0, 0).

In this paper, we investigate the tube-like surfaces in 3-dimensional Euclidean
space satisfying the Jacobi condition and the linear equation with respect to their
curvatures have been studied. Furthermore, we obtained some theorems.

2. Preliminaries

Let E3 be a Euclidean 3-space with the scalar product given by [5]

〈, 〉 = dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of E3. In particular, the norm of

a vector X ∈ E3 is given by ‖X‖ =
√
〈X,X〉. If X = (x1, x2, x3) and Y = (y1, y2, y3)

are arbitrary vectors in E3, the vector product of X and Y is given by

X ∧ Y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) . (2.1)
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Let M : Φ = Φ(s, t) be a surface in Euclidean 3-space. The unit normal vector field
of M can be defined by

N =
Φs ∧ Φt
‖Φs ∧ Φt‖

, Φs =
∂Φ

∂s
, Φt =

∂Φ

∂t
, (2.2)

where ∧ stands the vector product of E3. The first fundamental form I of the surface
M is

I = Eds2 + 2Fdsdt+Gdt2, (2.3)

with coefficients

E = 〈Φs,Φs〉, F = 〈Φs,Φt〉, G = 〈Φt,Φt〉. (2.4)

The second fundamental form of the surface M is given by

II = eds2 + 2fdsdt+ gdt2. (2.5)

From which the components of the second fundamental form e, f and g are expressed
as

e = 〈Φss, N〉, f = 〈Φst, N〉, g = 〈Φtt, N〉. (2.6)

Under this parametrization of the surface M , the Gaussian curvature K and the mean
curvature H have the classical expressions, respectively [14]

K =
eg − f2

EG− F 2
, (2.7)

H =
Eg +Ge− 2Ff

2 (EG− F 2)
. (2.8)

From Brioschi’s formula in a Euclidean 3-space, we are able to compute KII of a
surface by replacing the components of the first fundamental form E, F and G by the
components of the second fundamental form e, f and g respectively. Consequently,
the second Gaussian curvature KII of a surface is defined by [3]

KII =
1

(eg − f2)
2


∣∣∣∣∣∣
− 1

2ett + fst − 1
2gss

1
2es fs − 1

2et
ft − 1

2gs e f
1
2gt f g

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2et

1
2gs

1
2et e f
1
2gs f g

∣∣∣∣∣∣
 .

(2.9)
Having in mind the usual technique for computing the second mean curvature HII by
using the normal variation of the area functional for the surfaces in E3 one gets [20]

HII = H +
1

4
∆II ln(K),

where H and K denote the mean, respectively Gaussian curvatures of surface and
∆II is the Laplacian for functions computed with respect to the second fundamental
form II as metric. The second mean curvature HII can be equivalently expressed as

HII = H +
1

2
√

det(II)

∑
i,j

∂

∂ui

[√
det(II)hij

∂

∂uj
(ln
√
K)
]
, (2.10)

where (hij) denotes the associated matrix with its inverse (hij), the indices i, j belong
to {1, 2} and the parameters u1, u2 are s, t respectively.

Now, we can write the following important definition [23]:
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Definition 2.1. (1): A regular surface is flat (developable) if and only if its Gaussian
curvature vanishes identically.

(2): A regular surface for which the mean curvature vanishes identically is called
a minimal surface.

(3): A non-developable surface is called II-flat if the second Gaussian curvature
vanishes identically.

(4): A non-developable surface is called II-minimal if the second mean curvature
vanishes identically.

Remark 2.2. [24] It is well known that: a minimal surface has a vanishing second
Gaussian curvature but that a surface with the vanishing second Gaussian curvature
need not to be minimal.

3. Tube-like surface in E3

The aim of this section, we will obtain the tube-like surface from the tube surface.
Since the tube surfaces are special kinds of the canal surfaces in Euclidean 3-space. If
we find the canal surface with taking variable radius r(s) as constant, then the tube
surface can be found, since the canal surface is a general case of the tube surface.

A canal surface is the envelope of a moving sphere with varying radius, defined
by the trajectory C(s) (center curve) of its center and a radius function r(s). If the
center curve C(s) is a helix and the radius function r(s) is a constant, then the
surface is called helical canal surface. If the radius function r(s) is a constant, this
time the canal surface is called a tube [6]. Canal surface around the center curve C(s)
is parametrized as

K(s, t) = C(s)−r(s)r′(s)e1(s)∓r(s)
√

1− r′2(s)
(

cos[t]e2(s)+sin[t]e3(s)
)
, 0 6 t 6 2π,

where s is arclength parameter and e1(s), e2(s), e3(s) Frenet vectors of C(s). If the
radius function r(s) = r is a constant, then, the canal surface is called a tube (pipe)
surface and it parametrized as

Tube(s, t) = C(s) + r
(

cos[t]e2(s) + sin[t]e3(s)
)
.

