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Integrodifferential evolution systems with
nonlocal initial conditions
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Abstract. The paper deals with systems of abstract integrodifferential equations
subject to general nonlocal initial conditions. In order to allow the nonlinear
terms of the equations to behave independently as much as possible, we use a
vector approach based on matrices, vector-valued norms and a vector version of
Krasnoselskii’s fixed point theorem for a sum of two operators. The assumptions
take into account the support of the nonlocal initial conditions and the hybrid
character of the system. Two examples are given to illustrate the theory.
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1. Introduction

In this paper, we are concerned with the existence of solutions to the semilinear
system of abstract integrodifferential equations with nonlocal initial conditions, of the
type  u′i (t) +Aiui(t) =

∫ t

0

Ki(t− s, us)ds+ Fi (t, ut) , t ∈ [0, T ]

ui (t) = αi (u) (t) , t ∈ [−τ, 0] , i = 1, ..., n.

(1.1)

Here n ≥ 1, and for each i ∈ I := {1, ..., n} , the linear operator −Ai : D(Ai) ⊆
Xi → Xi generates a C0-semigroup of contractions {Si(t); t ≥ 0} on a Banach space(
Xi, |.|Xi

)
, τ ≥ 0, u ∈ C ([−τ, T ] , X) , where X = X1 × ... × Xn, u = (u1, ..., un) ,

and for each t, ut is the restriction of u to [t− τ, t] shifted to the interval [−τ, 0] , i.e.,
ut ∈ C ([−τ, 0] , X) and

ut(s) = u(t+ s), s ∈ [−τ, 0] . (1.2)
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The nonlinear perturbations in equations are given by the continuous mappings Fi
from [0, T ]×C ([−τ, 0] , X) to Xi, Ki from [0, T ]×C ([−τ, 0] , X) to Xi, and the nonlo-
cal initial conditions are expressed by the continuous mappings αi from C ([−τ, T ] , X)
to C ([−τ, 0] , Xi) .

We note that the nonlocal initial conditions include in particular:

• the initial condition:

ui (t) = ϕi (t) , t ∈ [−τ, 0] , i = 1, ..., n

where ϕ = (ϕ1, ..., ϕn) ∈ C ([−τ, 0] , X) is given;
• linear multi-point conditions (linear nonlocal initial conditions of discrete type):

ui (t) = ϕi (t) +

mi∑
j=1

aij (t)ui (t+ tij) , t ∈ [−τ, 0] , i = 1, ..., n, (1.3)

where 0 < tij < ti,j+1 ≤ T for j = 1, ...,mi and i = 1, ..., n. The linear multi-
point conditions include in particular the initial condition, and the periodicity
condition

ui (t) = ui (T + t) , t ∈ [−τ, 0] , i = 1, ..., n;

• linear nonlocal initial conditions of continuous type, given by integrals:

ui (t) = ϕi (t) +

∫ T

0

ki (t, s)ui (t+ s) ds

= ϕi (t) +

∫ T+t

t

ki (t, s− t)ui (s) ds, t ∈ [−τ, 0] , i = 1, ..., n.

Starting with Volterra’s pioneering works on integrodifferential equations with
delayed effects in population dynamics and materials with memory, the theory of de-
lay differential equations has progressed continuously following the development of
functional analysis and being stimulated by numerous applications in physics, chem-
istry, biology, medicine, economy, etc., see e.g., [23]), aimed to described evolution
processes whose future states depend not only on the present, but also on the past
history.

As concerns differential equations with nonlocal initial conditions of multi-point
or integral type, we mention as some pioneering contributions, the papers of Cio-
ranescu [15], Whyburn [42] and Conti [16]). Among further developments, we refer
the readers to the works [2], [3], [7], [17], [21], [28], [29], [41], to the recent survey
paper [35], and the references therein.

Parabolic problems with nonlocal initial conditions were considered in the papers
of Kerefov [22], Vabishchevich [36], Chabrowski [14], Pao [33], Olmstead and Roberts
[31], and Chapter 10 in [26], as nonlocal versions of some deterministic models from
physics, mechanics, biology and medicine. Abstract evolution equations with nonlocal
initial conditions were considered by Byszewski [11], Jackson [20], Lin and Liu [24].
For more recent contributions, we refer the readers to the papers [4], [6], [8], [10], [12],
[19], [24], [25], [27], [30], [32], [39] and the recent monograph [9].



