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A modified Post Widder operators preserving eAx

Vijay Gupta and Gancho Tachev

Abstract. In the present paper, we discuss the approximation properties of mod-
ified Post-Widder operators, which preserve the test function eAx. We establish
weighted approximation and a direct quantitative estimate for the modified op-
erators.
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1. Post-Widder operators

In the recent years some sequences of linear positive operators and the operators
of integral type have been studied in [2], [3] and [4] etc. Also the moments of several
operators have been provided in [8]. In the present article, we discuss the vatiant of
an integral operators viz. Post-Widder operators. Post-Widder operators are defined
for f ∈ C[0,∞) as (see [13]):

Pn(f, x) :=
1

n!

(n
x

)n+1
∞∫
0

tn e−
nt
x f(t) dt.

Following [7], we have

Pn(eθt, x) =

(
1− xθ

n

)−(n+1)

. (1.1)

Very recently Gupta-Agrawal in [6] and Gupta-Tachev in [11] considered different
forms of modified Post-Widder operators preserving the test functions er, r ∈ N .
Gupta-Singh in [9] estimated some quantitative convergence results of Post-Widder
operators preserving eax, ebx.
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Let us consider that the Post-Widder operators preserve the test function eAx,
then we start with the following form

P̃n(f, x) :=
1

n!

(
n

an(x)

)n+1
∞∫
0

tn e−
nt

an(x) f(t) dt.

Then using (1.1), we have

P̃n(eAt, x) = eAx =

(
1− an(x)A

n

)−(n+1)

,

implying

an(x) =
n

A
(1− e−Ax/(n+1)).

Thus our modified operators P̃n take the following form

P̃n(f, x) :=
1

n!

[
A

(1− e−Ax/(n+1))

](n+1)

∫ ∞
0

tn e
− At

(1−e−Ax/(n+1)) f(t) dt, (1.2)

with x ∈ (0,∞) and P̃n(f, 0) = f(0), which preserve constant and the test function
eAx.

2. Lemmas

Lemma 2.1. We have for θ > 0 that

P̃n(eθt, x) =

(
1− (1− e−Ax/(n+1))θ

A

)−(n+1)

.

It may be observed that P̃n(eθt, x) may be treated as m.g.f. of the operators P̃n,

which may be utilized to obtain the moments of (1.2). Let µP̃n
r (x) = P̃n(er, x), where

er(t) = tr, r ∈ N ∪ {0}. The moments are given by

µP̃n
r (x) =

[
∂r

∂θr
P̃n(eθt, x)

]
θ=0

=

[
∂r

∂θr

{(
1− (1− e−Ax/(n+1))θ

A

)−(n+1)
}]

θ=0

.

Few moments are given below:

µP̃n
0 (x) = 1,

µP̃n
1 (x) =

(n+ 1)

A
(1− e−Ax/(n+1)),

µP̃n
2 (x) =

(n+ 1)(n+ 2)

A2
(1− e−Ax/(n+1))2.
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Lemma 2.2. The moments of arbitrary order, satisfy the following

µP̃n

k (x) =
(n+ 1)k
Ak

(1− e−Ax/(n+1))k, k = 0, 1, ....,

where the Pochhammer symbol is defined by

(c)0 = 1, (c)k = c(c+ 1) · · · (c+ k − 1).

Further by linearity property and using Lemma 2.2, we have the following lemma:

Lemma 2.3. The central moments U P̃n
r (x) = P̃n((t− x)r, x) are given below:

U P̃n

k (x) =

k∑
j=0

(−1)k−j
(
k

j

)
xk−j(1− e−Ax/(n+1))j

(n+ 1)j
Aj

, k = 0, 1, . . . .

Also, for each n ∈ N , we have

U P̃n
1 (x) =

(n+ 1)

A
(1− e−Ax/(n+1) − 1)− x,

U P̃n
2 (x) =

(n+ 1)(n+ 2)

A2
(1− e−Ax/(n+1))2 + x2 − 2x

(n+ 1)

A
(1− e−Ax/(n+1)).

Lemma 2.4. For the central moments U P̃n

2k (x) = P̃n((t− x)2k, x), we have

U P̃n

2k (x) = O(n−k), n→∞, k = 1, 2, 3, · · ·

Proof. We observe that

P̃n(f, x) = Pn(f, αn(x)),

where

an(x) =
n

A
(1− e−Ax/(n+1)).

It is easy to verify y > 1 − e−y > y − y2

2 for y ∈ [0,∞). We set y = Ax/(n + 1) and
get

x

(
n

n+ 1

)
> αn(x) > x

(
n

n+ 1

)
−
(

Ax

n+ 1

)2

.
n

2A
.

