On certain class of meromorphic univalent functions with positive coefficients defined by Dziok-Srivastava operator

Mohamed K. Aouf, Adela O. Mostafa, Abd-Elmoem Y. Lashen and Basheer M. Munassar

Abstract. In this paper, we introduce a new class of meromorphic univalent functions defined by using Dziok-Srivastava operator and obtain some results including coefficient inequality, growth and distortion theorems and modified Hadamard products.

Mathematics Subject Classification (2010): 30C45.
Keywords: Meromorphic functions, univalent functions, growth and distortion theorem, Hadamard product, Dziok-Srivastava operator.

1. Introduction

Let Σ_m denote the class of functions f of the form:

$$f(z) = \frac{1}{z} + \sum_{k=m}^{\infty} a_k z^k \; (m \in \mathbb{N} = \{1, 2, \ldots\})$$

which are analytic and univalent in the punctured unit disc $U^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = U \setminus \{0\}$. For $g \in \Sigma_m$, given by

$$g(z) = \frac{1}{z} + \sum_{k=m}^{\infty} b_k z^k,$$

the Hadamard product (or convolution) of f and g is given by

$$(f * g)(z) = \frac{1}{z} + \sum_{k=m}^{\infty} a_k b_k z^k = (g * f)(z).$$

A function $f \in \Sigma_m$ is said to be meromorphically starlike of order λ if

$$-\text{Re} \left\{ \frac{z f'(z)}{f(z)} \right\} > \lambda \; (z \in U; \; 0 \leq \lambda < 1).$$
Denote by $\Sigma S^*_m (\lambda)$ the class of all meromorphically starlike functions of order λ. A function $f \in \Sigma_m$ is said to be meromorphically convex of order λ if
\[
-\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \lambda \quad (z \in U; \ 0 \leq \lambda < 1).
\]
(1.5)

Denote by $\Sigma K_m (\lambda)$ the class of all meromorphically convex functions of order λ. We note that $f(z) \in \Sigma K_m (\lambda) \iff -zf'(z) \in \Sigma S^*_m (\lambda)$.

The classes $\Sigma S^*_m (\lambda)$ and $\Sigma K_m (\lambda)$ were introduced by Owa et al. [8]. Various subclasses of the class Σ_m when $m = 1$ were considered earlier by Pommerenke [9], Miller [6] and others.

For complex parameters
\[
\alpha_1, \ldots, \alpha_q \text{ and } \beta_1, \ldots, \beta_s \quad (\beta_j \notin \mathbb{Z}_0^- = \{0, -1, -2, \ldots\} ; \ j = 1, 2, \ldots, s),
\]
the generalized hypergeometric function $qF_s (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$ is defined by
\[
qF_s (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \ldots (\alpha_q)_k}{(\beta_1)_k \ldots (\beta_s)_k} \frac{z^k}{k!}
\]

where $(\theta)_v$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by
\[
(\theta)_v = \frac{\Gamma (\theta + v)}{\Gamma (\theta)} = \begin{cases} 1 & \text{if } (v = 0; \ \theta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}), \\ \theta (\theta + 1) (\theta + 2) \ldots (\theta + v - 1) & \text{if } (v \in \mathbb{N}; \ \theta \in \mathbb{C}). \end{cases}
\]

Corresponding to the function $h (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$, defined by
\[
h (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) = z^{-1} qF_s (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z),
\]
we consider the linear operator
\[
H (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s) : \Sigma_m \to \Sigma_m,
\]
which is defined by means of the following Hadamard product (or convolution):
\[
H (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s) f (z) = h_p (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) * f (z).
\]
(1.9)

We observe that, for a function f of the form (1.1), we have
\[
H (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s) f (z) = z^{-1} + \sum_{k=m}^{\infty} \frac{(\alpha_1)_{k+1} \ldots (\alpha_q)_{k+1}}{(\beta_1)_{k+1} \ldots (\beta_s)_{k+1}} \frac{a_k}{(k+1)!} z^k.
\]
(1.10)

For convenience, we write
\[
H_{q,s} (\alpha_1) = H (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s).
\]
(1.11)