Integrodifferential evolution systems with nonlocal initial conditions 95

This paper has a double motivation. First, it is motivated by the second author’s
recent paper [5], which mainly inspires the operator technique of proof, and secondly,
by the paper of Webb [40] for the class of integrodifferential equations.

There are several aspects in the present paper which are mixed together requiring
a laboured technique of proof and yielding to a very general result:

I The use of the notion of support of a nonlocal initial condition and of a
corresponding split norm. Throughout the paper, by [−τ, T0] we shall denote the
support of the nonlocal initial condition, that is the smallest subinterval [−τ, T0] of
[−τ, T ] with T0 ≥ 0 such that

αi (u) = αi (v) , i = 1, ..., n, for every u, v ∈ C ([−τ, T ] , X)

with u|[−τ,T0]
= v|[−τ,T0]

.

Here by u|[−τ,T0]
we mean the restriction of the function u to the interval [−τ, T0] .

Physically, this means that the evolution of a process is subjected to some constraints
until a given moment of time T0, and becomes free of any constraints after that
moment.

The notion of support of a nonlocal initial condition was first used in the papers
[7] and [8], and used after in [29], [2], [12], [4], [5]. As explained in these papers, and
as we shall see in the following, stronger conditions on nonlinearities have to be asked
on the support subinterval, compared to those required on the rest of the interval.
Mathematically, the integral equation equivalent to the nonlocal initial problem is of
Fredholm type on the support interval, and of Volterra type on the rest of the interval.
This makes useful to consider a split norm on the functional space where the problem
is studied. Thus, in connection with the delay system (1.1) and with the support
[−τ, T0] of the nonlocal initial condition, on a space of the type C ([−τ, T ] , E) , where
(E, |·|E) is a Banach space, we shall consider the split norm

|u|τ = max
{
|u|C([−τ,T0],E) , |u|Cθ([T0−τ,T ],E)

}
, (1.4)

where |u|C([−τ,T0],E) is the usual max norm

|u|C([−τ,T0],E) = max
t∈[−τ,T0]

|u(t)|E ,

while for any θ > 0, |u|Cθ([T0−τ,T ],E) is the Bielecki type norm on C ([T0 − τ, T ], E) ,

|u|Cθ([T0−τ,T ],E) = max
t∈[T0,T ]

(
|ut|C([−τ,0],E) e

−θ(t−T0)
)

= max
t∈[T0,T ]

(
|u|C([t−τ,t],E) e

−θ(t−T0)
)
.

In particular, when there is no a delay, i.e., when τ = 0, the norm (1.4) reduces to
the split norm previously considered in [7], [2], [28] and [29].

I The hybrid character of the system. The system is split into to subsystems:
the first m equations for which Lipschitz conditions are assumed to guarantee that
the corresponding integral operators are contractive, and the last n − m equations
(0 ≤ m ≤ n) for which only at most linear growth conditions are required on the



96 Sylvain Koumla and Radu Precup

nonlinear terms, but in return, the compactness of the semigroups of operators is
assumed to insure the compactness of the integral operators. In this way the proof
will be a perfect illustration of Krasnoselskii’s fixed point theorem for a sum of a
compact map and a contraction, more exactly of its vector version of Viorel [37].

I The presence of integral terms. There is not only the bounded delay in the
equations of system (1.1), but also cumulative integral terms which bring into the
equations the whole history of the process. Such kind of equations arise from math-
ematical modeling of many real processes with memory from physics, biology and
economics. These cumulative terms play a special role in the split analysis on two
intervals as discussed previously.

2. Preliminaries

For the treatment of systems we use the vector approach based on vector-valued
metrics and norms, and matrices instead of constants.

Let us make the convention that the elements of Rn are seen as column vectors.
By a vector-valued metric on a set E we mean a mapping d : E × E → Rn+ such
that d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x) for all x, y ∈ E and d(x, y) ≤
d(x, z) + d(z, y) for all x, y, z ∈ E. Here by ≤ we mean the natural componentwise
order relation of Rn, more exactly, if r, s ∈ Rn, r = (r1, ..., rn), s = (s1, ..., sn), then
by r ≤ s one means that ri ≤ si for i = 1, ..., n. A set E together with a vector-valued
metric d is called a generalized metric space. For such a space, the notions of Cauchy
sequence, convergence, completeness, open and closed set, are similar to those in usual
metric spaces.

