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Positive definite kernels on the set of integers,
stability, some properties and applications
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Abstract. We define and investigate a class of positive definite kernel so called
equivalent-kernel. We formulate and prove an analogous of Paley-Wiener theorem
in the context of positive definite kernel. The main ingredient in the proof is
Kolmogorov decomposition. Finally, some applications to stochastic processes
are given.
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Introduction

Positive definite kernels play a prominent role in some applications such as nu-
merical solution of partial differential equations, machine learning, computer graphics,
problem moment and probability theory. In the present work we explore some prop-
erties of positive definite kernels. For this kernels one obtains some similar results to
equivalents bases in Banach spaces and Riesz bases in Hilbert spaces. An important
tool to be used is a version of a classic result due to Kolmogorov, which will be called
a Kolmogorov decomposition of the positive definite kernel K (see [3]). We will use
Kolmogorov decomposition of a positive definite kernel to obtain a characterization
results of equivalents kernels (see Theorem 3.3). This result is similar to a known
result for equivalents bases, Riesz bases and stochastic processes. Using the above,
one obtains an analogue Paley-Wiener Theorem (see [8]) in the context of positive
definite kernels (see Theorem 3.4). Finally, some applications to stochastic processes
are given.
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1. Paley-Wiener theorem

Orthonormal bases are very important in Hilbert space theory. There is another
less known but also very useful type of bases: the Riesz bases. This section will be
devoted to them. More about these bases can be found in Young’s book [8].

Definition 1.1. A basis in a Hilbert space is a Riesz basis if it is equivalent to an
orthonormal basis.

The fundamental criterium of stability, and historically the first one, is due to
Paley and Wiener [7]. It is based on the known fact that a linear bounded operator
T on a Banach space is invertible if

‖I − T‖ < 1.

Theorem 1.2. (Paley -Wiener) Let {xn}n∈N be a basis in the Banach space X, and
suppose that {yn}n∈N is a sequence of elements of X such that∥∥∥∥∥

N∑
n=1

cn(xn − yn)

∥∥∥∥∥ ≤ λ
∥∥∥∥∥

N∑
n=1

cnxn

∥∥∥∥∥ ,
for all N ∈ N, some constant λ, with 0 ≤ λ < 1 and for any sequence of scalars
{cn}n∈N. Then {yn}n∈N is a basis for X equivalent to {xn}n∈N.

See [8, Theorem 10] for a proof.

2. Kolmogorov decomposition theorem

2.1. The Hilbert space associated to a positive definite operator valued kernel

Let {Hn}n∈Z be a family of Hilbert spaces. An operator valued kernel on Z to
{Hn}n∈Z is an application K : Z× Z→

⋃
m,n∈Z L(Hm,Hn) such that

K(n,m) ∈ L(Hm,Hn) for n,m ∈ Z.

In this section and the following one, unless it is otherwise stated, all the kernels
will be operator valued ones.

A sequence {hn} in ⊕n∈ZHn is said to have finite support if hn = 0 except for
a finite number of integers n.

A kernel K on Z to {Hn}n∈Z is a positive definite kernel if∑
n,m∈Z

〈K(n,m)hm, hn〉Hn
≥ 0,

for every sequence {hn} in ⊕n∈ZHn with finite support.
Let K be a positive definite kernel. Let F be the linear space of elements⊕

n∈ZHn and Fo be the space of elements in F with finite support.
Define BK : Fo ×Fo → C with

BK(f, g) =
∑

m,n∈Z
〈K(n,m)fm, gn〉Hn

, (2.1)

for f, g ∈ Fo, f = {fn}, g = {gn}, fn, gn ∈ Hn.
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Note that BK satisfies all the properties of an inner product, except for the fact
that the set

NK = {h ∈ Fo : BK(h, h) = 0},
could be non-trivial.

According to the Cauchy-Schwarz inequality

NK = {h ∈ Fo : BK(h, g) = 0, for all g ∈ Fo},
hence NK is a linear subspace of Fo.

The quotient space Fo/NK is also a linear subspace. If [h] stands for the class
of the element h in Fo/NK , then the application

〈[h], [g]〉 = BK(h, g), h, g ∈ Fo,

is well defined. To prove that 〈·, ·〉 is an inner product on Fo/NK is straightforward.
The completion of Fo/NK with respect to the norm induced by this inner prod-

uct is a Hilbert space. It is known as the Hilbert space associated to the positive definite
kernel K and it is denoted by HK . The inner product and the norm of HK will be
represented as 〈·, ·〉HK

and ‖ · ‖HK
respectively. This norm will be named as the norm

induced by K.

