The norm of pre-Schwarzian derivatives of certain analytic functions with bounded positive real part

Hormoz Rahmatan, Shahram Najafzadeh and Ali Ebadian

Abstract

For real numbers $0 \leq \alpha<1$ and $\beta>1$ we define the univalent function in the unit disk Δ which maps Δ on to the strip domain ω with $\alpha<\operatorname{Re} \omega<\beta$. In this paper we give the best estimates for the norm of the pre-Schwarzian derivative $T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}$ where $\left\|T_{f}\right\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|$.

Mathematics Subject Classification (2010): 30C45.
Keywords: Univalent functions, starlike functions, subordination, pre-Schwarzian derivatives.

1. Introduction

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. The subclass of A, consisting of all univalent functions f in Δ is denoted by S. In [5] the authors introduced a new class for certain analytic functions, and they denote by $S(\alpha, \beta)$ the class of functions $f \in A$ which satisfy the inequality

$$
\begin{equation*}
\alpha<\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}<\beta,(z \in \Delta) \tag{1.2}
\end{equation*}
$$

for some real number $0 \leq \alpha<1$ and some real number $\beta>1$. Also, the authors introduced the class $\nu(\alpha, \beta)$ of functions $f \in A$ which satisfy the inequality

$$
\begin{equation*}
\alpha<\operatorname{Re}\left\{\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)\right\}<\beta,(z \in \Delta) . \tag{1.3}
\end{equation*}
$$

where $0 \leq \alpha<1$ and $\beta>1$.
Let f and g be analytic in Δ. The function f is called to be subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function ω such that $\omega(0)=0$, $|\omega(z)|<1$, and $f(z)=g(\omega(z))$ on Δ. The pre-Schwarzian derivative of f is denoted by

$$
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

and we define the norm of T_{f} by

$$
\left\|T_{f}\right\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

This norm have a significant meaning in the theory of Teichmuller spaces. For a univalent function f, it is well known that $\left\|T_{f}\right\|<6$, and this estimate is the best possible [3,6]. On the other hand the following result is important to be noted:

Theorem 1.1. Let f be analytic and locally univalent in Δ. Then,
(i) if $\left\|T_{f}\right\| \leq 1$ then f is univalent, and
(ii) if $f \in S^{*}(\alpha)$, then $\left\|T_{f}\right\| \leq 6-4 \alpha$.

The part (i) is due to Becker [1], and the sharpness of the constants is due to Becker and Pommerenke [2]. The part (ii) is due to Yamashita [8]. The norm estimates for typical subclasses of univalent functions are investigated by many authors like [4,7,8].
In this paper we shall give the best estimate for the norm of pre-Schwarzian derivatives of the class $S(\alpha, \beta)$ and $\nu(\alpha, \beta)$.

2. Main Results

To prove our main results we shall need the Schwartz' lemma.
Now, we define an analytic function $P: \Delta \rightarrow \mathbb{C}$ by

$$
P(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right)
$$

due to Kuroki and Owa [5]. They proved that p maps conformally Δ onto a convex domain ω with $\alpha<\operatorname{Re} \omega<\beta$. Using this fact and the definition of subordination, we can directly obtain the following lemmas:

Lemma 2.1. Let $f \in A$ and $0 \leq \alpha<\alpha<1<\beta$. Then, $f \in S(\alpha, \beta)$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right),
$$

Lemma 2.2. Let $f \in A$ and $0 \leq \alpha<1<\beta$. Then, $f \in \nu(\alpha, \beta)$ if and only if

$$
\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z) \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right)
$$

In this work, first we find norm estimate of the pre-Schwarzian derivative for $f \in S(\alpha, \beta)$, and then we find the norm estimate of the pre-Schwarzian derivative for $f \in \nu(\alpha, \beta)$.

Theorem 2.3. For $0 \leq \alpha<1<\beta$, if $f \in S(\alpha, \beta)$, then

$$
\left\|T_{f}\right\| \leq \frac{2(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

Proof. For an arbitrary function $f \in S(\alpha, \beta)$, set $g(z)=\frac{z f^{\prime}(z)}{f(z)}$. Then, g is a holomorphic function on Δ satisfying $g(0)=1$ and

$$
g(\Delta) \subset\{\omega \in \mathbb{C}: \alpha<\operatorname{Re} \omega<\beta\}:=H(\alpha, \beta)
$$

The univalent map $P(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right)$ on Δ satisfies $P(0)=1$ and $P(z)=H(\alpha, \beta)$, therefore g is subordinate to P. Thus, there exists a holomorphic function $\omega=\omega_{f}: \Delta \rightarrow \Delta$ with $\omega(0)=0$ such that,

$$
\begin{equation*}
g(z)=(P \circ \omega)(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}\right) \tag{2.1}
\end{equation*}
$$

By the logarithmic differentation of (2.1), we have

$$
\log \frac{z f^{\prime}(z)}{f(z)}=\log \left\{1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}\right)\right\}
$$

and consequently

$$
\log z+\log f^{\prime}(z)-\log f(z)=\log \left\{1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}\right)\right\}
$$

Hence,

$$
=\frac{\beta-\alpha}{\pi} i \frac{\frac{1}{z}+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{f^{\prime}(z)}{f(z)}=}{-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega^{\prime}(z)(1-\omega(z))+\omega^{\prime}(z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right)}(1-\omega(z))\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right),
$$

Then,

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\beta-\alpha}{\pi} i\left(\frac{1}{z} \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}+\frac{-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega^{\prime}(z)}{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}+\frac{\omega^{\prime}(z)}{1-\omega(z)}\right)
$$

and therefore,

$$
\begin{gathered}
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}= \\
=\frac{\beta-\alpha}{\pi} i\left(\frac{1}{z} \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}+\frac{\omega^{\prime}(z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)}{(1-\omega(z))\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right.}\right)
\end{gathered} .
$$