Similarly, a vector-valued norm on a linear space E, is defined as being a mapping
‖·‖ : E → Rn+ with ‖x‖ = 0 only for x = 0; ‖λx‖ = |λ| ‖x‖ for x ∈ E, λ ∈ R, and
‖x+ y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ E. To any vector-valued norm ‖.‖ one can
associate the vector-valued metric d (x, y) := ‖x− y‖ . A linear space E endowed
with a vector-valued norm ‖·‖ is called a generalized Banach space if E is complete
with respect to the associated vector-valued metric d.

If (E, d) is a generalized metric space with d taking values in Rn, we say that a
mapping Γ : E → E is a generalized contraction (in Perov’s sense) if there exists a
square matrix M of size n with nonnegative entries such that its powers Mk tend to
the zero matrix 0 as k →∞, and

d(Γ(x),Γ(y)) ≤Md(x, y) for all x, y ∈ E.

Such a matrix is said to be a Lipschitz matrix. Notice that for a matrix M the property
Mk → 0 as k → ∞ is equivalent to the fact that the spectral radius ρ (M) of the
matrix M is less than one. The role of matrices with spectral radius less than one
in the study of operator systems was pointed out in [34], in connection with several
abstract principles from nonlinear functional analysis.

For generalized contractions, the following extension of Banach’s contraction
principle holds.
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Theorem 2.1 (Perov). If (E, d) is a complete generalized metric space, then any gen-
eralized contraction Φ : E → E with the Lipschitz matrix M has a unique fixed point
x∗, and

d(Φk(x), x∗) ≤Mk(J −M)−1d(x,Φ(x)),

for all x ∈ E and k ∈ N (where J stands for the identity matrix of the same size as
M).

In this paper we use the following generalization of Theorem 2.1, a vector version
of Krasnoselskii’s fixed point theorem for a sum of two operators, owed to Viorel [37].

Theorem 2.2. Let (E, ‖·‖) be a generalized Banach space, D ⊂ E a nonempty bounded
closed convex set and Γ : D → E a mapping such that

(i). Γ = Φ + Ψ with Φ : D → E a generalized contraction in Perov’s sense, and
Ψ : D → E a compact operator;

(ii). Φ (u) + Ψ (v) ∈ D for every u, v ∈ D.

Then Γ has at least one fixed point in D.

The following obvious proposition will be used in the proof of the main result.

Proposition 2.3. (a) If M ∈Mn×n (R+) is a matrix with ρ (M) < 1, then ρ
(
M̃
)
< 1

for every matrix M̃ ∈ Mn×n (R+) whose elements are close enough to the corre-
sponding elements of M.

(b) If M ∈ Mn×n (R+) is a matrix with ρ (M) < 1, then ρ
(
M̂
)
< 1 for every

matrix M̂ ∈Mn×n (R+) such that M̂ ≤M componentwise.

We conclude this preliminary section by a result about the compactness of the
solution operator associated to a non-homogenous evolution equation [1].

Lemma 2.4 (Baras-Hassan-Veron). Let A : D (A) ⊂ E → E be the generator of a
compact C0-semigroup {S (t) ; t ≥ 0} . Then for every uniformly integrable family of
functions F ⊂ L1 (0, T ;E) , the set of functions{∫ t

0

S (t− s) f (s) ds : f ∈ F
}

is relatively compact in C ([0, T ] , E) .

For other basic notions and results of semigroup theory we mention the books
[13], [18] and [38].
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3. Main result

Looking for mild solutions to the problem (1.1), with ui ∈ C ([−τ, T ] , Xi) for
i = 1, ..., n we are led in a standard way to the following integral system

ui (t) = αi (u) (t) , t ∈ [−τ, 0] ,

ui (t) = Si (t)αi (u) (0) +

∫ t

0

Si (t− s)
∫ s

0

Ki (s− σ, uσ) dσds

+

∫ t

0

Si (t− s)Fi (s, us) ds, t ∈ [0, T ] , i = 1, ..., n.

