On certain class of meromorphic univalent functions with positive coefficients defined by Dziok-Srivastava operator

Mohamed K. Aouf, Adela O. Mostafa, Abd-Elmoem Y.
Lashen and Basheer M. Munassar

Abstract

In this paper, we introduce a new class of meromorphic univalent functions defined by using Dziok-Srivastava operator and obtain some results including coefficient inequality, growth and distortion theorems and modified Hadamard products.

Mathematics Subject Classification (2010): 30C45.
Keywords: Meromorphic functions, univalent functions, growth and distortion theorem, Hadamard product, Dziok-Srivastava operator.

1. Introduction

Let Σ_{m} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=m}^{\infty} a_{k} z^{k} \quad(m \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the punctured unit disc $U^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}=U \backslash\{0\}$. For $g \in \Sigma_{m}$, given by

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{k=m}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is given by

$$
\begin{equation*}
(f * g)(z)=\frac{1}{z}+\sum_{k=m}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

A function $f \in \Sigma_{m}$ is said to be meromorphically starlike of order λ if

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\lambda \quad(z \in U ; 0 \leq \lambda<1) \tag{1.4}
\end{equation*}
$$

Denote by $\Sigma S_{m}^{*}(\lambda)$ the class of all meromorphically starlike functions of order λ. A function $f \in \Sigma_{m}$ is said to be meromorphically convex of order λ if

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\lambda(z \in U ; 0 \leq \lambda<1) \tag{1.5}
\end{equation*}
$$

Denote by $\Sigma K_{m}(\lambda)$ the class of all meromorphically convex functions of order λ. We note that

$$
f(z) \in \Sigma K_{m}(\lambda) \Longleftrightarrow-z f^{\prime}(z) \in \Sigma S_{m}^{*}(\lambda)
$$

The classes $\Sigma S_{m}^{*}(\lambda)$ and $\Sigma K_{m}(\lambda)$ were introduced by Owa et al. [8]. Various subclasses of the class Σ_{m} when $m=1$ were considered earlier by Pommerenke [9], Miller [6] and others.
For complex parameters

$$
\alpha_{1}, \ldots, \alpha_{q} \text { and } \beta_{1}, \ldots, \beta_{s} \quad\left(\beta_{j} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; j=1,2, \ldots, s\right)
$$

the generlized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ is defined by

$$
\begin{align*}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) & =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k}, \ldots,\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k}, \ldots,\left(\beta_{s}\right)_{k}} \cdot \frac{z^{k}}{k!} \\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right. & =\mathbb{N} \cup\{0\} ; z \in U) \tag{1.6}
\end{align*}
$$

where $(\theta)_{v}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\theta)_{v}=\frac{\Gamma(\theta+v)}{\Gamma(\theta)}= \begin{cases}1 & \text { if }\left(v=0 ; \theta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right), \tag{1.7}\\ \theta(\theta+1)(\theta+2) \ldots(\theta+v-1) & \text { if }(v \in \mathbb{N} ; \theta \in \mathbb{C})\end{cases}
$$

Corresponding to the function $h\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$, defined by

$$
\begin{equation*}
h\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z^{-1}{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right), \tag{1.8}
\end{equation*}
$$

we consider the linear operator

$$
H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right): \Sigma_{m} \rightarrow \Sigma_{m}
$$

which is defined by means of the following Hadamard product (or convolution):

$$
\begin{equation*}
H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=h_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) * f(z) \tag{1.9}
\end{equation*}
$$

We observe that, for a function f of the form (1.1), we have

$$
\begin{equation*}
H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=z^{-1}+\sum_{k=m}^{\infty} \frac{\left(\alpha_{1}\right)_{k+1}, \ldots,\left(\alpha_{q}\right)_{k+1}}{\left(\beta_{1}\right)_{k+1}, \ldots,\left(\beta_{s}\right)_{k+1}} \cdot \frac{a_{k}}{(k+1)!} z^{k} \tag{1.10}
\end{equation*}
$$

For convenience, we write

$$
\begin{equation*}
H_{q, s}\left(\alpha_{1}\right)=H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) \tag{1.11}
\end{equation*}
$$

The linear operator $H_{q, s}\left(\alpha_{1}\right)$ was investigated recently by Liu and Srivastava [5, with $p=1$] and Aouf [2 , with $p=1$].

