A modified Post Widder operators preserving $e^{A x}$

Vijay Gupta and Gancho Tachev

Abstract

In the present paper, we discuss the approximation properties of modified Post-Widder operators, which preserve the test function $e^{A x}$. We establish weighted approximation and a direct quantitative estimate for the modified operators. Mathematics Subject Classification (2010): 41A25, 41A30.

Keywords: Post-Widder operators, weighted approximation, quantitative estimate.

1. Post-Widder operators

In the recent years some sequences of linear positive operators and the operators of integral type have been studied in [2], [3] and [4] etc. Also the moments of several operators have been provided in [8]. In the present article, we discuss the vatiant of an integral operators viz. Post-Widder operators. Post-Widder operators are defined for $f \in C[0, \infty)$ as (see [13]):

$$
P_{n}(f, x):=\frac{1}{n!}\left(\frac{n}{x}\right)^{n+1} \int_{0}^{\infty} t^{n} e^{-\frac{n t}{x}} f(t) d t
$$

Following [7], we have

$$
\begin{equation*}
P_{n}\left(e^{\theta t}, x\right)=\left(1-\frac{x \theta}{n}\right)^{-(n+1)} \tag{1.1}
\end{equation*}
$$

Very recently Gupta-Agrawal in [6] and Gupta-Tachev in [11] considered different forms of modified Post-Widder operators preserving the test functions $e_{r}, r \in N$. Gupta-Singh in [9] estimated some quantitative convergence results of Post-Widder operators preserving $e^{a x}, e^{b x}$.

Let us consider that the Post-Widder operators preserve the test function $e^{A x}$, then we start with the following form

$$
\widetilde{P}_{n}(f, x):=\frac{1}{n!}\left(\frac{n}{a_{n}(x)}\right)^{n+1} \int_{0}^{\infty} t^{n} e^{-\frac{n t}{a_{n}(x)}} f(t) d t
$$

Then using (1.1), we have

$$
\widetilde{P}_{n}\left(e^{A t}, x\right)=e^{A x}=\left(1-\frac{a_{n}(x) A}{n}\right)^{-(n+1)}
$$

implying

$$
a_{n}(x)=\frac{n}{A}\left(1-e^{-A x /(n+1)}\right)
$$

Thus our modified operators \widetilde{P}_{n} take the following form

$$
\begin{align*}
\widetilde{P}_{n}(f, x):= & \frac{1}{n!}\left[\frac{A}{\left(1-e^{-A x /(n+1)}\right)}\right]^{(n+1)} \\
& \int_{0}^{\infty} t^{n} e^{-\frac{A t}{\left(1-e^{-A x /(n+1)}\right)}} f(t) d t \tag{1.2}
\end{align*}
$$

with $x \in(0, \infty)$ and $\widetilde{P}_{n}(f, 0)=f(0)$, which preserve constant and the test function $e^{A x}$.

2. Lemmas

Lemma 2.1. We have for $\theta>0$ that

$$
\widetilde{P}_{n}\left(e^{\theta t}, x\right)=\left(1-\frac{\left(1-e^{-A x /(n+1)}\right) \theta}{A}\right)^{-(n+1)}
$$

It may be observed that $\widetilde{P}_{n}\left(e^{\theta t}, x\right)$ may be treated as m.g.f. of the operators \widetilde{P}_{n}, which may be utilized to obtain the moments of (1.2). Let $\mu_{r}^{\widetilde{P}_{n}}(x)=\widetilde{P}_{n}\left(e_{r}, x\right)$, where $e_{r}(t)=t^{r}, r \in N \cup\{0\}$. The moments are given by

$$
\begin{aligned}
\mu_{r}^{\widetilde{P}_{n}}(x) & =\left[\frac{\partial^{r}}{\partial \theta^{r}} \widetilde{P}_{n}\left(e^{\theta t}, x\right)\right]_{\theta=0} \\
& =\left[\frac{\partial^{r}}{\partial \theta^{r}}\left\{\left(1-\frac{\left(1-e^{-A x /(n+1)}\right) \theta}{A}\right)^{-(n+1)}\right\}\right]_{\theta=0}
\end{aligned}
$$