The linear operator $H_{q,s} (\alpha_1)$ was investigated recently by Liu and Srivastava [5, with $p = 1$] and Aouf [2, with $p = 1$].
For fixed parameters A, B, β and λ (0 < β ≤ 1, -1 ≤ $A < B$ ≤ 1, 0 ≤ λ < 1), we say that a function $f \in \Sigma_m$ is in the class $\Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta)$ of meromorphically univalent functions in if it satisfies the inequality:

$$\left| \frac{z(H_{q,s}(\alpha_1)f(z))' + 1}{B \frac{z(H_{q,s}(\alpha_1)f(z))'}{H_{q,s}(\alpha_1)f(z)} + [B + (A - B) (1 - \lambda)]} \right| < \beta \quad (z \in U^*).$$

(1.12)

A function f in Σ_m is said to belong to the class $C_{q,s}^m(\alpha_1; A, B, \lambda, \beta)$ if and only if $-zf'(z) \in \Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta)$ that is

$$f \in C_{q,s}^m(\alpha_1; A, B, \lambda, \beta) \iff -zf'(z) \in \Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta).$$

(1.13)

We note that:

(i) $\Sigma_{2,1}^m(1; -1, 1, \lambda, 1) = \Sigma_{2,1} S_1^*(\lambda)$ and $C_{2,1}^m(1; -1, 1, \lambda, 1) = \Sigma_{2,1} K_m(\lambda)$ (0 ≤ λ < 1, m ∈ \mathbb{N}).

(ii) $\Sigma_{2,1}^m(1; A, B, \lambda, \beta) = \Sigma_{2,1}^* (A, B, \lambda, \beta)$ was studied by Aouf [1];

(iii) $\Sigma_{2,1}^1(1; -1, 1, \lambda, \beta) = \Sigma_{2,1}^* (\lambda, \beta)$ and $C_{2,1}^1(1; -1, 1, \lambda, \beta) = C(\lambda, \beta)$ (Mogra et al. [7]);

(iv) $\Sigma_{2,1}^m(1; A, B, \lambda, \beta) = \Sigma_{2,1} (A, B, \lambda, \beta)$ (Aouf et al. [6]).

We note also that:

$$\frac{\Sigma_{2,1}^1(\alpha_1; \beta, -\beta, \lambda, 1)}{\Sigma_{2,1}^1(\alpha_1; \lambda, \beta)} = \frac{\Sigma_{2,1}^+ (\alpha_1; \lambda, \beta)}{\Sigma_{2,1}^* (\alpha_1; \lambda, \beta)}$$

$$= \left\{ f(z) \in \Sigma_m : \left| \frac{z(H_{q,s}(\alpha_1)f(z))' + 1}{H_{q,s}(\alpha_1)f(z)} - 1 + 2\lambda \right| < \beta \quad (z \in U, \ 0 < \beta \leq 1, \ 0 \leq \lambda < 1) \right\}. $$

2. Coefficient inequality

Unless otherwise mentioned, we shall assume in the reminder of this paper that, the parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s are positive real numbers, 0 < β ≤ 1, -1 ≤ $A < B$ ≤ 1, 0 ≤ λ < 1, m ∈ \mathbb{N}, $\Gamma_{k+1}(\alpha_1)$ is defined by (2.2) and $z \in U^*$.

In order to prove our results we need the following lemma for the class $\Sigma_{q,s}^m(\alpha_1; A, B, \lambda, 1)$ given by Aouf [3, with $p = 1$].

Lemma 2.1. Let a function f defined by (1.1) be in the class Σ_m. If

$$\sum_{k=m}^{\infty} \{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]\} \Gamma_{k+1}(\alpha_1) \, |a_k| \leq (B - A) \beta (1 - \lambda) \quad (2.1)$$

then $f \in \Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta)$, where

$$\Gamma_{k+1}(\alpha_1) = \frac{(\alpha_1)_{k+1}, \ldots, (\alpha_q)_{k+1}}{(\beta_1)_{k+1}, \ldots, (\beta_s)_{k+1}} \frac{1}{(k + 1)!}.$$ \hspace{2cm} (2.2)

From Lemma 2.1 and (1.13), we have the following lemma.