For fixed parameters A, B, β and $\lambda(0<\beta \leq 1,-1 \leq A<B \leq 1,0 \leq \lambda<1)$, we say that a function $f \in \Sigma_{m}$ is in the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$ of meromorphically univalent functions in if it satisfies the inequality:

$$
\begin{equation*}
\left|\frac{\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{q, s}\left(\alpha_{1}\right) f(z)}+1}{B \frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{q, s}\left(\alpha_{1}\right) f(z)}+[B+(A-B)(1-\lambda)]}\right|<\beta \quad\left(z \in U^{*}\right) . \tag{1.12}
\end{equation*}
$$

A function f in Σ_{m} is said to belong to the class $C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$ if and only if $-z f^{\prime}(z) \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$ that is

$$
\begin{equation*}
f \in C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right) \Longleftrightarrow-z f^{\prime} \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right) . \tag{1.13}
\end{equation*}
$$

We note that:
(i) $\Sigma_{2,1}^{m}(1 ;-1,1, \lambda, 1)=\Sigma S_{m}^{*}(\lambda)$ and
$C_{2,1}^{m}(1 ;-1,1, \lambda, 1)=\Sigma K_{m}(\lambda)(0 \leq \lambda<1, m \in \mathbb{N})$.
(ii) $\Sigma_{2,1}^{1}(1 ; A, B, \lambda, \beta)=\Sigma^{*}(A, B, \lambda, \beta)$ was studied by Aouf [1];
(iii) $\Sigma_{2,1}^{1}(1 ;-1,1, \lambda, \beta)=\Sigma^{*}(\lambda, \beta)$ and $C_{2,1}^{1}(1 ;-1,1, \lambda, \beta)=C(\lambda, \beta)$
(Mogra et al.[7]);
(iv) $\Sigma_{2,1}^{m}(1 ; A, B, \lambda, \beta)=\Sigma_{m}(A, B, \lambda, \beta)$ (Aouf et al. [6]).

We note also that:

$$
\begin{gathered}
\Sigma_{q, s}^{1}\left(\alpha_{1} ; \beta,-\beta, \lambda, 1\right)=\Sigma_{q, s}^{+}\left(\alpha_{1} ; \lambda, \beta\right) \\
=\left\{f(z) \in \Sigma_{m}:\left|\frac{\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{q, s}\left(\alpha_{1}\right) f(z)}+1}{\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{q, s}\left(\alpha_{1}\right) f(z)}-1+2 \lambda}\right|<\beta(z \in U, 0<\beta \leq 1,0 \leq \lambda<1)\right\} .
\end{gathered}
$$

2. Coefficient inequality

Unless otherwise mentioned, we shall assume in the reminder of this paper that, the parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}$ are positive real numbers, $0<\beta \leq 1,-1 \leq$ $A<B \leq 1,0 \leq \lambda<1, m \in \mathbb{N}, \Gamma_{k+1}\left(\alpha_{1}\right)$ is defined by (2.2) and $z \in U^{*}$.

In order to prove our results we need the following lemma for the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, 1\right)$ given by Aouf $[3$, with $p=1]$.
Lemma 2.1. Let a function f defined by (1.1) be in the class Σ_{m}. If

$$
\begin{equation*}
\sum_{k=m}^{\infty}\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)\left|a_{k}\right| \leq(B-A) \beta(1-\lambda) \tag{2.1}
\end{equation*}
$$

then $f \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$, where

$$
\begin{equation*}
\Gamma_{k+1}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k+1}, \ldots,\left(\alpha_{q}\right)_{k+1}}{\left(\beta_{1}\right)_{k+1}, \ldots,\left(\beta_{s}\right)_{k+1}} \cdot \frac{1}{(k+1)!} \tag{2.2}
\end{equation*}
$$

From Lemma 2.1 and (1.13), we have the following lemma.
Lemma 2.2. Let a function f defined by (1.1) be in the class Σ_{m}. If

$$
\begin{equation*}
\sum_{k=m}^{\infty} k\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)\left|a_{k}\right| \leq(B-A) \beta(1-\lambda) \tag{2.3}
\end{equation*}
$$ then $f \in C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$.

3. Growth and distortion theorems

Theorem 3.1. If the function f defined by (1.1) is in the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$, then

$$
\begin{align*}
& \frac{1}{|z|}-\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m} \leq|f(z)| \\
& \quad \leq \frac{1}{|z|}+\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m} \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{|z|^{2}}-\frac{m(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1} \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{|z|^{2}}+\frac{m(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1} \tag{3.2}
\end{align*}
$$

The bounds in (3.1) and (3.2) are attained for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)} z^{m} \tag{3.3}
\end{equation*}
$$