Few moments are given below:

$$
\begin{aligned}
\mu_{0}^{\widetilde{P}_{n}}(x) & =1 \\
\mu_{1}^{\widetilde{P}_{n}}(x) & =\frac{(n+1)}{A}\left(1-e^{-A x /(n+1)}\right) \\
\mu_{2}^{\widetilde{P}_{n}}(x) & =\frac{(n+1)(n+2)}{A^{2}}\left(1-e^{-A x /(n+1)}\right)^{2}
\end{aligned}
$$

Lemma 2.2. The moments of arbitrary order, satisfy the following

$$
\mu_{k}^{\widetilde{P}_{n}}(x)=\frac{(n+1)_{k}}{A^{k}}\left(1-e^{-A x /(n+1)}\right)^{k}, k=0,1, \ldots
$$

where the Pochhammer symbol is defined by

$$
(c)_{0}=1, \quad(c)_{k}=c(c+1) \cdots(c+k-1) .
$$

Further by linearity property and using Lemma 2.2, we have the following lemma:
Lemma 2.3. The central moments $U_{r}^{\widetilde{P}_{n}}(x)=\widetilde{P}_{n}\left((t-x)^{r}, x\right)$ are given below:

$$
U_{k}^{\widetilde{P}_{n}}(x)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} x^{k-j}\left(1-e^{-A x /(n+1)}\right)^{j} \frac{(n+1)_{j}}{A^{j}}, \quad k=0,1, \ldots
$$

Also, for each $n \in N$, we have

$$
\begin{aligned}
& U_{1}^{\widetilde{P}_{n}}(x)=\frac{(n+1)}{A}\left(1-e^{-A x /(n+1)}-1\right)-x \\
& U_{2}^{\widetilde{P}_{n}}(x)=\frac{(n+1)(n+2)}{A^{2}}\left(1-e^{-A x /(n+1)}\right)^{2}+x^{2}-2 x \frac{(n+1)}{A}\left(1-e^{-A x /(n+1)}\right) .
\end{aligned}
$$

Lemma 2.4. For the central moments $U_{2 k}^{\widetilde{P}_{n}}(x)=\widetilde{P}_{n}\left((t-x)^{2 k}, x\right)$, we have

$$
U_{2 k}^{\widetilde{P}_{n}}(x)=O\left(n^{-k}\right), n \rightarrow \infty, k=1,2,3, \cdots
$$

Proof. We observe that

$$
\widetilde{P}_{n}(f, x)=P_{n}\left(f, \alpha_{n}(x)\right),
$$

where

$$
a_{n}(x)=\frac{n}{A}\left(1-e^{-A x /(n+1)}\right)
$$

It is easy to verify $y>1-e^{-y}>y-\frac{y^{2}}{2}$ for $y \in[0, \infty)$. We set $y=A x /(n+1)$ and get

$$
x\left(\frac{n}{n+1}\right)>\alpha_{n}(x)>x\left(\frac{n}{n+1}\right)-\left(\frac{A x}{n+1}\right)^{2} \cdot \frac{n}{2 A} .
$$

Hence

$$
\frac{x}{n+1}<x-\alpha_{n}(x)<\frac{x}{n+1}+\frac{A x^{2} n}{2(n+1)^{2}}=O\left(n^{-1}\right)
$$

by fixed $x \in[0, \infty)$. Therefore

$$
\begin{aligned}
\widetilde{P}_{n}\left((t-x)^{2 k}, x\right) & =P_{n}\left((t-x)^{2 k}, \alpha_{n}(x)\right) \\
& =P_{n}\left(\left(t-\alpha_{n}(x)+\alpha_{n}(x)-x\right)^{2 k}, \alpha_{n}(x)\right) \\
& \leq C(k) P_{n}\left(\left(t-\alpha_{n}(x)\right)^{2 k}, \alpha_{n}(x)\right)+P_{n}\left(\left(x-\alpha_{n}(x)^{2 k}, \alpha_{n}(x)\right)\right. \\
& \leq C(k) \cdot \frac{1}{n^{k}}+\left(x-\alpha_{n}(x)\right)^{2 k}=O\left(n^{-k}\right) .
\end{aligned}
$$

This completes the proof of Lemma 2.4.

