Finite time blow-up for quasilinear wave equations with nonlinear dissipation

Mohamed Amine Kerker

Abstract. In this paper we consider a class of quasilinear wave equations
\[u_{tt} - \Delta_\alpha u - \omega_1 \Delta u_t - \omega_2 \Delta \beta u_t + \mu |u_t|^{m-2}u_t = |u|^{p-2}u, \]
associated with initial and Dirichlet boundary conditions. Under certain conditions on \(\alpha, \beta, m, p \), we show that any solution with positive initial energy, blows up in finite time. Furthermore, a lower bound for the blow-up time will be given.

Mathematics Subject Classification (2010): 35B44, 35L05, 35L20, 35L72.

Keywords: Nonlinear wave equation, strong damping, blow-up.

1. Introduction

In this paper, we would like to study the blow-up of solutions of the following initial boundary value problem of a quasilinear wave equation

\[
\begin{cases}
 u_{tt} - \Delta_\alpha u - \omega_1 \Delta u_t - \omega_2 \Delta \beta u_t + \mu |u_t|^{m-2}u_t = |u|^{p-2}u, & x \in \Omega, \quad t > 0, \\
 u(x, t) = 0, & x \in \partial \Omega, \quad t > 0, \\
 u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), & x \in \Omega.
\end{cases}
\]

Here, \(\Omega \) is a bounded domain of \(\mathbb{R}^n \) with a smooth boundary \(\partial \Omega \). Additionally, we assume that

\[u_0 \in W^{1,\alpha}_0(\Omega), \quad u_1 \in L^2(\Omega), \]

and \(\alpha, \beta, \omega_1, \omega_2, \mu, m, p \) are positive constants, with

\[
\begin{cases}
 2 < p \leq \alpha^*, \quad \alpha^* = \frac{\alpha n}{n-\alpha}, & \text{for } n > \alpha, \\
 2 < p < \infty, & \text{for } n = \alpha.
\end{cases}
\]

The operator \(\Delta_\alpha \) is the classical \(\alpha \)-Lapacian given by:

\[\Delta_\alpha u = \text{div} \left(|\nabla u|^{\alpha-2} \nabla u \right). \]
Notice that $\Delta_{\beta}u_t$ is a quasilinear strong damping term, and it is degenerate when $\beta > 2$.

Nonlinear hyperbolic equations of the type (1.1) have been investigated in the papers [2, 5, 7, 9, 15], and the references therein. Several examples of this type arise in physics, for example, the problem (1.1) represents a longitudinal motion of a viscoelastic rod obeying the nonlinear Voight model.

Zhijiang [14] proved a blow up result for the problem (1.1) when the initial energy is sufficiently negative. This result was extended by Messaoudi and Houari [8] to a situation when the solution has negative initial energy. Liu and Wang [6] studied a more general model including (1.1), and by improving the arguments in [14] and [8] they established a blow-up result in the subcritical initial energy case, i.e. $E(0) < d$, where $E(0)$ is the initial energy and d is the depth of the potential well.

For $\alpha = \beta = m = 2$, equation in (1.1) reduces to the linearly damped wave equation

\[u_{tt} - \Delta u + \omega \Delta u_t + \mu u_t = |u|^{p-2}u. \quad (1.4) \]

Gazzola and Squassina [3] studied (1.4) and gave a necessary and sufficient conditions for blow-up if $E(0) < d$. Recently, Yang and Xu [13] gave a sufficient condition for blow-up if $E(0) > d$. Sun et al. [12] obtained, for (1.4), an estimate of the lower bound for the blow-up time when $2 < p \leq \frac{2(n-1)}{n-2}$. This work was extended by Guo and Liu [4] to the case when the exponent $p \in \left(\frac{2(n-1)}{n-2}, \frac{2(n^2-2)}{n-2} \right]$. Later, in the case of $\omega > 0$, Baghaei [1] improved the results in [12] and [4] by enlarging the upper bound for p to 2^*.

In related work, Song and Xue [11] studied the following nonlinear wave equation with strong damping

\[u_{tt} - \Delta u + \int_0^t g((t - \tau)\Delta u(\tau)d\tau - \Delta u_t = |u|^{p-2}u. \quad (1.5) \]

They introduced a new technique to obtain a finite time blow-up result with arbitrary high initial energy in the case of linear strong damping. By applying the technique similar to that in [11], Song [10] extended the result in [11] to the case of nonlinear weak damping $\mu |u_t|^{m-2}u_t$ in place of $-\Delta u_t$ in (1.5).