(3.1)

Our assumptions are given differently for two sets of indices,

I1 := {1, ...,m} and I2 := {m+ 1, ..., n} ,
where 0 ≤ m ≤ n, and it is understood that I1 = ∅ if m = 0, and I2 = ∅ if m = n.
Let p > 1 be any fixed number.

The hypotheses are:
(H0) (a) For each i ∈ I1, the linear operator −Ai : D(Ai) ⊂ Xi → Xi generates

a C0-semigroup of contractions on the Banach space Xi.
(b) For each i ∈ I2, the linear operator −Ai : D(Ai) ⊂ Xi → Xi generates a

compact C0-semigroup of contractions on the Banach space Xi.
(H1) (a) For each i ∈ I1, Ki : [0, T ] × C([−τ, 0], X) → Xi, is continuous, and

there exist aij ∈ C([0, T ] ,R+) for j ∈ I, such that

|Ki(t, u)−Ki(t, v)|Xi ≤
n∑
j=1

aij(t) |uj − vj |C([−τ,0],Xj)

for all u, v ∈ C ([−τ, 0] , X) and t ∈ [0, T ].
(b) For each i ∈ I2, Ki : [0, T ] × C([−τ, 0], X) → Xi, is continuous, and there

exist di, aij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Ki(t, u)|Xi ≤
n∑
j=1

aij(t) |uj |C([−τ,0],Xj) + di(t)

for all u ∈ C ([−τ, 0] , X) and t ∈ [0, T ].
(H2) (a) For each i ∈ I1, Fi : [0, T ] × C ([−τ, 0] , X) → Xi is continuous and

there exists bij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Fi(t, u)− Fi(t, v)|Xi ≤
n∑
j=1

bij (t) |uj − vj |C([−τ,0],Xj)

for u, v ∈ C([−τ, 0], X) and t ∈ [0, T ] .
(b) For each i ∈ I2, Fi : [0, T ] × C ([−τ, 0] , Xi) → Xi is continuous and there

exist fi, bij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Fi(t, u)|Xi ≤
n∑
j=1

bij (t) |uj |C([−τ,0],Xj) + fi (t)

for all u ∈ C([−τ, 0], X) and t ∈ [0, T ] .
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(H3) For each i ∈ I, αi : C ([−τ, T ] , X) → C ([−τ, 0] , Xi) and there exist
cij ∈ R+ for all j ∈ I, such that

|αi (u)− αi (v)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj − vj |C([−τ,T0],Xj)

for all u, v ∈ C ([−τ, T ] , X) .

Theorem 3.1. Assume that the conditions (H0)-(H3) hold. In addition assume that
the spectral radius of the n× n square matrix M = [mij ] , where

mij = T0 |aij |L1(0,T0)
+ aij + |bij |L1(0,T0)

+ cij for i, j ∈ I, (3.2)

and

aij =

∫ T

T0

dξ

∫ T0

0

aij (ξ − σ) dσ,

is less than one.
Then the problem (1.1) has at least one mild solution u ∈ C ([−τ, T ] , X) . In case that
m = n, the solution u is unique.

Proof. The integral system (3.1) can be seen as a fixed point equation u = Γ (u) in
C ([−τ, T ] , X) for the nonlinear operator Γ from the space C ([−τ, T ] , X) to itself,
Γ = (Γ1, ...,Γn) , where Γi : C ([−τ, T ] , X)→ C ([−τ, T ] , Xi) are defined by

Γi (u) (t) = αi (u) (t) , t ∈ [−τ, 0] ,

Γi (u) (t) = Si (t)αi (u) (0) +

∫ t

0

Si (t− s)
∫ s

0

Ki (s− σ, uσ) dσds

+

∫ t

0

Si (t− s)Fi (s, us) ds, t ∈ [0, T ] .

(3.3)

Clearly, the operator Γ admits the representation Γ = Φ + Ψ, where

Φ = (Γ1, ...,Γm,Φm+1, ...,Φn) , Ψ = (0, ..., 0,Ψm+1, ...,Ψn) ,

where for i ∈ J2,

Φi (u) (t) =

{
αi (u) (t) , t ∈ [−τ, 0] ,
Si (t)αi (u) (0) , t ∈ [0, T ] ,

and

Ψi (u) (t)=


0, t ∈ [−τ, 0] ,∫ t

0

Si(t−s)
∫ s

0

Ki(s−σ, uσ)dσds+

∫ t

0

Si (t−s)Fi (s, us) ds, t ∈ [0, T ] .