The aim of this work is to introduce a simple method for parametrization of tube-

like surface in Euclidean 3-space. Given a space curve α(t) =
(
x(t), y(t), z(t)

)
, at

each point, there are three directions associated with it, the tangent, normal and

binormal directions. The unit tangent vector is denoted by e1, i.e., e1(t) = α′(t)
‖α′(t)‖ ,

the unit normal vector is denoted by e2, i.e., e2(t) =
e′1(t)

‖e′1(t)‖
, the unit binormal vector

is denoted by e3, i.e., e3(t) = e1(t) ∧ e2(t) (cross product). With α(t), e1(t), e2(t) and
e3(t), a tube-like surface can be expressed as follows

M : Φ(s, t) = α(t) + r
(

cos[s]e2(t)− sin[s]e3(t)
)
, (3.1)

where r is a parameter corresponding to the radius of the rotation (In general r can
be a function of t). For fixed t, when s runs from 0 to 2π, we have a circle around
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the point α(t) in the e1, e2 plane. As we change t, this circle moves along the space
curve α, and we will generate a tube-like surface along α (a special kind of tube
surfaces defined by (3.1)). The Frenet-Serret equations, express the reat of change of
the moving orthonormal tried {e1(t), e2(t), e3(t)} along the curve α are given by [17] e′1(t)

e′2(t)
e′3(t)

 =

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 e1(t)
e2(t)
e3(t)

 , (3.2)

where the prime denotes the differentiation with respect to t and we denote by κ, τ
the curvature and the torsion of the curve α. We can know that e1, e2, e3 are mutually
orthogonal vector fields satisfying equations

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1,
〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0,
det(e1, e2, e3) = 1.

Calculating the partial derivative of (3.1) with respect to s and t respectively, we get

Φs = −r
[

sin[s]e2 + cos[s]e3

]
,

Φt = Qe1 + rτ
[

sin[s]e2 + cos[s]e3

]
,

(3.3)

where Q = 1 − rκ cos[s]. From which, the components of the first fundamental form
are

E = r2, F = −r2τ, G = Q2 + r2τ2. (3.4)

Using equations (2.1) and (2.2) the unit normal vector on Φ takes the form

N = − cos[s]e2 + sin[s]e3. (3.5)

The second order partial differentials of M are found

Φss = −r
[

cos[s]e2 − sin[s]e3

]
,

Φst = r
[
κ sin[s]e1 + τ(cos[s]e2 − sin[s]e3)

]
,

Φtt = −r(κτ sin[s] + κ′ cos[s])e1 + (κ− r(κ2 + τ2) cos[s]
+rτ ′ sin[s])e2 + r(τ2 sin[s] + τ ′ cos[s])e3.

From the equation (3.5) and the last equations, we find the second fundamental form
coefficients as follows

e = r, f = −rτ, g = −Qκ cos[s] + rτ2, (3.6)

Theorem 3.1. M is a regular tube-like surface if and only if 1− rκ cos[s] 6= 0.

Proof. For a regular surface, EG− F 2 6= 0. From (3.6), we get

EG− F 2 = r2
(

1− rκ cos[s]
)2
,

where EG− F 2 6= 0 and r > 0, M is a regular tube-like surface if and only if

1− rκ cos[s] 6= 0.
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Based on the above calculations, the Gaussian curvature K and the mean cur-
vature H of (3.1) are given by

K = −κ cos[s]

rQ
, (3.7)

H =
1− 2rκ cos[s]

2rQ
. (3.8)

If the second fundamental form of Φ is non-degenerate, i.e., eg− f2 6= 0. In this case,
we can define formally the second Gaussian KII and second mean HII curvatures on
Φ(s, t) as follows

KII =
1

4rQ4 cos2[s]

[
1 + cos2[s]− 6rκ cos3[s] + 4r2κ2 cos4[s]

]
, (3.9)

HII =
−1

64rQ3κ3 cos2[s]

[
A0 +

6∑
i=1

Ai cos[is] +

3∑
j=1

Bj sin[js]
]
,

where the coefficients Ai and Bj are

A0 = −r
[
κ2[33κ2 + 20κ2(r2κ2 − τ2)]− 4(3κ′2 − 2κκ′′)

]
,

A1 = 2κ
[
κ2[5− 4r2(3τ2 − 11κ2)]− 6r2(3κ′2 − κκ′′)

]
,

A2 = −2r
[
κ2[3κ2(8 + 5r2κ2) + 2τ2]− 2(3κ′2 − 2κκ′′)

]
,

A3 = 2κ
[
κ2[3 + r2(23κ2 + 4τ2)]− 2r2(3κ′2 − κκ′′)

]
,

A4 = −3rκ4
[
5 + 4r2κ2

]
, A5 = 10r2κ5, A6 = −2r3κ6

and

B1 = 4r2κ2
[
4κ′τ − κτ ′

]
, B2 = −8rκ

[
κ′τ − κτ ′

]
, B3 = 4r2κ2

[
4κ′τ − κτ ′

]
.