Lemma 2.2. Let a function f defined by (1.1) be in the class Σ_m. If

$$\sum_{k=m}^{\infty} k \{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]\} \Gamma_{k+1}(\alpha_1) \, |a_k| \leq (B - A) \beta (1 - \lambda) \quad (2.3)$$

...
then \(f \in C_{q,s}^m(\alpha_1; A, B, \lambda, \beta) \).

3. Growth and distortion theorems

Theorem 3.1. If the function \(f \) defined by (1.1) is in the class \(\Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta) \), then

\[
\frac{1}{|z|} - \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^m \leq |f(z)|
\]

\[
\leq \frac{1}{|z|} + \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^m,
\]

(3.1)

and

\[
\frac{1}{|z|^2} - \frac{m (B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^{m-1} \leq |f'(z)|
\]

\[
\leq \frac{1}{|z|^2} + \frac{m (B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^{m-1}.
\]

(3.2)

The bounds in (3.1) and (3.2) are attained for the function \(f \) given by

\[
f(z) = \frac{1}{z} + \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} z^m.
\]

(3.3)

Proof. First of all, for \(\Sigma_{q,s}^m(\alpha_1; A, B, \lambda, \beta) \), it follows from (2.1) that

\[
\sum_{k=m}^{\infty} |a_k| \leq \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)},
\]

(3.4)

which, in view of (1.1), yields

\[
|f(z)| \geq \frac{1}{|z|} - |z|^m \sum_{k=m}^{\infty} |a_k| \geq \frac{1}{|z|} - \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^m,
\]

(3.5)

\[
|f(z)| \leq \frac{1}{|z|} + |z|^m \sum_{k=m}^{\infty} |a_k| \leq \frac{1}{|z|} + \frac{(B - A) \beta (1 - \lambda)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]] \Gamma_{m+1}(\alpha_1)} |z|^m.
\]

(3.6)
Next, we see from (2.1) that
\[
\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \frac{\Gamma_{m+1}(\alpha_1)}{m} \sum_{k=m}^{\infty} k |a_k| \]
(3.7)
\[
\leq \sum_{k=m}^{\infty} \left\{ (k + 1) + \beta [(Bk + A) + (B - A) \lambda] \right\} \Gamma_{k+1}(\alpha_1) |a_k| \]
\[
\leq (B - A) \beta (1 - \lambda)
\]
then
\[
\sum_{k=m}^{\infty} k |a_k| \leq \frac{m (B - A) \beta (1 - \lambda)}{\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)}.
\]
which, again in view of (1.1), yields
\[
|f'(z)| \geq \frac{1}{|z|^2} - |z|^{m-1} \sum_{k=m}^{\infty} k |a_k| \]
(3.8)
\[
\geq \frac{1}{|z|^2} - \frac{m (B - A) \beta (1 - \lambda)}{\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^{m-1},
\]
and
\[
|f'(z)| \leq \frac{1}{|z|^2} + |z|^{m-1} \sum_{k=m}^{\infty} k |a_k| \]
(3.9)
\[
\leq \frac{1}{|z|^2} + \frac{m (B - A) \beta (1 - \lambda)}{\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^{m-1}.
\]
Finally, it is easy to see that the bounds in (3.1) and (3.2) are attained for the function
\(f \) given by (3.3).

Corollary 3.1. If the function \(f \) defined by (1.1) is in the class \(C_{q,s}^{m} (\alpha_1; A, B, \lambda, \beta) \), then
\[
\frac{1}{|z|} - \frac{(B - A) \beta (1 - \lambda)}{m \left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^m \leq |f(z)|
\]
(3.10)
\[
\leq \frac{1}{|z|} + \frac{(B - A) \beta (1 - \lambda)}{m \left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^m,
\]
and
\[
\frac{1}{|z|^2} - \frac{(B - A) \beta (1 - \lambda)}{\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^{m-1} \leq |f'(z)|
\]
(3.11)
\[
\leq \frac{1}{|z|^2} + \frac{(B - A) \beta (1 - \lambda)}{\left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} |z|^{m-1}.
\]
The bounds in (3.1) and (3.2) are attained for the function \(f \) given by
\[
f(z) = \frac{1}{z} + \frac{(B - A) \beta (1 - \lambda)}{m \left\{ (m + 1) + \beta [(Bm + A) + (B - A) \lambda] \right\} \Gamma_{m+1}(\alpha_1)} z^m.
\]
(3.12)
4. Modified Hadamard product