We shall apply the vector version of Krasnoselskii’s fixed point theorem to the operator
Γ on the space

E := C ([−τ, T ] , X) = C ([−τ, T ] , X1)× ...× C ([−τ, T ] , Xn)

endowed with the vector-valued norm

‖u‖ = (|u1|τ , ..., |un|τ )
tr
,
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where for each i, by |ui|τ we mean the norm in C ([−τ, T ] , Xi) given by (1.4), with
θ > 0 large enough chosen below, and to a bounded closed convex subset D of the
form

D = {u = (u1, ..., un) ∈ C ([−τ, T ] , X) : |ui|τ ≤ Ri for i ∈ I}
= {u ∈ C ([−τ, T ] , X) : ‖u‖ ≤ R}

with conveniently chosen radii Ri, i ∈ I. Here the notation R stands for the vector
column (R1, ..., Rn)

tr
. The result will follow from Theorem 2.2 once the following

lemmas have been proved: �

Lemma 3.2. There exists R ∈ Rn+ such that ‖Φ (u) + Ψ (v)‖ ≤ R for all u, v
∈ C([−τ, T ] , X) satisfying ‖u‖ , ‖v‖ ≤ R.

Lemma 3.3. The operator Φ is a generalized contraction in Perov’s sense on
C ([−τ, T ] , X) .

Lemma 3.4. The operator Ψ is completely continuous on C ([−τ, T ] , X) .

Proof of Lemma 3.2. Let R ∈ Rn+. The result will follow once we have proved that

‖Φ (u) + Ψ (v)‖ ≤ M̃R+ Λ, (3.4)

for all u, v ∈ C ([−τ, T ] , X) with ‖u‖ , ‖v‖ ≤ R, and some vector Λ ∈ Rn+ and matrix

M̃ close enough M such that ρ
(
M̃
)
< 1. Indeed, in this case, we can find a vector

R ∈ Rn+ such that

M̃R+ Λ ≤ R,

that is
(
J − M̃

)
R ≥ Λ, for example, the vector R =

(
J − M̃

)−1
Λ. The vector R

belongs to Rn+ since the matrix J − M̃ is inverse-positive as a consequence of the fact

that ρ
(
M̃
)
< 1 (see, e.g., [34]).

Thus, in order to obtain (3.4) we need estimates of the norms
|Φi (u) + Ψi (v)|τ . Clearly, Φi (u) + Ψi (v) = Γi (u) for i ∈ I1.

First note that from (H1) (a) , for v = 0,

|Ki(t, u)|Xi ≤
n∑
j=1

aij(t) |uj |C([−τ,0],Xj) + |Ki (t, 0)|Xi ,

hence the inequality in (H1) (b) also holds for i ∈ I1, with di (t) = |Ki (t, 0)|Xi .
Similarly, the inequality in (H2) (b) holds for i ∈ I1 with fi = |Fi (0)|C([−τ,0],Xi) .

Also, from (H3), one has

|αi (u)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj |C([−τ,T0],Xj)
+ hi
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for all i ∈ I with hi = |αi (0)|C([−τ,0],Xi) .

For t ∈ [−τ, 0] , we have

|αi (u) (t)|Xi ≤ |αi (u)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj |C([−τ,T0],Xj)
+ hi (3.5)

≤
n∑
j=1

cij |uj |τ + hi ≤
n∑
j=1

cijRj + hi

For t ∈ [0, T0] and i ∈ I1, since the semigroups are of contractions,

|Γi (u) (t)|Xi ≤ |αi (u) (0)|Xi +

∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds

+

∫ t

0

|Fi (s, us)|Xi ds. (3.6)

From (3.5), the first term is estimated as above, that is

|αi (u) (0)|Xi ≤
n∑
j=1

cijRj + hi, (3.7)

while the integrals are estimated as follows:

∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds (3.8)

≤
∫ t

0

∫ s

0

 n∑
j=1

aij (s− σ)
∣∣(uj)σ∣∣C([−τ,0],Xj)

+ di (s− σ)

 dσds

=

n∑
j=1

∫ t

0

∫ s

0

aij (s− σ) |uj |C([σ−τ,σ],Xj) dσds+ T0 |di|L1(0,T0)

and

∫ t

0

|Fi (s, us)|Xi ds ≤
∫ t

0

 n∑
j=1

bij (s)
∣∣(uj)s∣∣C([−τ,0],Xj)

+ fi (s)

 ds (3.9)

=

n∑
j=1

∫ t

0

bij (s) |uj |C([s−τ,s],Xj) ds+ T0 |fi|L1(0,T0)
.

