The norm of pre-Schwarzian derivatives of certain analytic functions with bounded positive real part

Hormoz Rahmatan, Shahram Najafzadeh and Ali Ebadian

Abstract. For real numbers $0 \le \alpha < 1$ and $\beta > 1$ we define the univalent function in the unit disk Δ which maps Δ on to the strip domain ω with $\alpha < \operatorname{Re} \omega < \beta$. In this paper we give the best estimates for the norm of the pre-Schwarzian derivative $T_f(z) = \frac{f''(z)}{f'(z)}$ where $||T_f|| = \sup_{|z| < 1} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right|$.

Mathematics Subject Classification (2010): 30C45.

Keywords: Univalent functions, starlike functions, subordination, pre-Schwarzian derivatives.

1. Introduction

Let A denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. The subclass of A, consisting of all univalent functions f in Δ is denoted by S. In [5] the authors introduced a new class for certain analytic functions, and they denote by $S(\alpha, \beta)$ the class of functions $f \in A$ which satisfy the inequality

$$\alpha < Re \, \frac{zf'(z)}{f(z)} < \beta, \ (z \in \Delta).$$
(1.2)

for some real number $0 \le \alpha < 1$ and some real number $\beta > 1$. Also, the authors introduced the class $\nu(\alpha, \beta)$ of functions $f \in A$ which satisfy the inequality

$$\alpha < Re\left\{\left(\frac{z}{f(z)}\right)^2 f'(z)\right\} < \beta, \ (z \in \Delta).$$
(1.3)

where $0 \le \alpha < 1$ and $\beta > 1$. Let f and g be analytic in Δ . The function f is called to be *subordinate* to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function ω such that $\omega(0) = 0$, $|\omega(z)| < 1$, and $f(z) = g(\omega(z))$ on Δ . The pre-Schwarzian derivative of f is denoted by

$$T_f(z) = \frac{f''(z)}{f'(z)},$$

and we define the norm of T_f by

$$||T_f|| = \sup_{|z|<1} \left(1 - |z|^2\right) \left| \frac{f''(z)}{f'(z)} \right|.$$

This norm have a significant meaning in the theory of Teichmuller spaces. For a univalent function f, it is well known that $||T_f|| < 6$, and this estimate is the best possible [3,6]. On the other hand the following result is important to be noted:

Theorem 1.1. Let f be analytic and locally univalent in Δ . Then, (i) if $||T_f|| \leq 1$ then f is univalent, and (ii) if $f \in S^*(\alpha)$, then $||T_f|| \leq 6 - 4\alpha$.

The part (i) is due to Becker [1], and the sharpness of the constants is due to Becker and Pommerenke [2]. The part (ii) is due to Yamashita [8]. The norm estimates for typical subclasses of univalent functions are investigated by many authors like [4,7,8].

In this paper we shall give the best estimate for the norm of pre-Schwarzian derivatives of the class $S(\alpha, \beta)$ and $\nu(\alpha, \beta)$.

2. Main Results

To prove our main results we shall need the Schwartz' lemma. Now, we define an analytic function $P: \Delta \to \mathbb{C}$ by

$$P(z) = 1 + \frac{\beta - \alpha}{\pi} i \log\left(\frac{\frac{2\pi i \frac{1 - \alpha}{\beta - \alpha}}{1 - z}}{1 - z}\right),$$

due to Kuroki and Owa [5]. They proved that p maps conformally Δ onto a convex domain ω with $\alpha < Re \, \omega < \beta$. Using this fact and the definition of subordination, we can directly obtain the following lemmas:

Lemma 2.1. Let $f \in A$ and $0 \le \alpha < \alpha < 1 < \beta$. Then, $f \in S(\alpha, \beta)$ if and only if

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{\beta - \alpha}{\pi} i \log\left(\frac{\frac{2\pi i \frac{1 - \alpha}{\beta - \alpha}}{1 - e}z}{1 - z}\right),$$

Lemma 2.2. Let $f \in A$ and $0 \le \alpha < 1 < \beta$. Then, $f \in \nu(\alpha, \beta)$ if and only if

$$\left(\frac{z}{f(z)}\right)^2 f'(z) \prec 1 + \frac{\beta - \alpha}{\pi} i \log\left(\frac{\frac{2\pi i \frac{1 - \alpha}{\beta - \alpha}}{1 - z}}{1 - z}\right).$$

In this work, first we find norm estimate of the pre-Schwarzian derivative for $f \in S(\alpha, \beta)$, and then we find the norm estimate of the pre-Schwarzian derivative for $f \in \nu(\alpha, \beta)$.