2.2. Kolmogorov Decomposition Theorem

The following theorem is a version of the classic result of Kolmogorov (see [5]
for a historical review).

Theorem 2.1 (Kolmogorov). Let K be a positive definite kernel. Then there exists a
Hilbert space HK and a map V defined on Z such that V (n) belongs to L(Hn,HK)
for each n ∈ Z and

(a) K(n,m) = V ∗(n)V (m) if n,m ∈ Z.

(b) HK =
∨
n∈Z

V (n)Hn.

(c) The decomposition is unique in the following sense: if H′ is another Hilbert space
and V ′ defined on Z is an application such that V ′(n) ∈ L(Hn,HK) for each
n ∈ Z that satisfies (a) and (b), then there exists a unitary operator Φ : HK → H′
such that ΦV (n) = V ′(n) for all n ∈ Z.

A proof of this theorem can be found in [3, Theorem 3.1].
An application V that satisfies the property (a) in Theorem 2.1 will be called The

Kolmogorov Decomposition of the Kernel K or simply, a Decomposition of the kernel
K (see [3]). The property (b) is referred to as the minimality property of Kolmogorov
Decomposition. The meaning of property (c) is that, under the minimality condition
(b), the Kolmogorov decomposition is essentially unique.

3. Some results for positive definite kernels

3.1. Equivalent definite positive kernels

Suppose the family of Hilbert spaces {Hn}n∈Z reduces to a single space, i.e.
Hn = H for all n ∈ Z.
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In this section some results given in [1] are extended to the case of kernel to
operator valued.

Definition 3.1. Let K1,K2 : Z× Z→ L(H) be two positive definite kernels.
It is said that K1 and K2 are equivalent if there exist two constants A,B with

0 < A ≤ B such that

A‖[h]K1
‖2HK1

≤ ‖[h]K2
‖2HK2

≤ B‖[h]K1
‖2HK1

,

for h ∈ Fo.

Remark 3.2. Let K : Z × Z → L(H) be a positive definite kernel. Let h ∈ Fo and
{hn}n∈Z a sequence in H with finite support.

By virtue of the definition of norm induced by the kernel K and Kolmogorov
decomposition theorem it is obtained

‖[h]‖2HK
= 〈[h], [h]〉HK

=
∑

n,m∈Z
〈K(n,m)hm, hn〉H

=
∑

m,n∈Z
〈VK(n)∗VK(m)hm, hn〉H =

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

H

.

The following is one of our results.

Theorem 3.3. Let K1,K2 : Z × Z → L(H) be two positive definite kernels. Then the
following conditions are equivalent:

(i) The kernels K1 y K2 are equivalents.
(ii) There exists a linear bounded bijective application, with bounded inverse

Φ : HK1
→ HK2

,

such that

ΦVK1(n) = VK2(n) for all n ∈ Z.
(iii) There exist two constants A,B with 0 < A ≤ B such that

A
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ≤

∑
n,m∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ,

for all sequence with finite support {hn}n∈Z ⊂ H.

Proof. Let VK1
and VK2

be the Kolmogorov decomposition of the kernels K1, K2 and
Let HK1

and HK2
the associated Hilbert spaces.

Remark 3.2 allows us to write condition (iii) in the following way: there exist two
constants A and B with 0 < A ≤ B such that

A‖[h]K1‖2HK1
≤ ‖[h]K2‖2HK2

≤ B‖[h]K1‖2HK1
,

for h ∈ Fo.
Consequently the conditions (i) and (iii) are equivalents.
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Next, suppose that condition (ii) is true. Since Φ is a linear bounded and invertible
operator, then there exist two constants ao, bo with 0 < ao ≤ bo such that

ao‖f‖HK1
≤ ‖Φ(f)‖HK2

≤ bo‖f‖HK1
,

for all f ∈ HK1 .
Let f ∈ HK1

given by

f =
∑
n∈Z

VK1
(n)hn,

where {hn}n∈Z is a sequence in H with finite support.
Then

a2
o

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

≤

∥∥∥∥∥∑
n∈Z

VK2
(n)hn

∥∥∥∥∥
2

HK2

≤ b2o

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

.