Setting $\omega=i d_{\Delta}$, we also have

$$
T_{f_{\alpha, \beta}}(z)=\frac{\beta-\alpha}{\pi} i\left(\frac{1}{z} \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right)+\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}}{(1-z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z\right)}\right)
$$

and we conclude by using of Schwartz' lemma that,

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq\left(1-|z|^{2}\right)\left|T_{f_{\alpha, \beta}}(z)\right| \tag{2.2}
\end{equation*}
$$

Thus, we can estimate as follows

$$
\begin{aligned}
&\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq \frac{\beta-\alpha}{\pi}\left(\frac{1-|z|^{2}}{|z|}\left|\log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right)\right|\right. \\
&\left.+\left(1-|z|^{2}\right)\left|\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}}{(1-z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}\right)}\right|\right)
\end{aligned}
$$

By using of maximum principle we can obtain upper bound of $\left\|T_{f}\right\|$, therefore

$$
\begin{align*}
& \lim _{z \rightarrow 0}\left(1-|z|^{2}\right)\left|\frac{\log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}}{1-z}}{z}\right|^{1-\left.\right|^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}} \\
& =\lim _{z \rightarrow 0}\left(1-|z|^{2}\right) \cdot \lim _{z \rightarrow 0} \frac{1-e^{(1-z)}}{\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z\right)} \\
& =1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \tag{2.3}
\end{align*}
$$

Also, we have

$$
\begin{equation*}
\lim _{z \rightarrow 0}\left(1-|z|^{2}\right)\left|\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}}{(1-z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z\right)}\right|=1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \tag{2.4}
\end{equation*}
$$

hence, by (2.2) and (2.3) combined with (2.4), we conclude

$$
\sup \left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq \frac{2(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

and this completes our proof.

Theorem 2.4. For $0 \leq \alpha<1<\beta$, if $f \in \nu(\alpha, \beta)$, then

$$
\left\|T_{f}\right\| \leq \frac{3(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

Proof. Let $f \in \nu(\alpha, \beta)$, and set $g(z)=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)$. Then, the function g is a holomorphic function on Δ satisfying $g(0)=1$ and

$$
g(\Delta) \subset\{\omega \in \mathbb{C}: \alpha<\operatorname{Re} \omega<\beta\}:=H(\alpha, \beta) .
$$

The univalent map $P(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right)$ on Δ satisfies $P(0)=1$ and $P(z)=H(\alpha, \beta)$, hence g is subordinate to P. So, there exists a holomorphic function $\omega=\omega_{f}: \Delta \rightarrow \Delta$ with $\omega(0)=0$ such that

$$
\begin{equation*}
g(z)=(P \circ \omega)(z)=1+\frac{\beta-\alpha}{\pi} i \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)} \tag{2.5}
\end{equation*}
$$

By the logarithmic differentiation of (2.5) and using the same method as proof of Theorem 2.3, we have

$$
=\frac{2\left(\frac{1}{z}-\frac{f^{\prime}(z)}{f(z)}\right)+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=}{(1-\omega(z))\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right)} \text {-e } i \frac{-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega^{\prime}(z)(1-\omega(z))+\omega^{\prime}(z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right)}{(1)} .
$$

With (2.1) we have,

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{\beta-\alpha}{\pi} i \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}
$$

therefore

$$
\left.\begin{array}{c}
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}= \\
=\frac{\beta-\alpha}{\pi} i\left(\frac{2}{z} \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)}{1-\omega(z)}+\frac{\omega^{\prime}(z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)}{(1-\omega(z))\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} \omega(z)\right.}\right)
\end{array}\right) .
$$

Setting $\omega=i d_{\Delta}$, we also have

$$
T_{f_{\alpha, \beta}}(z)=\frac{\beta-\alpha}{\pi} i\left(\frac{2}{z} \log \frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}+\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}}{(1-z)\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}\right)}\right)
$$

Therefore,

$$
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq\left(1-|z|^{2}\right)\left|T_{f_{\alpha, \beta}}(z)\right|
$$

hence we have

$$
\sup \left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq \frac{3(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

This completes the proof of our theorem.

References

[1] Becker, J., Lownersche differentialgleichung and quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math, 255(1972), 23-43.
[2] Becker, J. Pommerenke, Ch., Schlichtheit-skriterien und jordangebiete, J. Reine Angew. Math, 354(1984), 74-94.
[3] Duren, P.L., Univalent functions, Springer, New York, 1978.
[4] Kim, Y.C. Sugawa, T., Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinburgh Math. Soc, 49(2006), 131-143.
[5] Kuroki, K. Owa, S., Notes on new class for certain analytic functions, Advances in Mathematics: Scientific. Journal 1, 2(2012), 127-131.
[6] Miller, S.S, Mocanu, P.T., Differential subordinations, theory and applications, Marcel Dekker, 2000.
[7] Okuyama, Y., The norm estimates of pre-Schwarzian derivatives of spiral-like functions, Complex Var. Theory Appl, 42(2000), 225-239.
[8] Yamashita, S., Norm estimates for function starlike or convex of order alpha, Hokkaido Mathematical Journal, 28(1999), 217-230.

Hormoz Rahmatan
Department of Mathematics
Payame Noor University
P. O. Box 19395-3697 Tehran, Iran
e-mail: h.rahmatan@gmail.com
Shahram Najafzadeh
Department of Mathematics
Payame Noor University
P. O. Box 19395-3697 Tehran, Iran
e-mail: najafzadeh1234@yahoo.ie
Ali Ebadian
Department of Mathematics
Payame Noor University
P. O. Box 19395-3697 Tehran, Iran
e-mail: ebadian.ali@gmail.com