Since 0 ≤ s ≤ t ≤ T0, one has |uj |C([s−τ,s],Xj) ≤ |uj |C([−τ,T0],Xj)
≤ |uj |τ .
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Then (3.8) and (3.9) give∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds ≤
n∑
j=1

∫ t

0

∫ s

0

aij (s− σ) |uj |τ dσds+ T0|di|L1(0,T0)

=

n∑
j=1

|uj |τ
∫ t

0

∫ s

0

aij(s− σ)dσds+ T0|di|L1(0,T0)

≤ T0
n∑
j=1

|aij |L1(0,T0)Rj + T0|di|L1(0,T0) (3.10)

and ∫ t

0

|Fi (s, us)|Xi ds ≤
n∑
j=1

|bij |L1(0,T0)
Rj + |fi|L1(0,T0)

. (3.11)

Hence for t ∈ [−τ, T0] and all i ∈ I1, from (3.7), (3.10) and (3.11), we deduce that

|Γi (u) (t)|Xi ≤
n∑
j=1

(
T0 |aij |L1(0,T0)

+ |bij |L1(0,T0)
+ cij

)
|uj |τ + λi

=

n∑
j=1

(mij − aij) |uj |τ + λi (3.12)

where λi = T0 |di|L1(0,T0)
+ |fi|L1(0,T0)

+ hi. Therefore

|Γi (u)|C([−τ,T0],Xi)
≤

n∑
j=1

(mij − aij) |uj |τ + λi. (3.13)

Next we estimate

|Γi (u)|Cθ([T0−τ,T ],Xi)
= max
t∈[T0,T ]

(
|Γi (u)|C([t−τ,t],Xi) e

−θ(t−T0)
)

(i ∈ I1) .

To do this, take any t ∈ [T0, T ] and s ∈ [t− τ, t] . For s ≤ T0, we already have the
estimate given by (3.13). Let s ∈ [T0, t]. Then

Γi (u) (s)

= Γi (u) (T0) +

∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ +

∫ s

T0

Si (s− ξ)
∫ ξ

0

Ki (ξ − σ, uσ) dσdξ

= Γi (u) (T0) +

∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ +

∫ s

T0

Si (s− ξ)
∫ T0

0

Ki (ξ − σ, uσ) dσdξ

+

∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ.

Using (H1)(b), one has∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ T0

0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤
n∑
j=1

aij |uj |τ + |fi|L1(0,T0)
,
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where

aij =

∫ T

T0

dξ

∫ T0

0

aij (ξ − σ) dσ.

Furthermore∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤
∫ s

T0

∫ ξ

T0

 n∑
j=1

aij (ξ − σ)
∣∣(uj)σ∣∣C([−τ,0],Zj)

e−θ(σ−T0)eθ(σ−T0) + di (ξ − σ)

 dσdξ

≤
n∑
j=1

|uj |τ
∫ s

T0

∫ ξ

T0

aij (ξ − σ) eθ(σ−T0)dσdξ + (T − T0) |di|L1(0,T−T0)
.

Next using Holder’s inequality gives∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤ 1

θ (qθ)
1/q

eθ(t−T0)
n∑
j=1

|aij |Lp(0,T−T0)
|uj |τ

+ (T − T0) |di|L1(0,T−T0)
.

Similar arguments yield∣∣∣∣∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ

∣∣∣∣
Xi

≤ 1

θ
eθ(t−T0)

n∑
j=1

|bij |Lp(T0,T ) |uj |τ + |fi|L1(T0,T )

It follows that

|Γi (u) (s)|Xi ≤
n∑
j=1

m̃ij |uj |τ e
θ(t−T0) + Λi for s ∈ [t− τ, t] ,

where

m̃ij = mij +
1

θ (qθ)
1/q
|aij |L1(0,T−T0)

+
1

θ
|bij |Lp(T0,T ) ,

Λi = λi + |fi|L1(0,T ) + (T − T0) |di|L1(0,T−T0)
.