On the other hand, since K1 and K2 are positive definite kernels, by the Kolmogorov
decomposition theorem we have

K1(n,m) = V ∗K1
(n)VK1(m), m, n ∈ Z

and
K2(n,m) = V ∗K2

(n)VK2(m), m, n ∈ Z.
Taking in to account the above expression we have that∥∥∥∥∥∑

n∈Z
VK1

(n)hn

∥∥∥∥∥
2

HK1

=

〈∑
m∈Z

VK1
(m)hm,

∑
n∈Z

VK1
(n)hn

〉
HK1

=
∑

m,n∈Z
〈VK1

(n)∗VK1
(m)hm, hn〉H

=
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ,

similarly, ∥∥∥∥∥∑
n∈Z

VK2
(n)hn

∥∥∥∥∥
2

HK2

=
∑

m,n∈Z
〈K2(n,m)hm, hn〉H .

Thus, choosing A = a2
o and B = b2o we have

A
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ≤

∑
m,n∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ,

where {hn}n∈Z is a sequence in H with finite support.
Now, let us suppose that condition (iii) is valid.
The application Φo : Fo,K1

→ Fo,K2
is defined as follows

Φo

(∑
n∈Z

VK1
(n)hn

)
=
∑
n∈Z

VK2
(n)hn,
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where {hn}n∈Z is a sequence in H with finite support. It is not hard to prove that Φo

is a linear operator.
In what follows we will proof that Φo is a bounded above and bounded below operator.
By the Kolmogorov decomposition theorem we obtain∑

m,n∈Z
〈K2(n,m)hm, hn〉H =

∑
m,n∈Z

〈VK2
(n)∗VK2

(m)hm, hn〉H .

Taking into account the above result and the way that the operator Φo was defined
we arrive to the next result∑
m,n∈Z

〈K2(n,m)hm, hn〉H =

〈∑
m∈Z

VK2
(m)hm,

∑
n∈Z

VK2
(n)hn

〉
HK2

=

∥∥∥∥∥∑
n∈Z

VK2(n)hn

∥∥∥∥∥
2

HK2

=

∥∥∥∥∥Φo

(∑
n∈Z

VK1(n)hn

)∥∥∥∥∥
2

HK2

.

In a similar way we have∑
m,n∈Z

〈K1(n,m)hm, hn〉H =

∥∥∥∥∥∑
n∈Z

VK1
hn

∥∥∥∥∥
2

HK1

.

By (iii),

A

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

≤

∥∥∥∥∥Φo

(∑
n∈Z

VK1
(n)hn

)∥∥∥∥∥
2

HK2

≤ B

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

.

The last chain of inequalities shows us that Φo is a bounded above and bounded below
operator. Even more the domain and the range of Φo are dense in the spaces HK1

and
HK2

respectively. Then this operator can be extended to a bounded operator with
bounded inverse say Φ : HK1

→ HK2
. By construction

ΦVK1(n) = VK2(n) for all n ∈ Z. �

Theorem 3.3 has similarities with results referring to equivalent basic sequences
in Banach spaces, for more details on the topic (see [6, 2]).

Our next stability result for positive definite kernels is similar to a stability
theorem for equivalent bases due to Paley-Wiener (see [8, Theorem 10]).

In first place we will fix the notation. Given two positive definite kernels K : Z×
Z→ L(H) and K1 : Z× Z→ L(H), let VK and VK1

the Kolmogorov decompositions
of K and K1 respectively and let HK and HK1

the induced Hilbert spaces.

Theorem 3.4. Let K : Z×Z→ L(H) and K1 : Z×Z→ L(H) be two positive definite
kernels. If VK1

(n) ∈ L(H,HK) for all n ∈ Z and satisfies∥∥∥∥∥∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HK

≤ λ

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

,

for any sequence with finite support {hn}n∈Z ⊂ H, where λ ∈ (0, 1), then K1 is
equivalent to K.
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Proof. Let us define the operator T : HK → HK as follows

T

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

(VK(n)− VK1(n))hn,

where {hn}n∈Z is a sequence in H with finite support.

By hypothesis T is well defined and it is a linear operator. From the definition of T
and by hypothesis we have.∥∥∥∥∥T

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
2

HK

≤ λ2

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

.

Hence, T is a bounded operator and moreover

‖T‖ ≤ |λ| < 1.