Hence
x

n+ 1
< x− αn(x) <

x

n+ 1
+

Ax2n

2(n+ 1)2
= O(n−1),

by fixed x ∈ [0,∞). Therefore

P̃n((t− x)2k, x) = Pn((t− x)2k, αn(x))

= Pn((t− αn(x) + αn(x)− x)2k, αn(x))

≤ C(k)Pn((t− αn(x))2k, αn(x)) + Pn((x− αn(x)2k, αn(x))

≤ C(k).
1

nk
+ (x− αn(x))2k = O(n−k).

This completes the proof of Lemma 2.4. �
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3. Weighted approximation

We also analyse the behaviour of the operators on some weighted spaces.

Set φ(x) = 1 + eAx, x ∈ R+ and consider the following weighted spaces:

Bφ(R+) = {f : R+ → R : |f(x) ≤ C1(1 + eAx)},
Cφ(R+) = Bφ(R+) ∩ C(R+),

Ckφ(R+) =

{
f ∈ Cφ(R+) : lim

x→∞

f(x)

1 + eAx
= C2 <∞

}
,

where C1, C2 are constants depending on f . The norm is defined as

||f ||φ = sup
x∈R+

|f(x)|
1 + eAx

.

Theorem 3.1. For each f ∈ Ckφ(R+), we have

lim
n→∞

||P̃nf − f ||φ = 0.

Proof. Following [1, Th. 1] in order to prove the result we have to prove

lim
n→∞

||P̃n(eiAt/2)− eiAx/2||φ = 0, i = 0, 1, 2.

The result is true for i = 0, i = 2. It remains to verify it for i = 1. By Lemma 2.1 we
have

||P̃n(eAt/2)− eAx/2||φ

= sup
x∈R+

∣∣∣∣(1− (1−e−Ax/(n+1))
2

)−(n+1)

− eAx/2
∣∣∣∣

1 + eAx

= sup
x∈R+

∣∣∣(1 + e−Ax/(n+1)
)−(n+1)

2n+1 − eAx/2
∣∣∣

1 + eAx

= sup
x∈R+

∣∣∣eAx (1 + eAx/(n+1)
)−(n+1)

2n+1 − eAx/2
∣∣∣

1 + eAx

= sup
x∈R+

[
eAx

1 + eAx

]
.

∣∣∣∣∣
(

2

1 + eAx/(n+1)

)n+1

− e−Ax/2
∣∣∣∣∣ . (3.1)

Obviously eAx

1+eAx ∈
[
1
2 , 1
)
, A > 0, x > 0. We set t = eAx/2, t ∈ [1,∞) for x ∈ (0,∞).

Then (3.1) implies∣∣∣∣∣
(

2

1 + t2/(n+1)

)n+1

− t−1
∣∣∣∣∣ = t−1

∣∣∣∣∣
(

2t1/(n+1)

1 + t2/(n+1)

)n+1

− 1

∣∣∣∣∣ = g(t). (3.2)
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In (3.2), we set t1/(n+1) = y ∈ [1,∞). Hence

g(t) = h(y) = y−(n+1)

∣∣∣∣∣
(

2y

1 + y2

)n+1

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

2

1 + y2

)n+1

− y−(n+1)

∣∣∣∣∣
= y−(n+1) −

(
2

1 + y2

)n+1

. (3.3)

We have h(1) = 0, h(+∞) = limy→∞ h(y) = 0. To find the global maxima of h(y)
we solve the equation h′(y) = 0. Simple calculations imply that h′(y0) = 0 for y0
satisfying the equation

2

1 + y20
= y
−(n+3)/(n+2)
0 , y0 ∈ (1,∞). (3.4)

The equations (3.3) and (3.4) imply

h(y) ≤ h(y0) = y
−(n+1)
0 − y−(n+3)(n+1)/(n+2)

0 . (3.5)

The proof will be completed if we show

h(y0) <
1

2(n+ 3)
, n→∞. (3.6)

We set in (3.5) yn+1
0 = z0 ∈ (1,+∞). Then h(y0) = z−10 − z−(n+3)/(n+2)

0 < max p(z)

with p(z) = z−1 − z−(n+3)/(n+2). We compute that p′(z1) for z1 =
(
n+3
n+2

)n+2

.