Theorem 2.3. For $0 \le \alpha < 1 < \beta$, if $f \in S(\alpha, \beta)$, then

$$||T_f|| \leq \frac{2(\beta - \alpha)}{\pi} \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}\right).$$

Proof. For an arbitrary function $f \in S(\alpha, \beta)$, set $g(z) = \frac{zf'(z)}{f(z)}$. Then, g is a holomorphic function on Δ satisfying g(0) = 1 and

$$g(\Delta) \subset \{\omega \in \mathbb{C} : \alpha < \operatorname{Re} \omega < \beta\} := H(\alpha, \beta).$$
univalent map $P(z) = 1 + \frac{\beta - \alpha}{\pi} i \log \left(\frac{\frac{2\pi i \frac{1 - \alpha}{\beta - \alpha}}{1 - z}}{1 - z}\right)$ on Δ satisfies $P(0) = 1$

and $P(z) = H(\alpha, \beta)$, therefore g is subordinate to P. Thus, there exists a holomorphic function $\omega = \omega_f : \Delta \to \Delta$ with $\omega(0) = 0$ such that,

$$g(z) = (P \circ \omega)(z) = 1 + \frac{\beta - \alpha}{\pi} i \log\left(\frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}\omega(z)}{1 - \omega(z)}\right).$$
(2.1)

By the logarithmic differentiation of (2.1), we have

$$\log \frac{zf'(z)}{f(z)} = \log \left\{ 1 + \frac{\beta - \alpha}{\pi} i \log \left(\frac{1 - \alpha}{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)} \right) \right\},$$

and consequently

The

$$\log z + \log f'(z) - \log f(z) = \log \left\{ 1 + \frac{\beta - \alpha}{\pi} i \log \left(\frac{\frac{2\pi i \frac{1 - \alpha}{\beta - \alpha}}{1 - \omega(z)}}{1 - \omega(z)} \right) \right\}.$$

Hence,

$$\frac{1}{z} + \frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} =$$

$$= \frac{\beta - \alpha}{\pi} i \frac{-e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega'(z) (1-\omega(z)) + \omega'(z) \left(1-e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega(z)\right)}{(1-\omega(z)) \left(1-e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega(z)\right)},$$

Then,

$$\frac{f''(z)}{f'(z)} = \frac{\beta - \alpha}{\pi} i \left(\frac{1}{z} \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)} + \frac{\frac{-e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega'(z)}{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)} + \frac{\omega'(z)}{1 - \omega(z)} \right),$$

and therefore,

$$T_f(z) = \frac{f''(z)}{f'(z)} =$$

$$= \frac{\beta - \alpha}{\pi} i \left(\frac{1}{z} \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)} + \frac{\omega'(z) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}\right)}{(1 - \omega(z)) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)\right)} \right).$$

Setting $\omega = id_{\Delta}$, we also have

$$T_{f_{\alpha,\beta}}(z) = \frac{\beta - \alpha}{\pi} i \left(\frac{1}{z} \log \left(\frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z}{1 - z} \right) + \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}}{(1 - z) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z \right)} \right),$$

and we conclude by using of Schwartz' lemma that,

$$(1-|z|^2)|T_f(z)| \le (1-|z|^2)|T_{f_{\alpha,\beta}}(z)|.$$
 (2.2)

158

Thus, we can estimate as follows

$$\begin{split} \left(1-|z|^2\right)|T_f(z)| &\leq \frac{\beta-\alpha}{\pi} \left(\frac{1-|z|^2}{|z|} \left| \log\left(\frac{1-e^{2\pi i \frac{1-\alpha}{\beta-\alpha}}z}{1-z}\right)\right| \\ &+ \left(1-|z|^2\right) \left|\frac{1-e^{2\pi i \frac{1-\alpha}{\beta-\alpha}}}{(1-z)\left(1-e^{2\pi i \frac{1-\alpha}{\beta-\alpha}}z\right)}\right| \right). \end{split}$$

By using of maximum principle we can obtain upper bound of $\|T_f\|,$ therefore

$$\lim_{z \to 0} (1 - |z|^2) \left| \frac{\log \frac{1 - e^{2\pi i} \frac{1 - \alpha}{\beta - \alpha} z}{1 - z}}{z} \right|$$
$$= \lim_{z \to 0} (1 - |z|^2) \cdot \lim_{z \to 0} \frac{1 - e^{2\pi i} \frac{1 - \alpha}{\beta - \alpha}}{(1 - z) \left(1 - e^{2\pi i} \frac{1 - \alpha}{\beta - \alpha} z\right)}$$
$$= 1 - e^{2\pi i} \frac{1 - \alpha}{\beta - \alpha}$$
(2.3)

Also, we have

$$\lim_{z \to 0} \left(1 - |z|^2 \right) \left| \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}}{\left(1 - z \right) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z \right)} \right| = 1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}, \quad (2.4)$$

hence, by (2.2) and (2.3) combined with (2.4), we conclude

$$\sup\left(1-|z|^2\right)|T_f(z)| \le \frac{2(\beta-\alpha)}{\pi} \left(1-e^{2\pi i \frac{1-\alpha}{\beta-\alpha}}\right),$$

and this completes our proof.

