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Existence theory for implicit fractional
q-difference equations in Banach spaces
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Abstract. This paper deals with some existence results for a class of implicit
fractional q-difference equations. The results are based on the fixed point theory
in Banach spaces and the concept of measure of noncompactness. An illustrative
example is given in the last section.
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1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics, and other applied sciences [27]. For some funda-
mental results in the theory of fractional calculus and fractional differential equations
we refer the reader to the monographs [1, 2, 3, 20, 26, 30], the papers [21, 22, 29] and
the references therein. Recently, considerable attention has been given to the existence
of solutions of initial and boundary value problems for fractional differential equations
and inclusions with Caputo fractional derivative; [2, 19]. Implicit fractional differen-
tial equations were analyzed by many authors; see, for instance [1, 2, 4, 12, 13, 14]
and the references therein.

Fractional q-difference equations were initiated at the beginning of the 19th
century [5, 15], and received significant attention in recent years. Some interesting
details about initial and boundary value problems of q-difference and fractional q-
difference equations can be found in [7, 8, 16, 17] and references therein.

Recently, in [3], the authors applied the measure of noncompactness to some
classes of functional Riemann–Liouville or Caputo fractional differential equations in
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Banach spaces. Motivated by the above papers, we discuss the existence of solutions
for the following implicit fractional q-difference equation

(CDα
q u)(t) = f(t, u(t), (CDα

q u)(t)), t ∈ I := [0, T ], (1.1)

with the initial condition
u(0) = u0, (1.2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given function, E is a
real (or complex) Banach space with norm ‖ · ‖, and CDα

q is the Caputo fractional
q-difference derivative of order α.

This paper initiates the study of implicite fractional q-difference equations on
Banach spaces.

2. Preliminaries

Consider the Banach space C(I) := C(I, E) of continuous functions from I into
E equipped with the usual supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

As usual, L1(I) denotes the space of measurable functions v : I → E which are
Bochner integrable with the norm

‖v‖1 =

∫ T

0

‖v(t)‖dt.

Let us recall some definitions and properties of fractional q-calculus. For a ∈ R, we
set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0(a− bqk); a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞k=0

(
a− bqk

a− bqk+α

)
; a, b, α ∈ R.

Definition 2.1. [18] The q-gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1
; ξ ∈ R− {0,−1,−2, ...}

Notice that the q-gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 2.2. [18] The q-derivative of order n ∈ N of a function u : I → E is defined
by (D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)

(1− q)t
; t 6= 0, (Dqu)(0) = lim

t→0
(Dqu)(t),

and
(Dn

q u)(t) = (DqD
n−1
q u)(t); t ∈ I, n ∈ {1, 2, . . .}.
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Set It := {tqn : n ∈ N} ∪ {0}.

Definition 2.3. [18] The q-integral of a function u : It → E is defined by

(Iqu)(t) =

∫ t

0

u(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).

Definition 2.4. [6] The Riemann–Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I → E is defined by (I0

qu)(t) = u(t), and

(Iαq u)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
u(s)dqs; t ∈ I.

Lemma 2.5. [24] For α ∈ R+ := [0,∞) and λ ∈ (−1,∞) we have

(Iαq (t− a)(λ))(t) =
Γq(1 + λ)

Γ(1 + λ+ α)
(t− a)(λ+α); 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(1 + α)
t(α).

Definition 2.6. [25] The Riemann–Liouville fractional q-derivative of order α ∈ R+ of
a function u : I → E is defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (D[α]

q I [α]−α
q u)(t); t ∈ I,

where [α] is the integer part of α.

Definition 2.7. [25] The Caputo fractional q-derivative of order α ∈ R+ of a function
u : I → E is defined by (CD0

qu)(t) = u(t), and

(CDα
q u)(t) = (I [α]−α

q D[α]
q u)(t); t ∈ I.

Lemma 2.8. [25] Let α ∈ R+. Then the following equality holds:

(Iαq
CDα

q u)(t) = u(t)−
[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q u)(t) = u(t)− u(0).

From the above lemma and in order to define a solution for the problem (1.1)-(1.2),
we conclude with the following lemma.
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Lemma 2.9. Let f : I × E × E → E such that f(·, u, v) ∈ C(I), for each u, v ∈ E.
Then the problem (1.1)-(1.2) is equivalent to the problem of obtaining solutions of the
integral equation

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

and if g(·) ∈ C(I) is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

Definition 2.10. [9, 10, 11, 28] Let X be a Banach space and let ΩX be the family
of bounded subsets of X. The Kuratowski measure of noncompactness is the map
µ : ΩX → [0,∞) defined by

µ(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj ,diam(Mj) ≤ ε} ,
where M ∈ ΩX .

The measure of noncompactness satisfies the following properties

(1) µ(M) = 0⇔M is compact (M is relatively compact).
(2) µ(M) = µ(M).
(3) M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).
(4) µ(M1 +M2) ≤ µ(M1) + µ(M2).
(5) µ(cM) = |c|µ(M), c ∈ R.
(6) µ(convM) = µ(M).

For our purpose we will need the following fixed point theorem:

Theorem 2.11. (Monch’s fixed point theorem [23]). Let D be a bounded, closed and
convex subset of a Banach space such that 0 ∈ D, and let N be a continuous mapping
of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ V is compact, (2.1)

holds for every subset V of D, then N has a fixed point.

3. Main results

In this section, we are concerned with existence results for the problem (1.1)-(1.2).