Proof. First of all, for $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$, it follows from (2.1) that

$$
\begin{equation*}
\sum_{k=m}^{\infty} a_{k} \leq \frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}, \tag{3.4}
\end{equation*}
$$

which, in view of (1.1), yields

$$
\begin{align*}
|f(z)| & \geq \frac{1}{|z|}-|z|^{m} \sum_{k=m}^{\infty}\left|a_{k}\right| \tag{3.5}\\
& \geq \frac{1}{|z|}-\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m}
\end{align*}
$$

and

$$
\begin{align*}
|f(z)| & \leq \frac{1}{|z|}+|z|^{m} \sum_{k=m}^{\infty}\left|a_{k}\right| \tag{3.6}\\
& \leq \frac{1}{|z|}+\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m}
\end{align*}
$$

Next, we see from (2.1) that

$$
\begin{aligned}
& \frac{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}{m} \sum_{k=m}^{\infty} k\left|a_{k}\right| \\
& \leq \sum_{k=m}^{\infty}\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)\left|a_{k}\right| \\
& \leq(B-A) \beta(1-\lambda)
\end{aligned}
$$

then

$$
\sum_{k=m}^{\infty} k\left|a_{k}\right| \leq \frac{m(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}
$$

which, again in view of (1.1), yields

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \geq \frac{1}{|z|^{2}}-|z|^{m-1} \sum_{k=m}^{\infty} k\left|a_{k}\right| \tag{3.8}\\
& \geq \frac{1}{|z|^{2}}-\frac{m(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1}
\end{align*}
$$

and

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leq \frac{1}{|z|^{2}}+|z|^{m-1} \sum_{k=m}^{\infty} k\left|a_{k}\right| \tag{3.9}\\
& \leq \frac{1}{|z|^{2}}+\frac{m(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1}
\end{align*}
$$

Finally, it is easy to see that the bounds in (3.1) and (3.2) are attained for the function f given by (3.3).
Corollary 3.1. If the function f defined by (1.1) is in the class $C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$, then

$$
\begin{align*}
& \frac{1}{|z|}-\frac{(B-A) \beta(1-\lambda)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m} \leq|f(z)| \\
& \leq \frac{1}{|z|}+\frac{(B-A) \beta(1-\lambda)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m} \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{|z|^{2}}-\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1} \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{|z|^{2}}+\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)}|z|^{m-1} \tag{3.11}
\end{align*}
$$

The bounds in (3.1) and (3.2) are attained for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(B-A) \beta(1-\lambda)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)} z^{m} \tag{3.12}
\end{equation*}
$$

4. Modified Hadamard product

Let each of the functions f_{1} and f_{1} defined by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\sum_{k=m}^{\infty} a_{k, j} z^{k} \quad(j=1,2) \tag{4.1}
\end{equation*}
$$

belong to the class Σ_{m}. We denote by $\left(f_{1} * f_{2}\right)$ the modified Hadamard product (or convolution) of the functions f_{1} and f_{2}, that is,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{k=m}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$. Then $\left(f_{1} * f_{2}\right)(z) \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \gamma, \beta\right)$, where

$$
\begin{equation*}
\gamma=1-\frac{(B-A) \beta(1-\lambda)^{2}(1+\beta B)(m+1)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+(B-A)^{2} \beta^{2}(1-\lambda)^{2}} . \tag{4.3}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(B-A) \beta(1-\lambda)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)} z^{m} \quad(j=1,2) . \tag{4.4}
\end{equation*}
$$

Proof. Employing the technique used ealier by Schild and Silverman [10], we need to find the largest γ such that

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{\{(k+1)+\beta[(B k+A)+(B-A) \gamma]\} \Gamma_{k+1}\left(\alpha_{1}\right)}{(B-A) \beta(1-\gamma)}\left|a_{k, 1}\right|\left|a_{k, 2}\right| \leq 1 \tag{4.5}
\end{equation*}
$$

for $\left(f_{1} * f_{2}\right)(z) \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \gamma, \beta\right)$. Indeed, since each of the functions $f_{j}(j=1,2)$ belongs to the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$, then

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)}{(B-A) \beta(1-\lambda)}\left|a_{k, j}\right| \leq 1 \quad(j=1,2) \tag{4.6}
\end{equation*}
$$

Now, by the Cauchy-Schwarz inequality, we find from (4.6) that

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)}{(B-A) \beta(1-\lambda)} \sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq 1 \tag{4.7}
\end{equation*}
$$

Equation (4.7) implies that we need only to show that

$$
\begin{align*}
& \frac{\{(k+1)+\beta[(B k+A)+(B-A) \gamma]\}}{(1-\gamma)}\left|a_{k, 1}\right|\left|a_{k, 2}\right| \tag{4.8}\\
& \leq \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}}{(1-\lambda)} \sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|}(k \geq m)
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}(1-\gamma)}{\{(k+1)+\beta[(B k+A)+(B-A) \gamma]\}(1-\lambda)}(k \geq m) \tag{4.9}
\end{equation*}
$$