In this paper, by using the technique in [10], we give sufficient conditions for finite time blow-up of solutions of (1.1), in the case $E(0) \geq d$. Furthermore, by using the techniques in [4], we obtain a lower bound for the blow-up time.

2. Preliminaries

We denote by $\| \cdot \|_p$ the $L^p(\Omega)$ norm ($2 \leq p < \infty$), and by (\cdot, \cdot) the L^2 inner product. We introduce the following functional space

\[\mathcal{H} := L^\infty([0, T), W^{1, \alpha}_0(\Omega)) \cap W^{1, \infty}([0, T), L^2(\Omega)) \]

\[\cap W^{1, \beta}([0, T), W^{1, \beta}(\Omega)) \cap W^{1, m}([0, T), L^m(\Omega)), \]
for $T > 0$, and the energy functional

$$E(t) := \frac{1}{2} \|\nabla u\|_{\alpha}^\alpha + \frac{1}{2} \|u_t\|_{2}^2 - \frac{1}{p} \|u\|_{p}^p.$$

We define also the following constant

$$\lambda = B_{\ast}^{-\frac{p}{p-\alpha}},$$

where B_{\ast} is the best constant of the Sobolev embedding $W^{1,\alpha}_0(\Omega) \hookrightarrow L^p(\Omega)$. Finally, we characterize the depth of the potential well d as follows:

$$d = \left(\frac{1}{\alpha} - \frac{1}{p} \right) \lambda^2.$$

Lemma 2.1. Let u be a global solution to problem (1.1). Then we have

$$E'(t) = -\omega_1 \|\nabla u_t\|_{2}^2 - \omega_2 \|\nabla u_t\|_{\beta}^\beta - \mu \|u_t\|_{m}^m, \quad \forall t \geq 0.$$

As a consequence, we have the following inequalities:

$$E(t) \leq E(0), \quad \forall t \geq 0,$$

(2.1)

and

$$-E'(t) \geq \omega_1 \|\nabla u_t\|_{2}^2, \quad -E'(t) \geq \omega_2 \|\nabla u_t\|_{\beta}^\beta, \quad -E'(t) \geq \mu \|u_t\|_{m}^m.$$

(2.2)

Subsequently, we state the following theorems (see [6]).

Theorem 2.2 (Local existence). Assume that conditions (1.2) and (1.3) hold. Then problem (1.1) has a unique local solution $u \in \mathcal{H}$.

Theorem 2.3 (Blow-up for $E(0) < d$). Assume (1.2) and (1.3) hold. Assume further that $\alpha, \beta, m \geq 2$ and $p > \alpha > \max \{m, \beta\}$. Suppose $E(0) < d$ and

$$\|\nabla u_0\|_{\alpha} > \lambda.$$

(3.1)

Then u blows up in finite time.

3. Finite time blow-up

In this section we extend the blow-up result in [8] to the case $E(0) \geq d$. Here is our main result:

Theorem 3.1 (Blow-up for $E(0) \geq d$). Assume (1.2), (2.3) and (1.3) hold. Assume further that $\alpha, \beta, m > 2$, $\alpha > \beta$ and $p > \max \{m, \alpha\}$. Suppose $E(0) \geq d$ and

$$(u_t(0), u(0)) > ME(0),$$

(3.1)

where $M > 0$ is defined in (3.7), then the solution $u \in \mathcal{H}$ of (1.1) blows up in finite time.
Proof. Assume by contradiction that $u(t)$ is a global solution of (1.1). Setting

$$F(t) := \frac{1}{2} \|u(t)\|_2^2,$$

it follows from (1.1) that

$$F''(t) = \|u_t\|_2^2 + \|u\|_p^p - \|\nabla u\|_\alpha^\alpha - \omega_1(\nabla u_t, \nabla u) - \omega_2(\|\nabla u_t\|^{\beta-2}\nabla u_t, u) - \mu(\|u_t\|^{m-2}u_t, u). \tag{3.2}$$