Next, let us consider the operator I − T : HK → HK , as usual I : HK → HK is the
identity operator.

Since ‖T‖ < 1, by a well known functional analysis Theorem, I − T is an invertible
bounded linear operator. Moreover,

(I − T )

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

VK(n)hn − T

(∑
n∈Z

VK(n)hn

)

=
∑
n∈Z

VK(n)hn −

(∑
n∈Z

(VK(n)− VK1
(n))hn

)
=
∑
n∈Z

VK1
(n)hn.

From the above, it follows that there are positive constants m and M with m ≤ M
such that

m

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

≤

∥∥∥∥∥(I − T )

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
HK

=

∥∥∥∥∥∑
n∈Z

VK1(n)hn

∥∥∥∥∥
HK

≤M

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

.

By Remark 3.2 ∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

=
∑

m,n∈Z
〈K(n,m)hm, hn〉H .



848 Arnaldo De La Barrera, Osmin Ferrer and José Sanabria

By hypothesis VK1
(n) ∈ L(H,HK) for all n ∈ Z, thus VK1

(n)hn ∈ HK . Then∑
n,m∈Z

〈K1(n,m)hm, hn〉H =
∑

m,n∈Z
〈VK1

(n)∗VK1
(m)hm, hn〉H

=
∑

m,n∈Z
〈VK1(m)hm, VK1(n)hn〉HK

=

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK

.

Replacing these expressions in the above inequalities, we derive the existence of pos-
itive constants A and B with A ≤ B such that

A
∑

m,n∈Z
〈K(n,m)hm, hn〉H ≤

∑
m,n∈Z

〈K1(n,m)hm, hn〉H

≤ B
∑

m,n∈Z
〈K(n,m)hm, hn〉H ,

for all sequences {hn}n∈Z in H with finite support.
Applying Theorem 3.3, it follows that K1 is equivalent to K. �

4. Applications to stochastic processes

4.1. Multivariate stochastic processes

In this section it will be used the decomposition of the covariance Kernels of the
stochastic processes (see [3], Section 1, Chapter 6).

Let (Ω, F, P ) be a probability space, where F is a σ-algebra of subsets of Ω and
P is a probability measure on F . A stochastic variable is a function x : Ω → C,
which is measurable with respect to the σ-algebra F . A stochastic process is a family
{xn}n∈Z of stochastic variables. Let L2(P ) be the Hilbert space of the measurable
functions from F to Ω with integrable square, this is,

L2(P ) =

{
x : Ω→ C : x is a measurable function and

∫
Ω

|x(ω)|2dP (ω) < +∞
}

equipped with the inner product

〈x, y〉L2(P ) =

∫
Ω

x(ω)y(ω)dP (ω).

From here on, only stochastic processes with variables in L2(P ) will be considered.
The mean-value variable is defined by

mn = E(xn) =

∫
Ω

xn(ω)dP (ω)

and it is convenient to assume that mn = 0 for all n ∈ Z. The correlation of the
stochastic process {xn}n∈Z is given by

K(m,n) = Kmn =

∫
Ω

xn(ω)xm(ω)dP (ω) = 〈xn, xm〉L2(P ).
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for all m,n ∈ Z.
It is straightforward that the correlation kernel of this process is a positive

definite kernel. In fact
n∑

i,j=m

Kijλjλi =

n∑
i,j=m

〈xj , xi〉L2(P )λjλi

=

n∑
i,j=m

〈λjxj , λixi〉L2(P )

=

∥∥∥∥∥∥
n∑

j=m

λjxj

∥∥∥∥∥∥
2

L2(P )

≥ 0,

for all m,n ∈ Z,m ≤ n, and λk ∈ C, where k = m,m+ 1, ..., n.
A stochastic process {xn}n∈Z is said to be stationary (in a wide sense) if its

correlation kernel is a Toeplitz kernel, that is

K(m,n) = Kn−m for all m,n ∈ Z.

In this case it can be used the Naimark Decomposition Theorem in order to associate
the stationary stochastic process {xn}n∈Z with the Hilbert space HK , the unitary
operator S ∈ L(HK) and the operator Q ∈ L(C,HK) such that

Kn = Q∗SnQ, n ∈ Z.