Let each of the functions f_1 and f_2 defined by

$$f_j (z) = \frac{1}{z} + \sum_{k=m}^{\infty} a_{k,j} z^k \quad (j = 1, 2)$$

belong to the class Σ_m. We denote by $(f_1 * f_2)$ the modified Hadamard product (or convolution) of the functions f_1 and f_2, that is,

$$(f_1 * f_2) (z) = \frac{1}{z} + \sum_{k=m}^{\infty} a_{k,1} a_{k,2} z^k.$$ (4.2)

Theorem 4.1. Let the functions $f_j \ (j = 1, 2)$ defined by (4.1) be in the class $\Sigma_{q,s}^m (\alpha_1; A, B, \lambda, \beta)$. Then $(f_1 * f_2) (z) \in \Sigma_{q,s}^m (\alpha_1; A, B, \gamma, \beta)$, where

$$\gamma = 1 - \frac{(B - A) \beta (1 - \lambda)^2 (1 + \beta B) (m + 1)}{((m + 1) + \beta [(Bm + A) + (B - A) \lambda]) \Gamma_{m+1}^2 (1 + \beta B) (m + 1)^2}.$$ (4.3)

The result is sharp for the functions $f_j \ (j = 1, 2)$ given by

$$f_j (z) = \frac{1}{z} + \frac{(B - A) \beta (1 - \lambda)}{((m + 1) + \beta [(Bm + A) + (B - A) \lambda]) \Gamma_{m+1}^2 (1 + \beta B) (m + 1)^2} z^m \quad (j = 1, 2).$$ (4.4)

Proof. Employing the technique used earlier by Schild and Silverman [10], we need to find the largest γ such that

$$\sum_{k=m}^{\infty} \frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda]) \Gamma_{k+1} \Gamma_{k+1}^2 (1 + \beta B) (m + 1)^2}{((m + 1) + \beta [(Bm + A) + (B - A) \lambda]) \Gamma_{m+1}^2 (1 + \beta B) (m + 1)^2} |a_{k,1}| |a_{k,2}| \leq 1$$ (4.5)

for $(f_1 * f_2) (z) \in \Sigma_{q,s}^m (\alpha_1; A, B, \gamma, \beta)$. Indeed, since each of the functions $f_j \ (j = 1, 2)$ belongs to the class $\Sigma_{q,s}^m (\alpha_1; A, B, \lambda, \beta)$, then

$$\sum_{k=m}^{\infty} \frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda]) \Gamma_{k+1} \Gamma_{k+1}^2 (1 + \beta B) (m + 1)^2}{((m + 1) + \beta [(Bm + A) + (B - A) \lambda]) \Gamma_{m+1}^2 (1 + \beta B) (m + 1)^2} |a_{k,j}| \leq 1 \quad (j = 1, 2).$$ (4.6)

Now, by the Cauchy-Schwarz inequality, we find from (4.6) that

$$\sum_{k=m}^{\infty} \frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda]) \Gamma_{k+1} \Gamma_{k+1}^2 (1 + \beta B) (m + 1)^2}{((m + 1) + \beta [(Bm + A) + (B - A) \lambda]) \Gamma_{m+1}^2 (1 + \beta B) (m + 1)^2} \sqrt{|a_{k,1}| |a_{k,2}|} \leq 1.$$ (4.7)

Equation (4.7) implies that we need only to show that

$$\frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda])}{(1 - \gamma)} \sqrt{|a_{k,1}| |a_{k,2}|} \leq \frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda])}{(1 - \gamma)} \sqrt{|a_{k,1}| |a_{k,2}|} \quad (k \geq m),$$ (4.8)

that is, that

$$\sqrt{|a_{k,1}| |a_{k,2}|} \leq \frac{((k + 1) + \beta [(Bk + A) + (B - A) \lambda])}{((k + 1) + \beta [(Bk + A) + (B - A) \lambda])} (1 - \gamma) \quad (k \geq m).$$ (4.9)
The result is sharp for the functions \(f \). Let the functions \(\Phi \) which completes the proof of the main assertion of Theorem 4.1.