By using Hölder’s inequality and Young’s inequality, we estimate the two last terms in the right-hand side of the previous equation, as follows

$$(\nabla u_t, \nabla u) \leq \eta \|\nabla u\|_2^2 + \frac{1}{2\eta} \|\nabla u_t\|_2^2, \quad \eta > 0,$$

$$(\|\nabla u_t\|^{\beta-2}\nabla u_t, u) \leq \frac{1}{\beta} \sigma^\beta \|\nabla u\|_\beta^\beta + \frac{\beta-1}{\beta} \sigma^{\beta/(1-\beta)} \|\nabla u_t\|_\beta^\beta, \quad \sigma > 0,$$

$$\|u_t\|^{m-2}u_t, u) \leq \frac{1}{m} \delta^m \|u\|_m^m + \frac{m-1}{m} \delta^{m/(1-m)} \|u_t\|_m^m, \quad \delta > 0.$$

So, that thanks to the convexity of the function y^α/x for $y \geq 0$ and $x > 0$, we have

$$\frac{\delta^m}{m} \|u\|_m^m \leq \frac{s}{2} \delta^m \|u\|_2^2 + \frac{1-s}{p} \delta^m \|u\|_p^p, \quad s = \frac{p-m}{p-2},$$

$$\frac{1}{\beta} \sigma^\beta \|\nabla u\|_\beta^\beta \leq \frac{\theta}{2} \sigma^\beta \|\nabla u\|_2^2 + \frac{1-\theta}{\alpha} \sigma^\beta \|\nabla u\|_\alpha^\alpha, \quad \theta = \frac{\alpha - \beta}{\alpha - 2}.$$

Hence, (3.2) becomes

$$F''(t) \geq \|u_t\|_2^2 - \left[1 + \frac{\omega_2(1-\theta)}{\alpha} \sigma^\beta \right] \|\nabla u\|_\alpha^\alpha - \frac{\mu s}{2} \delta^m \|u\|_2^2$$

$$- \left(\omega_1 \eta + \frac{\omega_2 \theta}{2} \sigma^\beta \right) \|\nabla u\|_2^2 + \left[1 - \frac{\mu(1-s)}{p} \delta^m \right] \|u\|_p^p$$

$$- \frac{\omega_1}{4\eta} \|\nabla u\|_2^2 - \frac{\omega_2}{\beta} \|\nabla u_t\|_\beta^{\beta-1} \|\nabla u_t\|_\beta^\beta - \mu \frac{m-1}{m} \delta^{-\frac{m}{m-1}} \|u_t\|_m^m. \tag{3.3}$$

Next, since $u(t)$ is global and $E(0) \geq d$, then by Theorem 2.3, $E(t) \geq d, \forall t \geq 0$. Thus, using the embedding $L^\alpha(\Omega) \hookrightarrow L^2(\Omega)$ and the inequality

$$z^b \leq (z + a) \left(z + \frac{1}{a}\right), \quad z \geq 0, \quad 0 < b \leq 1, \quad a > 0,$$

we obtain

$$\|\nabla u\|_2^2 \leq c \|\nabla u\|_\alpha^\alpha$$

$$= c \left[\|\nabla u\|_\alpha^\alpha\right]^{2/\alpha}$$

$$\leq c \left(1 + \frac{1}{d}\right) \left[\|\nabla u\|_\alpha^\alpha + d\right]$$

$$\leq C \left[\|\nabla u\|_\alpha^\alpha + E(t)\right], \quad \forall t \geq 0. \tag{3.4}$$
By using Lemma 2.1 and (2.2), we get
\[
\frac{d}{dt} \left\{ F'(t) - \left[\frac{1}{4\eta} + \frac{\beta - 1}{\beta} \sigma^{\frac{\beta}{\beta-1}} + \frac{m-1}{m} \delta^{\frac{-m}{m-1}} \right] E(t) \right\}
\geq F''(t) + \frac{\omega_1}{4\eta} \| \nabla u_t \|_2^2 + \omega_2 \frac{\beta - 1}{\beta} \sigma^{\frac{\beta}{\beta-1}} \| \nabla u_t \|_\beta^2 + \mu \frac{m-1}{m} \delta^{\frac{-m}{m-1}} \| u_t \|_m^m.
\]