This gives the estimate

|Γi (u)|Cθ([T0−τ,T ],Xi)
≤

n∑
j=1

m̃ijRj + Λi.

Also taking into account (3.13), we may conclude that

|Φi (u) + Ψi (v)|τ = |Γi (u)|τ ≤
n∑
j=1

m̃ijRj + Λi for i ∈ I1.

Since for i ∈ I2, the structure of Φi (u) + Ψi (v) is analogue to that of Γi, we easily
see that we also have

|Φi (u) + Ψi (v)|τ ≤
n∑
j=1

m̃ijRj + Λi for i ∈ I2.
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Hence (3.4) holds with M̃ = [m̃ij ] and Λ = (Λ1, ...,Λn)
tr
. Clearly, the matrix M̃ is

close enough to M if θ is sufficiently large. �
Proof of Lemma 3.3. Similar estimations to those in the proof of Lemma 3.2 give for
i ∈ I1 and any u, v ∈ C ([−τ, T ] , X) ,

|Γi (u)− Γi (v)|C([−τ,T0],Xi)
≤

n∑
j=1

mij |uj − vj |C([−τ,T0],Xj)

and

|Γi (u)− Γi (v)|Cθ([T0−τ,T ],Xi)
≤

n∑
j=1

m̃ij |uj − vj |τ .

Hence

|Γi (u)− Γi (v)|τ ≤
n∑
j=1

m̃ij |uj − vj |τ (i ∈ I1) .

For i ∈ I2, from (H3), we obtain

|Φi (u)− Φi (v)|τ ≤
n∑
j=1

cij |uj − vj |τ (i ∈ I2) .

Consequently,

‖Φ (u)− Φ (v)‖ ≤ M̂ ‖u− v‖ , (3.14)

where M̂ is the n× n square matrix [m̂ij ] , with

m̂ij =

{
m̃ij for i ∈ I1, j ∈ I
cij for i ∈ I2, j ∈ I.

Clearly M̂ ≤ M̃, hence according to Proposition 2.3, the spectral radius of M̂ is less
than one. Then (3.14) shows that Φ is a generalized contraction in Perov’s sense. �
Proof of Lemma 3.4. The first components of Ψ for i ∈ I1 are zero, so compact. The
growth conditions for Fi and Ki (i ∈ I2) and the boundedness of D guarantee the
uniform integrability of the set {Ψi (u) : u ∈ D} . Since in addition for i ∈ I2, the
semigroups generated by Ai are compact, we may apply the compactness criterion
from Lemma 2.4 to conclude that the operator Ψi is compact on D for every i ∈ I2. �

Remark 3.5. It is useful to analyze the elements of the matrix M to conclude about
the contributions of the nonlinear terms to the sufficient condition for the existence
of solutions. They show that bij (t) can be however large for T0 < t ≤ T. The same
happens for aij (t) (t ∈ [0, T ]) and bij (t) (t ∈ [0, T0]) provided that T0 is sufficiently
small. Also note the special contribution of aij in connection with the ”convolution
type” integral term of problem (1.1), which is null if T0 = 0 or T0 = T.

We conclude by two examples illustrating our main result.

Example 3.6. Consider the semilinear integrodifferential equation

∂

∂t
u(t, x)−∆u(t, x) =

∫ t

0

κ(t− s, u(s, x))ds+ µ(t)u(t− τ, x), t ∈ [0, T ] , x ∈ Ω,
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subject to the Dirichlet condition u (t, x) = 0 for x ∈ ∂Ω, and to the nonlocal initial
condition

u (t, x) = λu (t+ T, x) , for x ∈ Ω, t ∈ [−τ, 0] .

Here Ω ⊂ RN is a smooth bounded domain, τ ≥ 0, 0 < λ < 1, κ : [0, T ] × R → R
and µ : [0, T ] → R are continuous functions. The problem is of type (1.1), where
n = m = 1, X = L2 (Ω) , A = −∆, D (A) = H2 (Ω) ∩H1

0 (Ω) , K, F, α are defined as
follows:

K,F : [0, T ]× C([−τ, 0], L2 (Ω))→ L2 (Ω) ,

K (t, v) = κ (t, v (0)) , v ∈ C
[
[−τ, 0] , L2 (Ω)

]
F (t, v) = µ (t) v (−τ) ;

α : C
(
[−τ, T ] , L2 (Ω)

)
→ C

(
[−τ, 0] , L2 (Ω)

)
, α (v) (t) = λv (t+ T ) .