Under the previous calculations, one can formulate the following theorems:

Theorem 3.2. If the Gaussian curvature K is zero, then M is generated by a moving
sphere with the radius r = 1.

Proof. At κ = 0, from the equation (3.7) cos[s] = 0, i.e., s = π
2 (2n + 1), n =

0,±1,±2,±3, ..., and the unit normal vector on M takes the form

N(s, t) = − cos[s]e2(t) + sin[s]e3(t)
= ±e3(t).

Again, when cos[s] = 0, i.e., s = π
2 (2n+ 1), n = 0,±1,±2,±3, ..., implies that

Φ(s, t)− α(t) = r
(

cos[s]e2(t)− sin[s]e3(t)
)

N(s, t) = −
(

cos[s]e2(t)− sin[s]e3(t)
)

±e3(t) = ∓re3(t).

From the last equation, we get r = 1.

Theorem 3.3. The surface (3.1) is a developable surface if and only if it is an open
part of a circular-like cylinder.
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Theorem 3.4. There are no minimal tube-like surfaces in Euclidean 3-space E3.

Theorem 3.5. Let M be a tube-like surface with non-degenerate second fundamental
form in the Euclidean 3-space E3, then M is not II-flat as well as not II-minimal.

3.1. Weingarten tube-like surfaces

In the following, we study the tube-like surface Φ in E3 satisfying the Jacobi
equation Φ(X,Y ) = 0, X 6= Y , of the curvatures K, H and KII of Φ and we formulate
the main results in the next theorems.

Theorem 3.6. Let M be a tube-like surface in E3 defined by (3.1). Then M is a
(K,H)-Weingarten surface.

Proof. Let M be a tube-like surface in E3. Differentiating K and H with respect to s
and t respectively, then we obtain

Ks =
κ sin[s]

rQ2
, Kt = −κ

′ cos[s]

rQ2
, (3.10)

Hs =
κ sin[s]

rQ2
, Ht = −κ

′ cos[s]

rQ2
. (3.11)

By using (3.10) and (3.11), M satisfies identically the Jacobi equation

Φ(K,H) = KsHt −KtHs = 0.

Therefore M is a Weingarten surface.

Theorem 3.7. Let M be a tube-like surface in the Euclidean 3-space E3 parametrized by
(3.1) with non-degenerate second fundamental form. If M is a (K,KII)-Weingarten
surface, then κ′ = 0. Then, the curvature of α(t) is a non-zero constant.

Proof. Let M be a tube-like surface in E3 parametrized by (3.1). If we take derivative
of KII given by (3.9) with respect to s and t respectively, then we have

(KII)s = 1
2rQ3 cos3[s]

[
1− rκ(2 sin2[s] + rκ cos3[s]) cos[s]

]
sin[s],

(KII)t = κ′

2Q3 cos[s]

[
1− 2 cos2[s] + rκ cos3[s]

]
.

(3.12)

We consider a tube-like surface (3.1) in E3 satisfying the Jacobi equation

Φ(K,KII) = Ks(KII)t −Kt(KII)s = 0, (3.13)

with respect to the Gaussian curvature K and the second Gaussian curvature KII .
Then, substituting from (3.10) and (3.12) into (3.13), we get

κ′ sin[s] = 0.

Since this polynomial is equal to zero for every s, its coefficient must be zero. There-
fore, we conclude that κ′ = 0.

Theorem 3.8. Let M be a tube-like surface in the Euclidean 3-space E3 parametrized by
(3.1) with non-degenerate second fundamental form. If M is a (H,KII)-Weingarten
surface, then κ′ = 0. Then, the curvature of α(t) is a non-zero constant.
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Proof. We assume that a tube-like surface parametrized by (3.1) with non-degenerate
second fundamental form in E3 is (H,KII)-Weingarten surface. Then, it satisfies the
Jacobi equation

Φ(H,KII) = Hs(KII)t −Ht(KII)s = 0, (3.14)

which implies

κ′ sin[s] = 0. (3.15)

From (3.15),one can get κ′ = 0. Thus, the curvature of α(t) is a non-zero constant.

4. Linear Weingarten tube-like surfaces

Now, to examine the linear Weingarten property of the tube-like surface Φ de-
fined along the space curve α(t). Let us analyze the following theorems.

Theorem 4.1. Suppose that a tube-like surface defined by (3.1) in E3 is a linear Wein-
garten surface satisfying aK+bH = c. Then κ = 0. M is an open part of a circular-like
cylinder.