Adding and subtracting \(p(1 - \varepsilon) E(t) \), for \(\varepsilon \in (0, 1) \), in the right-hand side of the last inequality, and using (3.4) and the Poincaré inequality we obtain
\[
\frac{d}{dt} \left\{ F'(t) - \left[\frac{1}{4\eta} + \frac{\beta - 1}{\beta} \sigma^{\frac{\beta}{\beta-1}} + \frac{m-1}{m} \delta^{\frac{-m}{m-1}} \right] E(t) \right\}
\geq \| u_t \|_2^2 - \frac{\mu s}{2} \delta^m \| u \|_2^2 - \left[1 + \frac{\omega_2(1 - \theta)}{\alpha} \sigma^\beta \right] \| \nabla u \|^\alpha_\alpha
\]
\[
- \left(\frac{\omega_1}{2} + \frac{\omega_2 \theta}{2} \sigma^\beta \right) \| \nabla u \|_2^2 + \left[1 - \frac{\mu(1 - s)}{p} \delta^m \right] \| u \|^p_p
\]
\[
\geq \left[1 + \frac{p}{2} (1 - \varepsilon) \right] \| u_t \|_2^2 - \frac{\mu s}{2} \delta^m \| u \|_2^2 + k(\varepsilon) \| \nabla u \|_2^2
\]
\[
- \left(\frac{\omega_1}{2} + \frac{\omega_2 \theta}{2} \sigma^\beta \right) \| \nabla u \|_2^2 + \left[\varepsilon - \frac{\mu(1 - s)}{p} \delta^m \right] \| u \|^p_p - p(1 - \varepsilon) E(t)
\]
\[
\geq \left[1 + \frac{p}{2} (1 - \varepsilon) \right] \| u_t \|_2^2 - \frac{\mu s}{2} \delta^m \| u \|_2^2 + \gamma(\varepsilon) \| \nabla u \|_2^2
\]
\[
+ \left[\varepsilon - \frac{\mu(1 - s)}{p} \delta^m \right] \| u \|^p_p - [k(\varepsilon) + p(1 - \varepsilon)] E(t)
\]
\[
\geq \left[1 + \frac{p}{2} (1 - \varepsilon) \right] \| u_t \|_2^2 + \left\{ \gamma(\varepsilon)B - \frac{\mu s}{2} \delta^m \right\} \| u \|_2^2
\]
\[
+ \left[\varepsilon - \frac{\mu(1 - s)}{p} \delta^m \right] \| u \|^p_p - [k(\varepsilon) + p(1 - \varepsilon)] E(t), \tag{3.5}
\]

where
\[
k(\varepsilon) = \frac{1}{\alpha} \left[p(1 - \varepsilon) - \alpha - \omega_2(1 - \theta) \sigma^\beta \right],
\]
\[
\gamma(\varepsilon) = \frac{k(\varepsilon)}{C^\varepsilon} - \omega_1 \eta - \frac{\omega_2 \theta}{2} \sigma^\beta,
\]
and \(B \) is the best constant of Poincaré inequality
\[
\| \nabla u \|_2^2 \geq B \| u \|_2^2.
\]

Therefore, taking \(\eta = \varepsilon, \sigma = \varepsilon, \)
\[
\delta = \left[\frac{p \varepsilon}{\mu(1 - s)} \right]^{1/m},
\]
setting
\[
\gamma_1(\varepsilon) = \frac{1}{4\varepsilon} + \frac{\beta - 1}{\beta} \varepsilon^{\frac{\beta}{\beta-1}} + \frac{m-1}{m} \left(\frac{1 - s}{p \varepsilon} \right)^{-\frac{1}{m-1}},
\]
and substituting in (3.5), we arrive at
\[
\frac{d}{dt} [F'(t) - \gamma_1(\varepsilon)E(t)] \geq \left[1 + \frac{p}{2}(1 - \varepsilon)\right] \|u_t\|^2 \nonumber
\]
\[+ \left[\gamma(\varepsilon)B - \frac{ps}{2(1-s)}\varepsilon\right] \|u\|^2 - [k(\varepsilon) + p(1 - \varepsilon)] E(t). \nonumber\]

By using the Schwarz inequality, we have
\[
2 \left[1 + \frac{p}{2}(1 - \varepsilon)\right]^{1/2} \left[\gamma(\varepsilon)B - \frac{ps}{2(1-s)}\varepsilon\right]^{1/2} (u_t, u) \nonumber
\]
\[\leq \left[1 + \frac{p}{2}(1 - \varepsilon)\right] \|u_t\|^2 + \left[\gamma(\varepsilon)B - \frac{ps}{2(1-s)}\varepsilon\right] \|u\|^2. \nonumber\]