Theorem 2.4. For $0 \le \alpha < 1 < \beta$, if $f \in \nu(\alpha, \beta)$, then

$$\|T_f\| \leq \frac{3(\beta - \alpha)}{\pi} \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \right).$$

Proof. Let $f \in \nu(\alpha, \beta)$, and set $g(z) = \left(\frac{z}{f(z)}\right)^2 f'(z)$. Then, the function g is a holomorphic function on Δ satisfying g(0) = 1 and

$$g(\Delta) \subset \{\omega \in \mathbb{C} : \alpha < \operatorname{Re} \omega < \beta\} := H(\alpha, \beta).$$

The univalent map $P(z) = 1 + \frac{\beta - \alpha}{\pi} i \log \left(\frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z}{1 - z} \right)$ on Δ satisfies P(0) = 1

and $P(z) = H(\alpha, \beta)$, hence g is subordinate to P. So, there exists a holomorphic function $\omega = \omega_f : \Delta \to \Delta$ with $\omega(0) = 0$ such that

$$g(z) = (P \circ \omega)(z) = 1 + \frac{\beta - \alpha}{\pi} i \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)}.$$
 (2.5)

By the logarithmic differentiation of (2.5) and using the same method as proof of Theorem 2.3, we have

$$2\left(\frac{1}{z} - \frac{f'(z)}{f(z)}\right) + \frac{f''(z)}{f'(z)} =$$

$$= \frac{\beta - \alpha}{\pi} i \frac{-e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega'(z) (1 - \omega(z)) + \omega'(z) \left(1 - e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega(z)\right)}{(1 - \omega(z)) \left(1 - e^{2\pi i \frac{1-\alpha}{\beta - \alpha}} \omega(z)\right)}.$$
(2.6)

With (2.1) we have,

$$\frac{zf'(z)}{f(z)} = 1 + \frac{\beta - \alpha}{\pi} i \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)},$$

160

therefore

$$T_f(z) = \frac{f''(z)}{f'(z)} =$$

$$= \frac{\beta - \alpha}{\pi} i \left(\frac{2}{z} \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)}{1 - \omega(z)} + \frac{\omega'(z) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}\right)}{(1 - \omega(z)) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} \omega(z)\right)} \right)$$

Setting $\omega = id_{\Delta}$, we also have

$$T_{f_{\alpha,\beta}}(z) = \frac{\beta - \alpha}{\pi} i \left(\frac{2}{z} \log \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z}{1 - z} + \frac{1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}}}{(1 - z) \left(1 - e^{2\pi i \frac{1 - \alpha}{\beta - \alpha}} z \right)} \right).$$

Therefore,

$$(1-|z|^2)|T_f(z)| \le (1-|z|^2)|T_{f_{\alpha,\beta}}(z)|,$$

hence we have

$$\sup\left(1-|z|^2\right)|T_f(z)| \le \frac{3(\beta-\alpha)}{\pi}\left(1-e^{2\pi i\frac{1-\alpha}{\beta-\alpha}}\right)$$

This completes the proof of our theorem.

References

- Becker, J., Lownersche differentialgleichung and quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math, 255(1972), 23–43.
- [2] Becker, J. Pommerenke, Ch., Schlichtheit-skriterien und jordangebiete, J. Reine Angew. Math, 354(1984), 74–94.
- [3] Duren, P.L., Univalent functions, Springer, New York, 1978.
- [4] Kim, Y.C. Sugawa, T., Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinburgh Math. Soc, 49(2006), 131–143.
- [5] Kuroki, K. Owa, S., Notes on new class for certain analytic functions, Advances in Mathematics: Scientific. Journal 1, 2(2012), 127–131.
- [6] Miller, S.S. Mocanu, P.T., Differential subordinations, theory and applications, Marcel Dekker, 2000.
- [7] Okuyama, Y., The norm estimates of pre-Schwarzian derivatives of spiral-like functions, Complex Var. Theory Appl, 42(2000), 225–239.
- [8] Yamashita, S., Norm estimates for function starlike or convex of order alpha, Hokkaido Mathematical Journal, 28(1999), 217–230.

162 Hormoz Rahmatan, Shahram Najafzadeh and Ali Ebadian

Hormoz Rahmatan Department of Mathematics Payame Noor University P. O. Box 19395-3697 Tehran, Iran e-mail: h.rahmatan@gmail.com

Shahram Najafzadeh Department of Mathematics Payame Noor University P. O. Box 19395-3697 Tehran, Iran e-mail: najafzadeh1234@yahoo.ie

Ali Ebadian Department of Mathematics Payame Noor University P. O. Box 19395-3697 Tehran, Iran e-mail: ebadian.ali@gmail.com