It is clear that T0 = T and (H2) and (H3) hold with b11 (t) = µ (t) and c11 = λ. Also
(H1) holds if there is a function γ ∈ C ([0, T ] ,R+) such that

|κ (t, y)− κ (t, z)| ≤ γ (t) |y − z| for all t ∈ [0, T ] and y, z ∈ R.

It is easy to check that a11 (t) = γ (t). Also a11 = 0. Therefore, Theorem 3.1 yields
the following conclusion: If

T |γ|L1(0,T ) + |µ|L1(0,T ) < 1− λ,

then the problem has a unique mild solution u ∈ C
(
[−τ, T ] , L2 (Ω)

)
.

Example 3.7. Let us consider a semilinear reaction-diffusion integrodifferential system
with Neumann boundary conditions and multi-point nonlocal initial conditions

∂u

∂t
(t, x)−κ1∆u (t, x)=

∫ t

0

κ1(t−s, u(s, x))ds−λ1u(t, x)+µ1(t)v(t−τ, x),

in Q,

∂v

∂t
(t, x)−κ2∆v (t, x)=

∫ t

0

κ2(t−s, v(s, x))ds+µ2(t)u(t−τ, x)−λ2v(t, x),

in Q,

∂

∂ν
u (t, x) =

∂

∂ν
v (t, x) = 0, on Σ,

u (t, x) = ϕ (t) (x) +

p1∑
k=1

β1ku (t1k + t, x) , in Qτ ,

v (t, x) = ψ (t) (x) +

p2∑
k=1

β2kv (t2k + t, x) , in Qτ ,

(3.15)

where Q = [0, T ] × Ω, Σ = [0, T ] × ∂Ω, Qτ = [−τ, 0] × Ω, Ω ⊂ RN is a smooth
bounded domain, κ1,κ2, λ1, λ2 > 0, τ ≥ 0 and 0 < ti1 < . . . < tipi ≤ T for i = 1, 2.
We assume that κ1, κ2 : [0, T ] × R → R are continuous; ϕ, ψ ∈ C

(
[−τ, 0] , L2 (Ω)

)
,

and µi ∈ C ([0, T ] ;R+), i = 1, 2.
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We apply Theorem 3.1 with X1 = X2 = L2 (Ω), and to the operators Ai : D (Ai) →
L2 (Ω) (i = 1, 2) given by

D (Ai) =

{
u ∈ H2 (Ω) :

∂u

∂ν
= 0 on ∂Ω

}
,

Aiu = κi∆u− λiu,
which generate compact semigroups [9, Theorem 1.11.8].
Here I1 = ∅ and I2 = I = {1, 2},

cii =

pi∑
k=1

|βik| (i = 1, 2) ,

c12 = c21 = 0, b11 = b22 = 0

and

b12 (t) = µ1 (t) , b21 (t) = µ2 (t) .

Also T0 = max {tij : j = 1, . . . , pi; i = 1, 2} .
Assume that the functions κ1 and κ2 are bounded, i.e.,

|κi (t, y)| ≤ di, i = 1, 2, for all t ∈ [0, T ] and y ∈ R.

Then aij = 0 for i, j = 1, 2. Therefore, according to Theorem 3.1, if the spectral radius
of the matrix

M =

[ ∑p1
k=1 |β1k| |µ1|L1(0,T0)

|µ2|L1(0,T0)

∑p2
k=1 |β2k|

]
is less than one, then the problem (3.15) has at least one mild solution in C([−τ, T ] ,
L2 (Ω)× L2 (Ω)).

Acknowledgements. The work of Sylvain Koumla was supported by a grant from the
University Agency of the Francophonie (AUF) in relation to the Romanian National
Authority for Scientific Research as part of “Eugen Ionescu” Postdoctoral Fellowship
Programme 2017-2018.

References

[1] Baras, P., Hassan, J.C., Veron, L., Compacité de l’opérateur définissant la solution d’une
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