Hence, by the inequality (4.7) it is sufficient to prove that

$$
\begin{align*}
& \frac{(B-A) \beta(1-\lambda)}{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\} \Gamma_{k+1}\left(\alpha_{1}\right)} \tag{4.10}\\
& \leq \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}(1-\gamma)}{\{(k+1)+\beta[(B k+A)+(B-A) \gamma]\}(1-\lambda)}(k \geq m) .
\end{align*}
$$

It follows from (4.10) that

$$
\begin{equation*}
\gamma \leq 1-\frac{(B-A) \beta(1+\beta B)(k+1)(1-\lambda)^{2}}{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2} \Gamma_{k+1}\left(\alpha_{1}\right)+(B-A)^{2} \beta^{2}(1-\lambda)^{2}} \quad(k \geq m) . \tag{4.11}
\end{equation*}
$$

Defining the function $\Phi(k)$ by

$$
\begin{equation*}
\Phi(k)=1-\frac{(B-A) \beta(1+\beta B)(k+1)(1-\lambda)^{2}}{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2} \Gamma_{k+1}\left(\alpha_{1}\right)+(B-A)^{2} \beta^{2}(1-\lambda)^{2}} \quad(k \geq m), \tag{4.12}
\end{equation*}
$$

we see that $\Phi(k)$ is an increasing function of $k(k \geq m)$. Therefore, we conclude from (4.11) that

$$
\begin{equation*}
\gamma \leq \Phi(m)=1-\frac{(B-A) \beta(1+\beta B)(m+1)(1-\lambda)^{2}}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+(B-A)^{2} \beta^{2}(1-\lambda)^{2}}, \tag{4.13}
\end{equation*}
$$

which completes the proof of the main assertion of Theorem 4.1.
Corollary 4.1. Let the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$. Then $\left(f_{1} * f_{2}\right)(z) \in C_{q, s}^{m}\left(\alpha_{1} ; A, B, \mu, \beta\right)$, where

$$
\begin{equation*}
\mu=1-\frac{(B-A) \beta(1-\lambda)^{2}(1+\beta B)(m+1)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+(B-A)^{2} \beta^{2}(1-\lambda)^{2}} . \tag{4.14}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(B-A) \beta(1-\lambda)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\} \Gamma_{m+1}\left(\alpha_{1}\right)} z^{m} \quad(j=1,2) . \tag{4.15}
\end{equation*}
$$

Theorem 4.2. Let the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{z}+\sum_{k=m}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{4.16}
\end{equation*}
$$

belongs to the class $\sum_{q, s}^{m}\left(\alpha_{1} ; A, B, \xi, \beta\right)$, where

$$
\begin{equation*}
\xi=1-\frac{2(B-A) \beta(1-\lambda)^{2}(1+\beta B)(m+1)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+2(B-A)^{2} \beta^{2}(1-\lambda)^{2}} . \tag{4.17}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by (4.4).
Proof. Noting that

$$
\begin{align*}
& \sum_{k=m}^{\infty}\left[\frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}\left(\Gamma_{k+1}\left(\alpha_{1}\right)\right)}{(B-A) \beta(1-\lambda)}\right]^{2}\left|a_{k, j}\right|^{2} \tag{4.18}\\
& \leq\left[\sum_{k=m}^{\infty} \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}\left(\Gamma_{k+1}\left(\alpha_{1}\right)\right)}{(B-A) \beta(1-\lambda)}\left|a_{k, j}\right|^{2} \leq 1\right.
\end{align*}
$$

for $f_{j} \in \Sigma_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)(j=1,2)$, we have

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2}\left(\Gamma_{k+1}\left(\alpha_{1}\right)\right)^{2}}{2(B-A)^{2} \beta^{2}(1-\lambda)^{2}}\left(\left|a_{k, 1}\right|^{2}+\left|a_{k, 2}\right|^{2}\right) \leq 1 \tag{4.19}
\end{equation*}
$$

Thus we need to find the largest ξ such that

$$
\begin{align*}
& \frac{\{(k+1)+\beta[(B k+A)+(B-A) \xi]\}}{(1-\xi)} \tag{4.20}\\
& \leq \frac{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2}\left(\Gamma_{k+1}\left(\alpha_{1}\right)\right)}{2(B-A) \beta(1-\lambda)^{2}}(k \geq m)
\end{align*}
$$

that is, that

$$
\begin{equation*}
\xi \leq 1-\frac{2(B-A) \beta(1-\lambda)^{2}(1+\beta B)(k+1)}{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2} \Gamma_{k+1}\left(\alpha_{1}\right)+2(B-A)^{2} \beta^{2}(1-\lambda)^{2}} \quad(k \geq m) \tag{4.21}
\end{equation*}
$$