Consequently, we obtain
\[
\frac{d}{dt} [F'(t) - \gamma_1(\varepsilon)E(t)] \geq a(\varepsilon)(u_t, u) - [k(\varepsilon) + p(1 - \varepsilon)] E(t) \nonumber
\]
\[= a(\varepsilon) [F'(t) - \gamma_2(\varepsilon)E(t)], \quad (3.6) \nonumber\]

where
\[
a(\varepsilon) = 2 \left[1 + \frac{p}{2}(1 - \varepsilon)\right]^{1/2} \left[\gamma(\varepsilon)B - \frac{ps}{2(1-s)}\varepsilon\right]^{1/2}, \nonumber\]
\[
\gamma_2(\varepsilon) = \frac{k(\varepsilon)+p(1-\varepsilon)}{a(\varepsilon)}. \nonumber\]

Since
\[
\gamma(\varepsilon)B - \frac{ps}{2(1-s)}\varepsilon \rightarrow \begin{cases}
\frac{B(p-\alpha)}{\alpha C} > 0 & \text{as } \varepsilon \to 0^+ \\
-\left[\frac{\alpha+\omega_1(1-\theta)}{\alpha C} + \omega_1 + \frac{\omega_2^2}{2}\right] B - \frac{ps}{2(1-s)} < 0 & \text{as } \varepsilon \to 1^-,
\end{cases} \nonumber\]

then, there exists \(\varepsilon_* \in (0,1)\), such that
\[
\begin{cases}
\gamma_1(\varepsilon) = 0 & \text{and } a(\varepsilon) > 0, \quad \forall \varepsilon \in (0,\varepsilon_*). \\
\end{cases} \nonumber\]

Hence, we have
\[
\gamma_1(\varepsilon) - \gamma_2(\varepsilon) \rightarrow \begin{cases}
+\infty & \text{as } \varepsilon \to 0^+ \\
-\infty & \text{as } \varepsilon \to \varepsilon_*^-.
\end{cases} \nonumber\]

Therefore, there exists \(\varepsilon_0 \in (0,\varepsilon_*)\), such that \(\gamma_1(\varepsilon_0) = \gamma_2(\varepsilon_0) > 0\). So, by setting
\[
L(t) = F'(t) - \gamma_1(\varepsilon_0)E(t), \\
M = \gamma_1(\varepsilon_0), \quad (3.7) \nonumber\]

and by using (2.3), we obtain
\[
L(0) = (u_t(0), u(0)) - \gamma_1(\varepsilon_0)E(0) > (u_t(0), u(0)) - ME(0) > 0. \nonumber\]

Moreover, with this choice of \(\varepsilon_0\), (3.6) becomes
\[
\frac{d}{dt} L(t) \geq a(\varepsilon_0)L(t), \nonumber\]
which gives
\[L(t) \geq L(0)e^{a(\varepsilon_0)t}, \quad \forall t \geq 0, \]
and hence
\[F'(t) \geq L(0)e^{a(\varepsilon_0)t}, \quad \forall t \geq 0. \]
By integrating this last inequality over \((0, t)\), we get
\[
\|u(t)\|^2_2 = 2F(t) \geq 2F(0) + 2\frac{L(0)}{a(\varepsilon_0)} \left[e^{a(\varepsilon_0)t} - 1 \right], \quad \forall t \geq 0. \tag{3.8}
\]
On the other hand, by using Hölder’s inequality and (2.2), we have
\[
\|u(t)\|_2 \leq \|u(0)\|_2 + \int_0^t \|u_\tau(\tau)\|_2 d\tau \\
\leq \|u(0)\|_2 + C \int_0^t \|u_\tau(\tau)\|_m d\tau \\
\leq \|u(0)\|_2 + Ct^{\frac{m-1}{m}} \int_0^t \|u_\tau(\tau)\|_m^2 d\tau \\
\leq \|u(0)\|_2 + Ct^{\frac{m-1}{m}} \int_0^t \frac{1}{\mu} dE(\tau) d\tau \\
\leq \|u(0)\|_2 + Ct^{\frac{m-1}{m}} \left[\frac{E(0) - E(t)}{\mu} \right]^{1/m} \\
\leq \|u(0)\|_2 + C \left[\frac{E(0)}{\mu} \right]^{1/m} t^{\frac{m-1}{m}},
\]
which clearly contradicts (3.8).