Therefore

p(z1) =

(
n+ 3

n+ 2

)−(n+2)

−
(
n+ 3

n+ 2

)−(n+3)

=

(
n+ 3

n+ 2

)−(n+2)
[

1−
(
n+ 3

n+ 2

)−1]

=

(
1 +

1

n+ 2

)−(n+2)
1

n+ 3
<

1

2(n+ 3)
,

due to lim
n→∞

(
1 + 1

n+2

)−(n+2)

= e−1 < 1/2. �

4. A direct quantitative estimate

Our goal in this section is to obtain a quantitative form of the statement in
Theorem 3.1. For the sake of simplicity we slightly modify the weight function and
instead of φ(x) = 1 + eAx, x ∈ R+ we consider φ(x) = eAx, x ∈ R+, For continuous
functions on [0,∞) with exponential growth i.e.

||f ||A := sup
x∈[0,∞)

|f(x) · e−Ax| <∞, A > 0, (4.1)
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it is easy to observe that

||P̃nf ||A ≤ ||f ||A. (4.2)

Consequently if the following function series is uniformly convergent on [0,∞)

S(x) =

∞∑
k=0

uk(x), x ∈ [0,∞),

then

P̃n(S(t), x) =

∞∑
k=0

P̃n(uk(t), x), x ∈ [0,∞), (4.3)

where the last series is also uniformly convergent. For our goals in this section we
need the first order exponential modulus of continuity, studied by Ditzian in [5] and
defined as

ω1(f, δ, A) := sup
h≤δ,0≤x<∞

|f(x)− f(x+ h)|e−Ax.

We consider the sequence of operators P̃n : E → C[0,∞), where the domain of the

operator P̃n contains the space of functions f with exponential growth, i.e. ||f ||A <∞.
Our main result states the following:

Theorem 4.1. Let P̃n : E → C[0,∞) be sequence of linear positive operators of Post-
Widder type defined in (1.2). Then

|P̃n(f, x)− f(x)| ≤ eAx[3 + C(n, x)]ω1(f,

√
U P̃n
2 (x), A),

where

C(n, x) = 2

∞∑
k=1

Ak

k!

√
U P̃n

2k (x), n→∞ for fixed x ∈ [0,∞).

Proof. We observe that

|f(t)− f(x)| ≤
{
eAxω1(f, δ, A), |t− x| ≤ δ
eAxω1(f, kδ,A), δ ≤ |t− x| ≤ kδ, (4.4)

where k is the smallest natural number in the above upper bound. Now [12, Lemma
2.2] (also see [10]) implies

ω1(f, kδ,A) ≤ keA(k−1)δω1(f, δ, A)

≤ ω1(f, δ, A)

[
|t− x|
δ

+ 1

]
eA.|t−x|. (4.5)

Now (4.4) and (4.5) imply

|f(t)− f(x)| ≤
[
1 +

(
|t− x|
δ

+ 1

)
eA.|t−x|

]
eAxω1(f, δ, A). (4.6)
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For fixed x ∈ [0,∞) the following series is uniformly convergent for t ∈ [0,∞)

S1(t, x) = eA.|t−x| =

∞∑
k=0

(A|t− x|)k

k!

|t− x|
δ

S1(t, x) =
|t− x|
δ

+
1

δ

∞∑
k=1

Ak|t− x|k+1

k!
. (4.7)

Obviously for linear positive operators P̃n using (4.4), (4.6) and (4.7), we obtain

|P̃n(f(t)− f(x)| ≤ P̃n(|f(t)− f(x)|, x)

≤ eAx
{

1 + P̃n(S1(t, x), x) +
1

δ
P̃n(|t− x|, x)

+
1

δ

∞∑
k=1

AkP̃n(|t− x|k+1, x)

k!

}
ω1(f, δ, A). (4.8)

From Cauchy Schwarz inequality, we have

P̃n(|t− x|k+1, x) ≤
√
P̃n((t− x)2, x)

√
P̃n((t− x)2k,x)

=

√
U P̃n
2 (x)

√
U P̃n

2k (x). (4.9)

Further

S1(t, x) = 1 +A|t− x|+
∞∑
k=2

(A|t− x|)k

k!
.

Hence

P̃n(S1(t, x), x) ≤ 1 +A

√
U P̃n
2 (x) +

∞∑
k=2

Ak
√
U P̃n

2k (x)

k!
. (4.10)

From Lemma 2.4, for fixed x ∈ [0,∞), we have

U P̃n

2k (x) = O(n−k), n→∞. (4.11)

We set in (4.8) that

δ =

√
U P̃n
2 (x) = O(n−1/2), n→∞. (4.12)

Therefore estimates (4.8)-(4.12) imply

|P̃n(f, x)− f(x)| ≤ eAx[3 + C(n, x)]ω1(f,

√
U P̃n
2 (x), A),

where

C(n, x) = A

√
U P̃n
2 (x) +

∞∑
k=2

Ak
√
U P̃n

2k (x)

k!
+

∞∑
k=1

Ak
√
U P̃n

2k (x)

k!
= O(n−1/2), n→∞,

by fixed x ∈ [0,∞). This completes the proof of theorem. �
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