Defining the function $\Theta(k)$ by

$$
\begin{equation*}
\Theta(k)=1-\frac{2(B-A) \beta(1-\lambda)^{2}(1+\beta B)(k+1)}{\{(k+1)+\beta[(B k+A)+(B-A) \lambda]\}^{2} \Gamma_{k+1}\left(\alpha_{1}\right)+2(B-A)^{2} \beta^{2}(1-\lambda)^{2}} \quad(k \geq m) \tag{4.22}
\end{equation*}
$$

we observe that $\Theta(k)$ is an increasing function of $k(k \geq m)$. Therefore, we conclude from (4.21) that

$$
\begin{equation*}
\xi \leq \Theta(m)=1-\frac{2(B-A) \beta(1-\lambda)^{2}(1+\beta B)(m+1)}{\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+2(B-A)^{2} \beta^{2}(1-\lambda)^{2}}, \tag{4.23}
\end{equation*}
$$

which completes the proof of Theorem 4.2.
Corollary 4.2. Let the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $C_{q, s}^{m}\left(\alpha_{1} ; A, B, \lambda, \beta\right)$. Then the function $h(z)$ defined by (4.18) belongs to the class $C_{q, s}^{m}\left(\alpha_{1} ; A, B, \rho, \beta\right)$, where

$$
\begin{equation*}
\rho=1-\frac{2(B-A) \beta(1-\lambda)^{2}(1+\beta B)(m+1)}{m\{(m+1)+\beta[(B m+A)+(B-A) \lambda]\}^{2} \Gamma_{m+1}\left(\alpha_{1}\right)+2(B-A)^{2} \beta^{2}(1-\lambda)^{2}} . \tag{4.24}
\end{equation*}
$$

The result is sharp for the functions f_{1} and f_{2} given by (4.15)
Remarks. (i) Putting $q=2$ and $s=\alpha_{1}=\alpha_{2}=\beta_{1}=1$ in the above results, we get the results obtained by Aouf et al. [4, Lemmas 1 and 2 and Corollaries 1, 2, 3, 4, 7 and 8 , respectively];
(ii) Putting $q=2, s=\alpha_{1}=\alpha_{2}=\beta_{1}=B=1$ and $A=-1$, in Theorems 4.1, 4.2 and Corollaries 4.1, 4.2, we get the results obtained by Aouf et al. [4, Corollaries 5, 9,6 and 10 , respectively].
Acknowledgment. The authors thank the referees for their valuable suggestions which led to the improvement of this paper.

References

[1] Aouf, M.K., A certain subclass of meromorphic starlike functions with positive coefficients, Rend Mat. Appl., 9(1989), no. 7, 225-235.
[2] Aouf, M.K., Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55(2008), no. 3, 494-509.
[3] Aouf, M.K., The generalized hypergeometric function and associated familes of meromorphically multivalent functions, J. Math. Ineq., 3(2009), no. 1, 43-62.
[4] Aouf, M.K., Darwish H.E., Srivastava, H.M., A general class of meromorphically univalent functions, PanAmer. Math. J., 7(1997), no. 3, 69-84.
[5] Liu, J.L., Srivastava, H.M., Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39(2004), 2134.
[6] Miller, J.E., Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25(1970), 220-228.
[7] Mogra, M.L., Reddy, T.R., Juneja, O.P., Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc., 32(1985), 161-176.
[8] Owa, S., Nunokawa, M., Saitoh, H., Generalization of certain subclasses of meromorphic univalent functions, J. Fac. Sci. Tech. Kinki Univ., 25(1989), 21-27.
[9] Pommerenke, Ch., On meromorphic starlike functions, Pacific J. Math., 13(1963), 221235.
[10] Schild, A., Silverman, H., Convolution of univalent functions with negative coeficients, Ann. Math Curie-Sklodowska Sect. A, 29(1975), 99-107.

Mohamed K. Aouf
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com
Adela O. Mostafa
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: adelaeg254@yahoo.com
Abd-Elmoem Y. Lashen
Department of Mathematics, Faculty of Science University of Mansoura, Mansoura 35516, Egypt
e-mail: aylashin@mans.edu.eg
Basheer M. Munassar
Department of Mathematics, Faculty of Science
University of Mansoura, Mansoura 35516, Egypt
e-mail: bmunassar@yahoo.com