Definition 3.1. By a solution of problem (1.1)-(1.2), we mean a continuous function
u that satisfies the equation (1.1) on I and the initial condition (1.2).

The following hypotheses will be used in the sequel.

(H1) The function f : I × E × E → E is continuous.
(H2) There exists a continuous function p ∈ C(I,R+), such that

‖f(t, u, v)‖ ≤ p(t); for t ∈ I, and u, v ∈ E,
(H3) For each bounded set B ⊂ E and for each t ∈ I, we have

µ(f(t, B,C Dr
qB)) ≤ p(t)µ(B),

where CDr
qB = {CDr

qw : w ∈ B}, and µ is a measure of noncompactness on E.
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Set

p∗ = sup
t∈I

p(t), and L := sup
t∈I

∫ T

0

(t− qs)(α−1)

Γq(α)
dqs.

Theorem 3.2. Assume that the hypotheses (H1)− (H3) hold. If

` := Lp∗ < 1, (3.1)

then the problem (1.1)-(1.2) has at least one solution defined on I.

Proof. By using Lemma 2.9, we transform the problem (1.1)-(1.2) into a fixed point
problem. Consider the operator N : C(I)→ C(I) defined by

(Nu)(t) = u0 + (Iαq g)(t); t ∈ I, (3.2)

where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f(t, u0 + (Iαq g)(t), g(t)).

For any u ∈ C(I) and each t ∈ I, we have

‖(Nu)(t)‖ ≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s)|dqs

≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+ p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

≤ ‖u0‖+ Lp∗

:= R.

Thus

‖N(u)‖∞ ≤ R. (3.3)

This proves that N transforms the ball BR := B(0, R) = {w ∈ C : ‖w‖∞ ≤ R} into
itself.
We shall show that the operator N : BR → BR satisfies all the assumptions of
Theorem 2.11. The proof will be given in three steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
∫ t

0
(t−qs)(α−1)

Γq(α) ‖(gn(s)− g(s))‖dqs,

where gn, g ∈ C(I) such that

gn(t) = f(t, un(t), gn(t)),

and

g(t) = f(t, u(t), g(t)).

Since un → u as n→∞ and f is continuous, we get

gn(t)→ g(t) as n→∞, for each t ∈ I.
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Hence

‖N(un)−N(u)‖∞ ≤ L‖gn − g‖∞ → 0 as n→∞.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded.
Next, let t1, t2 ∈ I, t1 < t2 and let u ∈ BR. Thus, we have

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∥∥∥∥∫ t2

0

(t2qs)
(α−1)

Γq(α)
g(s)dqs−

∫ t1

0

(t1qs)
(α−1)

Γq(α)
g(s)dqs

∥∥∥∥ .
where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)).

Hence, we get

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∫ t2

t1

(t2qs)
(α−1)

Γq(α)
p(s)dqs

+

∫ t1

0

∣∣∣∣ (t2qs)(α−1)

Γq(α)
− (t1qs)

(α−1)

Γq(α)

∣∣∣∣ dqs
≤ p∗

∫ t2

t1

(t2qs)
(α−1)

Γq(α)
p(s)dqs

+ p∗
∫ t1

0

∣∣∣∣ (t2qs)(α−1)

Γq(α)
− (t1qs)

(α−1)

Γq(α)

∣∣∣∣ dqs.
As t1 −→ t2, the right-hand side of the above inequality tends to zero.

Step 3. The implication (2.1) holds.

Now let V be a subset of BR such that V ⊂ N(V ) ∪ {0}. V is bounded and equicon-
tinuous and therefore the function t → v(t) = α(V (t)) is continuous on I. By (H3)
and the properties of the measure µ, for each t ∈ I, we have

v(t) ≤ µ((NV )(t) ∪ {0})
≤ µ((NV )(t))

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)µ(V (s))dqs

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)v(s)dqs

≤ Lp∗‖v‖∞.

Thus

‖v‖∞ ≤ `‖v‖∞.

From (3.1), we get ‖v‖∞ = 0, that is, v(t) = µ(V (t)) = 0, for each t ∈ I, and then
V (t) is relatively compact in E. In view of the Ascoli–Arzelà theorem, V is relatively
compact in BR. Applying now Theorem 2.11, we conclude that N has a fixed point
which is a solution of the problem (1.1)-(1.2).



Implicit fractional q-difference equations in Banach spaces 699

4. An example

Let

l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖l1 =

∞∑
n=1

|un|.

Consider the following problem of implicit fractional 1
4−difference equations{

(cD
1
2
1
4

un)(t) = fn(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = (0, 0, . . . , 0, . . .),
(4.1)

where fn(t, u, v) =
t
−1
4 (2−n + un(t)) sin t

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

, t ∈ (0, 1],

fn(0, u, v) = 0, .

with

f = (f1, f2, . . . , fn, . . .), and u = (u1, u2, . . . , un, . . .).

For each t ∈ (0, 1], we have

‖f(t, u(t))‖l1 =

∞∑
n=1

|fn(s, un(s))|

≤ t
−1
4 | sin t|

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

(1 + ‖u‖l1)

≤ t
−1
4 | sin t|
64L

.

Thus, the hypothesis (H2) is satisfied withp(t) =
t
−1
4 | sin t|
64L

; t ∈ (0, 1],

p(0) = 0.

So, we have p∗ ≤ 1
64L , and then

Lp∗ =
1

64
< 1.

Simple computations show that all conditions of Theorem 3.2 are satisfied. Hence,
the problem (4.1) has at least one solution defined on [0, 1].
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