It follows from (4.10) that

\[
\gamma \leq 1 - \frac{(B - A)\beta (1 + \beta B) (k + 1) (1 - \lambda)^2}{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]} \Gamma_{k+1}(\alpha_1) (1 - \lambda) (k \geq m). \tag{4.11}
\]

Defining the function \(\Phi (k) \) by

\[
\Phi (k) = 1 - \frac{(B - A)\beta (1 + \beta B) (k + 1) (1 - \lambda)^2}{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]} \Gamma_{k+1}(\alpha_1) (1 - \lambda) (k \geq m), \tag{4.12}
\]

we see that \(\Phi (k) \) is an increasing function of \(k \) (\(k \geq m \)). Therefore, we conclude from (4.11) that

\[
\gamma \leq \Phi (m) = 1 - \frac{(B - A)\beta (1 + \beta B) (m + 1) (1 - \lambda)^2}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]} \Gamma_{m+1}(\alpha_1) (1 - \lambda) (k \geq m). \tag{4.13}
\]

which completes the proof of the main assertion of Theorem 4.1.

Corollary 4.1. Let the functions \(f_j \) \((j = 1, 2)\) defined by (4.1) be in the class \(C_{q,s}^m (\alpha_1; A, B, \lambda, \beta) \). Then \((f_1 \ast f_2) (z) \in C_{q,s}^m (\alpha_1; A, B, \mu, \beta)\), where

\[
\mu = 1 - \frac{(B - A)\beta (1 + \beta B) (m + 1) (1 - \lambda)^2}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]} \Gamma_{m+1}(\alpha_1) (1 - \lambda). \tag{4.14}
\]

The result is sharp for the functions \(f_j \) \((j = 1, 2)\) given by

\[
f_j (z) = \frac{1}{z} + \frac{(B - A) \beta (1 - \lambda) z^m}{m \{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]\} \Gamma_{m+1}(\alpha_1)} \tag{4.15}
\]

Theorem 4.2. Let the functions \(f_j \) \((j = 1, 2)\) defined by (4.1) be in the class \(\Sigma_{q,s}^m (\alpha_1; A, B, \lambda, \beta) \). Then the function \(h(z) \) defined by

\[
h (z) = \frac{1}{z} + \sum_{k=m}^{\infty} (a_{k,1}^2 + a_{k,2}^2) z^k \tag{4.16}
\]

belongs to the class \(\Sigma_{q,s}^m (\alpha_1; A, B, \xi, \beta) \), where

\[
\xi = 1 - \frac{2 (B - A) \beta (1 - \lambda)^2 (1 + \beta B) (m + 1)}{(m + 1) + \beta [(Bm + A) + (B - A) \lambda]} \Gamma_{m+1}(\alpha_1) + 2 (B - A)^2 \beta^2 (1 - \lambda)^2. \tag{4.17}
\]

The result is sharp for the functions \(f_j \) \((j = 1, 2)\) given by (4.4).