Proof. Consider the parametrization (3.1) with K and H given by (3.7) and (3.8)
respectively, we have

aK + bH = c,

implies

2κ
[
a+ br − cr2

]
cos[s]− b+ 2cr = 0. (4.1)

Since cos[s] and 1 are linearly independent, we have

2κ
[
a+ br − cr2

]
= 0, b = 2cr,

which imply

κ(a+ cr2) = 0.

If a+ cr2 6= 0, then κ = 0. Thus, M is an open part of a circular-like cylinder.

Theorem 4.2. Let (A,B) ∈ {(K,KII), (H,KII)}. Then, there are no (A,B)-linear
Weingarten tube-like surfaces in Euclidean 3-space E3.

Proof. Firstly, we suppose that a tube-like surface (3.1) with non-degenerate second
fundamental form in E3 satisfies the equation

aK + bKII = c. (4.2)

By using (3.7) and (3.9), the equation (4.2) takes the form

1
4rQ2

[
4rκ2(a+ br − cr2) cos4[s]− 2κ(2a+ 3br − 4cr2) cos3[s]

+(b− 4cr) cos2[s] + b
]

= 0.

(4.3)
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Since the identity holds for every s, all the coefficients must be zero. Therefore, we
obtain 

4rκ2(a+ br − cr2) = 0,
2κ(2a+ 3br − 4cr2) = 0,
b− 4cr = 0,
b = 0.

Thus, we get b = 0, c = 0 and κ = 0. In this case, the second fundamental form of
M is degenerate. Thus, this completes proof.

Secondly, let a tube-like surface (3.1) with non-degenerate second fundamental
form in E3 satisfy the relation

aH + bKII = c. (4.4)

From equations. (3.8), (3.9) and (4.4), we get

1
4rQ2

[
4r2κ2(a+ b− cr) cos4[s]− 2rκ(3a+ 3br − 4cr) cos3[s]

+(2a+ b− 4cr) cos2[s] + b
]

= 0.

From which, one can obtain b = 0, c = 0 and κ = 0. Also, the second fundamental
form of tube-like is degenerate. Then, there are no (H,KII)-linear Weingarten tube-
like surfaces in E3.

5. Applications

Here, we consider an example to illustrate the main results that we have pre-
sented in our paper.
Example 5.1. Let us consider a surface

Φ(s, t) = α(t) + r
(

cos[s]e2(t)− sin[s]e3(t)
)
, (5.1)

where α(t) is

α(t) = (cos[t], sin[t], 0),

and the Frenet’s frame is

e1(t) = (− sin[t], cos[t], 0), e2(t) = −(cos[t], sin[t], 0), e3(t) = (0, 0, 1).

Thus, we obtained tube-like surface as follows

Φ(s, t) =
(

(1− r cos[s]) cos[t], (1− r cos[s]) sin[t],−r sin[s]
)
. (5.2)

The components of the first and second fundamental forms of the surface (5.2) are
given by, respectively

E = r2, F = 0, G = (1− r cos[s])2,
e = r, f = 0, g = −(1− r cos[s]) cos[s].

The unit normal vector of the surface (5.2) takes the form

N = − cos[s]e2(t) + sin[s]e3(t). (5.3)
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For this surface, the Gaussian curvature K and the mean curvature H are defined by,
respectively

K = − cos[s]

r(1− r cos[s])
, (5.4)

H =
1− 2r cos[s]

2r(1− r cos[s])
. (5.5)

As cos[s] = 0, Eqs. (5.4) and (5.5) lead to

K = 0, H =
1

2r
,

i.e., the surface (5.2) is a developable and not minimal.

Since eg − f2 6= 0, then we can get the second Gaussian curvature KII and the
second mean curvature HII on Φ(s, t) as follows

KII =
1 + cos2[s]− 6r cos3[s] + 4r2 cos4[s]

4r(1− r cos[s])2 cos2[s]
, (5.6)

HII =
−1 + 2r cos[s] + 3 cos2[s]− 12r cos3[s] + 8r2 cos4[s]

8r(1− r cos[s])2 cos2[s]
. (5.7)

From aforementioned data, one can deduce that the Weingarten and linear Weingarten
on Φ corresponding to the induced metric form satisfies the above theorems.

One can see the graph of Φ(s, t) in Figure 1.

Under the previous, we consider the following remark:

Remark 5.1. (1): It easily seen that, the vector e3(t) = (0, 0, 1) is a constant vector,
then the surface (5.1) is a circular-like cylinder surface.

(2): The tube-like surface defined by (5.2) is a torus.
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Figure 1. Some tube-like surfaces generated by circle with r = 1
2 ,

Left (half circular-like cylinder): s, t ∈ [0, 65π],

Middle (circular-like cylinder): s, t ∈ [0, 32π] and
Right (torus): s, t ∈ [0, 2π].
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