4. Lower bound for the blow-up time

In this section, we give a lower bound for the blow-up time \(T_{\text{max}}\). To this end, we define
\[G(t) := \frac{1}{p} \|u(t)\|_p^p. \]

Theorem 4.1. Let \(u\) be the solution of (1.1), and assume that
\[
\begin{cases}
2 < p \leq \frac{\alpha(n-2)+2n}{2(n-\alpha)}, & \text{for } n > \alpha, \\
2 < p < \infty, & \text{for } n = \alpha.
\end{cases}
\]
Then
\[T_{\text{max}} \geq \int_{G(0)}^{+\infty} \left\{ \tau + A_1 \tau^{\frac{2}{p-2}}(p-1) + A_2 \right\}^{-1} d\tau, \]
where \(A_1\) and \(A_2\) are positive constants to be determined later in the proof.
Proof. By using inequality (2.1), we have
\[
\frac{1}{2} \| u_t \|_2^2 + \frac{1}{\alpha} \| \nabla u \|_\alpha^\alpha = E(t) + \frac{1}{p} \| u(t) \|_p^p \leq E(0) + G(t). \tag{4.1}
\]
Next, using the Schwarz inequality, the Sobolev-type inequality
\[
\| u \|_q \leq C q \| \nabla u \|_\alpha, \quad \forall q \in [1, \alpha^*], \quad \forall u \in W^{1,\alpha}_0(\Omega), \tag{4.2}
\]
inequality (4.1) yields
\[
G'(t) = (|u|^{p-2}u, u_t)
\leq \frac{1}{2} \| u_t \|_2^2 + \frac{1}{2} \| u \|_{2(p-1)}^{2(p-1)}
\leq \frac{1}{2} \| u_t \|_2^2 + \frac{C_{2(p-1)}^{2(p-1)}}{2} \| \nabla u \|_\alpha^{2(p-1)}
\leq E(0) + G(t) + \frac{2(2(p-1))}{2} [\alpha E(0) + \alpha G(t)]^{\frac{2}{p}(p-1)}. \tag{4.3}
\]
From (4.3) and Jensen’s inequality, we obtain the differential inequality
\[
G'(t) \leq G(t) + A_1 [G(t)]^{\frac{2}{p}(p-1)} + A_2, \tag{4.4}
\]
with
\[
A_1 = C_{2(p-1)}^{2(p-1)} 2^{\frac{n}{p}(p-1)-2} \alpha^{\frac{2}{p}(p-1)} \quad \text{and} \quad A_2 = E(0) + A_1 [E(0)]^{\frac{2}{p}(p-1)}.
\]
Hence, we get
\[
T_{\text{max}} \geq \int_{\text{max}}^{T_{\text{max}}} \left\{ G(s) + A_1 [G(s)]^{\frac{2}{p}(p-1)} + A_2 \right\}^{-1} G'(s) ds.
\]
Since \(\lim_{t \to T_{\text{max}}} G(t) = +\infty \), so the previous inequality implies
\[
T_{\text{max}} \geq \int_{G(0)}^{+\infty} \left\{ \tau + A_1 \tau^{\frac{2}{p}(p-1)} + A_2 \right\}^{-1} d\tau.
\]
\]
In the next theorem, when \(n > \alpha \), the upper bound for \(p \) is enlarged. We define
\[
H(t) := \frac{1}{\sigma} \| u(t) \|_\sigma^\sigma,
\]
where \(\sigma = \frac{\alpha(n-2)+2n}{2(n-\alpha)} \). Then, we have