The geometric settings for the prediction problem can be extended in order to deal
with the multivariate case too. Let notice that a random variable xn : Ω → C, of a
stochastic process {xn}n∈Z ⊂ L2(P ), can be interpreted as an operator from C to
L2(P ) defining x̃n : C→ L2(P ) as

x̃n(λ) = λxn,

and the elements of the correlation kernel of the process can be calculated according
to the rule

K(m,n) = (x̃m)∗x̃n.

Also, it must be noticed that many stochastic processes have the same correlation
kernel. Having this in mind it is convenient to adopt the following terminology. The
main object used to describe a multivariate process will be its correlation kernel K
which is supposed to be positive definite and K(m,n) ∈ L(Hn,Hm) for all m,n ∈ Z,
where H = {Hn}n∈Z is a family of Hilbert spaces.

Definition 4.1. A pair [K, X], where K is a Hilbert space and X = {Xn}n∈Z is a
family of operators Xn in L(Hn,K), is called a geometric model of the multivariate
process with correlation kernel K, if

K(m,n) = X∗mXn.

The Kolmogorov Decomposition Theorem shows that given a positive definite
kernel K, there exists a geometric model of the multivariate process with correlation
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kernel K. If [K, X] is the geometric model of the multivariate process with covariance
kernel K then HX will be the subspace of K generated for this model, that is,

HX =
∨
n∈Z

XnHn. (4.1)

If [K′, X ′] is another geometric model of the same process, then the Kolmogorov
Decomposition Theorem guarantees the existence of an unitary operator Φ : HX →
HX′ such that ΦXn = X ′n for all n ∈ Z. This means that the geometry of the process
is essentially determined by the choise of a geometric model such that

K =
∨
n∈Z

XnHn. (4.2)

4.2. Equivalent multivariate stochastic processes

From here on, Hn = H for all n ∈ Z and the covariance kernels of the processes
will be positive definite.

Theorem 4.2 (Isomorphism). Let [W, X] be the geometric model of a multivariate
process and let K : Z × Z → L(H) be the kernel of covariance associated with the
process. Then there exists an unit operator Φ : HK → HX such that

ΦVK(n) = Xn for all n ∈ Z.

Proof. Let [W, X], X = {Xn}n∈Z be a geometric model of a multivariate process and
K : Z× Z→ L(H) be the kernel of covariance associated with the process.

It follows that the covariance kernel and the space generated by the process is given
by

K(n,m) = X∗nXm and HX =
∨
n∈Z

XnH.

On the other hand, since K is a positive definite kernel one more time by the Kol-
mogorov decomposition theorem there exists a Hilbert space HK and an application
VK(n) ∈ L(H,HK) for all n ∈ Z such that

K(n,m) = V ∗K(n)VK(m) and HK =
∨
n∈Z

VK(n)H.

Let us define the application Φ : HK → HX in the following way

Φ

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

Xnhn,

where {hn}n∈Z is a sequence with finite support in H.
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Then we have∥∥∥∥∥Φ

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
2

HX

=

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

=
∑

m,n∈Z
〈Xmhm, Xnhn〉HX

=
∑

m,n∈Z
〈K(n,m)hm, hn〉H =

∑
m,n∈Z

〈V ∗K(n)VK(m)hm, hn〉H

=
∑

m,n∈Z
〈VK(m)hm, VK(n)hn〉K =

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

,

all of this show us that the application Φ can be extended by continuity to an unit
operator from HK over HX and moreover ΦVK(n) = Xn for all n ∈ Z. �

Definition 4.3. Two geometric models of multivariate processes [K, X] and [L, Y ] are
said to be equivalent , if dim (HX) = dim (HY ) and there are two constants A,B
with 0 < A ≤ B such that

A

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤ B

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

,

where {hn}n∈Z is a sequence in H with finite support.

By Theorem 4.2 and definitions we have the following.

Proposition 4.4. Let [W, X] and [W1, Y ] be two geometric model of multivariate pro-
cess and let K1 and K2 be two kernels of covariance associated with the processes.
Then K1 and K2 are equivalent kernels if and only if X = {Xn}n∈Z and Y = {Yn}n∈Z
are equivalent processes.

As an application we give the proof of the results obtained in [4].

Theorem 4.5. Let [K, X] and [L, Y ] be two geometric models of multivariate processes.
The following conditions are equivalent:

(i) The models of the multivariate processes [K, X] and [L, Y ] are equivalent.
(ii) There is a bijective bounded linear application with bounded inverse ψ : HX →
HY such that

ψXn = Yn for all n ∈ Z.
(iii) There exist two constants A,B with 0 < A ≤ B such that

A

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤ B

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

,

for each sequence with finite support {hn}n∈Z ⊂ H.