Proof. Noting that

\[
\sum_{k=m}^{\infty} \left[\frac{\{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]\} (\Gamma_{k+1}(\alpha_1))}{(B - A) \beta (1 - \lambda)} \right]^2 |a_{k,j}|^2 \tag{4.18}
\]

\[
\leq \left[\sum_{k=m}^{\infty} \left\{ \frac{\{(k + 1) + \beta [(Bk + A) + (B - A) \lambda]\} (\Gamma_{k+1}(\alpha_1))}{(B - A) \beta (1 - \lambda)} \right| a_{k,j} \right|^2 \right] \leq 1,
\]
Corollary 4.2. Let the functions $f_j \in \Sigma_{q,s}^m (\alpha_1; A, B, \lambda, \beta)$ \ (j = 1, 2), we have
\[
\sum_{k=m}^{\infty} \frac{\{(k + 1) + \beta \left[(Bk + A) + (B - A) \lambda\right]\}^2 (\Gamma_{k+1}(\alpha_1))^2}{2 (B - A)^2 \beta^2 (1 - \lambda)^2} \left(|a_{k,1}|^2 + |a_{k,2}|^2\right) \leq 1.
\] (4.19)

Thus we need to find the largest ξ such that
\[
\frac{\{(k + 1) + \beta \left[(Bk + A) + (B - A) \lambda\right]\}^2 (\Gamma_{k+1}(\alpha_1))^2}{2 (B - A) \beta (1 - \lambda)^2} (k \geq m),
\] (4.20)

that is, that
\[
\xi \leq 1 - \frac{2(B-A)\beta(1-\lambda)^2(1+\beta B)(k+1)}{\{(k+1)+\beta[(Bm+A)+(B-A)\lambda]\}^2 \Gamma_{k+1}(\alpha_1)+2(B-A)^2\beta^2(1-\lambda)^2} (k \geq m).
\] (4.21)

Defining the function $\Theta (k)$ by
\[
\Theta (k) = 1 - \frac{2(B-A)\beta(1-\lambda)^2(1+\beta B)(k+1)}{\{(k+1)+\beta[(Bm+A)+(B-A)\lambda]\}^2 \Gamma_{k+1}(\alpha_1)+2(B-A)^2\beta^2(1-\lambda)^2} (k \geq m),
\] (4.22)

we observe that $\Theta (k)$ is an increasing function of k ($k \geq m$). Therefore, we conclude from (4.21) that
\[
\xi \leq \Theta (m) = 1 - \frac{2(B-A)\beta(1-\lambda)^2(1+\beta B)(m+1)}{\{(m+1)+\beta[(Bm+A)+(B-A)\lambda]\}^2 \Gamma_{m+1}(\alpha_1)+2(B-A)^2\beta^2(1-\lambda)^2},
\] (4.23)

which completes the proof of Theorem 4.2.

Corollary 4.2. Let the functions f_j \ (j = 1, 2) defined by (4.1) be in the class $C_{q,s}^m (\alpha_1; A, B, \lambda, \beta)$. Then the function $h(z)$ defined by (4.18) belongs to the class $C_{q,s}^m (\alpha_1; A, B, \rho, \beta)$, where
\[
\rho = 1 - \frac{2 (B - A) \beta (1 - \lambda)^2 (1 + \beta B) (m + 1)}{m \{(m+1)+\beta[(Bm+A)+(B-A)\lambda]\}^2 \Gamma_{m+1}(\alpha_1)+2(B-A)^2\beta^2(1-\lambda)^2}.
\] (4.24)

The result is sharp for the functions f_1 and f_2 given by (4.15).

Remarks. (i) Putting $q = 2$ and $s = \alpha_1 = \alpha_2 = \beta_1 = 1$ in the above results, we get the results obtained by Aouf et al. \ [4, Lemmas 1 and 2 and Corollaries 1, 2, 3, 4, 7 and 8, respectively];

(ii) Putting $q = 2$, $s = \alpha_1 = \alpha_2 = \beta_1 = B = 1$ and $A = -1$, in Theorems 4.1, 4.2 and Corollaries 4.1, 4.2, we get the results obtained by Aouf et al. \ [4, Corollaries 5, 9, 6 and 10, respectively].

Acknowledgment. The authors thank the referees for their valuable suggestions which led to the improvement of this paper.

References

On certain class of meromorphic univalent functions

Mohamed K. Aouf
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

Adela O. Mostafa
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: adelaeg254@yahoo.com

Abd-Elmoem Y. Lashen
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: aylashin@mans.edu.eg

Basheer M. Munassar
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: bmunassar@yahoo.com