Theorem 4.2. Let \(u \) be the solution of (1.1), and assume that
\[
\frac{\alpha(n-2)+2n}{2(n-\alpha)} < p \leq \frac{\alpha n(n-\alpha+2)-2\alpha^2}{2n(n-\alpha)}. \tag{4.5}
\]
Then
\[
T_{\text{max}} \geq \int_{H(0)}^{+\infty} \left\{ B_1 \tau^{b_1} + B_2 \tau^{b_2} + B_3 \right\}^{-1} d\tau,
\]
where \(B_1, B_2, B_3, b_1 \) and \(b_2 \) are positive constants to be determined later in the proof.
Proof. By using inequality (2.1), we have
\[
\frac{1}{2} \|u_t\|^2_2 + \frac{1}{\alpha} \|\nabla u\|^2_\alpha = E(t) + \frac{1}{p} \|u(t)\|^p_p \leq E(0) + \frac{1}{p} \|u(t)\|^p_p. \tag{4.6}
\]
Using the Schwarz inequality, the Sobolev-type inequality (4.2), with \(q = \alpha^*\), and inequality (4.6) we get
\[
H'(t) = (|u|^{\sigma-2}u, u_t)
\leq \frac{1}{2} \|u_t\|^2_2 + \frac{1}{2} \|u\|^{2(\sigma-1)}_{2(\sigma-1)}
\leq \frac{1}{2} \|u_t\|^2_2 + \frac{C_{\alpha^*}^*}{2} \|\nabla u\|^\alpha_{\alpha^*}
\leq E(0) + \frac{1}{p} \|u\|^p_p + \frac{C_{\alpha^*}^*}{2} \left[\alpha E(0) + \frac{\alpha}{p} \|u\|^p_p \right]^{\frac{n}{n-\alpha}}. \tag{4.7}
\]
Next, the interpolation inequality, the Sobolev inequality and Young’s inequality give
\[
\|u\|^p_p \leq \|u\|^\theta_{\alpha^*} \|u\|^{(1-\theta)p}_\alpha, \quad \theta = \frac{\alpha^*(p-\sigma)}{p(\alpha^* - \sigma)},
\leq C_{\alpha^*}^* \|\nabla u\|^\theta_{\alpha^*} \|u\|^{(1-\theta)p}_\alpha,
\leq \frac{1}{\alpha} \|\nabla u\|^\alpha_{\alpha^*} + B \|u\|^r_r,
\tag{4.8}
\]
where
\[
B = C_{\alpha^*}^* \left(1 - \frac{\theta p}{\alpha} \right) \left(p \theta C_{\alpha^*}^* \right)^{\frac{p}{\alpha - \theta p}} \quad \text{and} \quad r = \frac{\alpha p(1-\theta)}{\alpha - \theta p}.
\]
Note that in virtue of (4.5), we have \(\alpha > \theta p\). Hence, by (2.1) we have
\[
\|u\|^p_p \leq E(0) + \frac{1}{p} \|u\|^p_p + B \|u\|^r_r, \tag{4.9}
\]
which gives
\[
\frac{1}{p} \|u\|^p_p \leq \frac{1}{p - 1} \left(E(0) + B \|u\|^r_r \right).
\]
Inserting this last inequality in (4.7), and using Jensen’s inequality, we obtain
\[
H'(t) \leq \frac{pE(0)}{p - 1} + \frac{B}{p - 1} \|u\|^r_r + \frac{C_{\alpha^*}^*}{2} \left[\frac{\alpha pE(0)}{p - 1} + \frac{\alpha B}{p - 1} \|u\|^r_r \right]^{\frac{n}{n-\alpha}}
= B_1 (H(t))^{b_1} + B_2 (H(t))^{b_2} + B_3, \tag{4.10}
\]
where
\[
B_1 = \frac{B \sigma^r}{p - 1}, \quad B_2 = \frac{C_{\alpha^*}^*}{2} \left[\frac{\alpha B \sigma^r}{p - 1} \right]^{\frac{n}{n-\alpha}},
B_3 = \frac{pE(0)}{p - 1} + \frac{C_{\alpha^*}^*}{2} \left[\frac{\alpha pE(0)}{p - 1} \right]^{\frac{n}{n-\alpha}},
\]
\[
b_1 = \frac{r}{\sigma}, \quad b_2 = \frac{rn}{\sigma(n - \alpha)}.
\]
Finally, integrating inequality (4.10) over \((0, T_{\text{max}})\) we get
\[T_{\text{max}} \geq \int_0^{T_{\text{max}}} \left\{ B_1 (H(s))^{b_1} + B_2 (H(s))^{b_2} + B_3 \right\}^{-1} H'(s) ds, \]
and so
\[T_{\text{max}} \geq \int_{H(0)}^{+\infty} \left\{ B_1 \tau^{b_1} + B_2 \tau^{b_2} + B_3 \right\}^{-1} d\tau. \]

\[\square \]

Acknowledgments. The author wishes to express his gratitude to Professor Said Mazouzi whose valuable comments have served to substantively improve the quality of this manuscript. This work was supported by the Algerian Ministry of Higher Education and Scientific Research and the General Direction of Scientific Research as a part of Project PRFU (No. C00L03UN230120200008).

References

Mohamed Amine Kerker
Laboratory of Applied Mathematics,
Badji Mokhtar-Annaba University,
P.O. Box 12, Annaba, 23000, Algeria
e-mail: mohamed-amine.kerker@univ-annaba.dz