Proof. The equivalence between (i) and (iii) follows by definition. Next, we are going
to show that (i) implies (ii) to this end let us assume that X = {Xn}n∈Z and Y =
{Yn}n∈Z are equivalent processes let K1 and K2 be the kernels of covariance associated
with the processes X = {Xn}n∈Z and Y = {Yn}n∈Z respectively. Since X = {Xn}n∈Z
and Y = {Yn}n∈Z are equivalent, then by proposition 4.4 we concluded that K1 and
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K2 are equivalent kernels. By Theorem 3.3, there exists a biyective bounded linear
application linear with bounded inverse Φ : HK1

→ HK2
such that

ΦVK1
(n) = VK2

(n) for all n ∈ Z.

Let us consider the operators φ1 : HK1 → HX such that

φ1VK1(n) = Xn for all n ∈ Z

and φ2 : HK2
→ HY such that

φ2VK2
(n) = Yn for all n ∈ Z.

From the above it follows that

φ−1
2 Φφ−1

1 Xn = Yn for all n ∈ Z.

Now suppose that (ii) holds then there is a bijective bounded linear application with
bounded inverse ψ : HX → HY such that

ψXn = Yn for all n ∈ Z.

Let K1 and K2 be two kernels of covariance associated with the processes X =
{Xn}n∈Z and Y = {Yn}n∈Z, respectively.
Let us consider the operators φ1 : HK1 → HX such that

φ1VK1(n) = Xn for all n ∈ Z

and φ2 : HK2
→ HY such that

φ2VK2
(n) = Yn for all n ∈ Z.

From the above it follows that

φ−1
2 ψφ1VK1(n) = VK2(n) for all n ∈ Z.

By Theorem 3.3, we obtain dim (HK1) = dim (HK2) and there exist two positive
constants A,B, A ≤ B such that

A
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ≤

∑
n,m∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ,

where {hn}n∈Z is a sequence in H with finite support.
The result comes up from the fact that K1(m,n) = X∗mXn and K2(m,n) = Y ∗mYn. �

In the multivariate stochastic processes setting it is possible to obtain a result
similar to that of the theorem on stability (see Theorem 1.2).

The following is our result about stability of multivariate stochastic processes.

Theorem 4.6. Let [W, Y ] be a geometrical model of a multivariate stochastic process,
HY the subspace generated by the process, and suppose Xn ∈ L(H,HY ) for all n ∈ Z
such that ∥∥∥∥∥∑

n∈Z
(Yn −Xn)hn

∥∥∥∥∥
HY

≤ δ

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
HY

, (4.3)
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for some constant δ, 0 < δ < 1, and any sequence {hn}n∈Z in H with finite support.
Then the geometric model of the multivariate process [K, X] is equivalent to [W, Y ].

Proof. Let K and K1 be two kernels of covariance associated with the processes
Y = {Yn}n∈Z and X = {Xn}n∈Z, respectively.

Let us consider the operators Φ1 : HK → HY such that

Φ1VK(n) = Yn for all n ∈ Z

and Φ2 : HK1
→ HX such that

Φ2VK1
(n) = Xn for all n ∈ Z.

From the above and hypothesis we have

HK1
⊂ HK and Φ2

(∑
n∈Z

VK1
(n)hn

)
=
∑
n∈Z

Xnhn = Φ1

(∑
n∈Z

VK1
(n)hn

)
.

Then∥∥∥∥∥∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HK

=

∥∥∥∥∥Φ1

∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HY

=

∥∥∥∥∥∑
n∈Z

(Φ1VK(n)− Φ2VK1
(n))hn

∥∥∥∥∥
HY

=

∥∥∥∥∥∑
n∈Z

(Yn −Xn)hn

∥∥∥∥∥
HY

≤ δ

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
HY

= δ

∥∥∥∥∥∑
n∈Z

Φ1VK(n)hn

∥∥∥∥∥
HY

= δ

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

,

for any sequence {hn}n∈Z in H with finite support.
Finally, by Theorem 3.4 it follows that K1 and K are equivalent kernels. Therefore
X = {Xn}n∈Z is equivalent to Y = {Yn}n∈Z. �
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