3. Weighted approximation

We also analyse the behaviour of the operators on some weighted spaces.
Set $\phi(x)=1+e^{A x}, x \in R^{+}$and consider the following weighted spaces:

$$
\begin{aligned}
& B_{\phi}\left(R^{+}\right)=\left\{f: R^{+} \rightarrow R: \mid f(x) \leq C_{1}\left(1+e^{A x}\right)\right\} \\
& C_{\phi}\left(R^{+}\right)=B_{\phi}\left(R^{+}\right) \cap C\left(R^{+}\right) \\
& C_{\phi}^{k}\left(R^{+}\right)=\left\{f \in C_{\phi}\left(R^{+}\right): \lim _{x \rightarrow \infty} \frac{f(x)}{1+e^{A x}}=C_{2}<\infty\right\},
\end{aligned}
$$

where C_{1}, C_{2} are constants depending on f. The norm is defined as

$$
\|f\|_{\phi}=\sup _{x \in R^{+}} \frac{|f(x)|}{1+e^{A x}}
$$

Theorem 3.1. For each $f \in C_{\phi}^{k}\left(R^{+}\right)$, we have

$$
\lim _{n \rightarrow \infty}\left\|\widetilde{P}_{n} f-f\right\|_{\phi}=0
$$

Proof. Following [1, Th. 1] in order to prove the result we have to prove

$$
\lim _{n \rightarrow \infty}\left\|\widetilde{P}_{n}\left(e^{i A t / 2}\right)-e^{i A x / 2}\right\|_{\phi}=0, i=0,1,2
$$

The result is true for $i=0, i=2$. It remains to verify it for $i=1$. By Lemma 2.1 we have

$$
\begin{align*}
& \left\|\widetilde{P}_{n}\left(e^{A t / 2}\right)-e^{A x / 2}\right\|_{\phi} \\
= & \sup _{x \in R^{+}} \frac{\left|\left(1-\frac{\left(1-e^{-A x /(n+1)}\right)}{2}\right)^{-(n+1)}-e^{A x / 2}\right|}{1+e^{A x}} \\
= & \sup _{x \in R^{+}} \frac{\left|\left(1+e^{-A x /(n+1)}\right)^{-(n+1)} 2^{n+1}-e^{A x / 2}\right|}{1+e^{A x}} \\
= & \sup _{x \in R^{+}} \frac{\left|e^{A x}\left(1+e^{A x /(n+1)}\right)^{-(n+1)} 2^{n+1}-e^{A x / 2}\right|}{1+e^{A x}} \\
= & \sup _{x \in R^{+}}\left[\frac{e^{A x}}{1+e^{A x}}\right] \cdot\left|\left(\frac{2}{1+e^{A x /(n+1)}}\right)^{n+1}-e^{-A x / 2}\right| . \tag{3.1}
\end{align*}
$$

Obviously $\frac{e^{A x}}{1+e^{A x}} \in\left[\frac{1}{2}, 1\right), A>0, x>0$. We set $t=e^{A x / 2}, t \in[1, \infty)$ for $x \in(0, \infty)$. Then (3.1) implies

$$
\begin{equation*}
\left|\left(\frac{2}{1+t^{2 /(n+1)}}\right)^{n+1}-t^{-1}\right|=t^{-1}\left|\left(\frac{2 t^{1 /(n+1)}}{1+t^{2 /(n+1)}}\right)^{n+1}-1\right|=g(t) . \tag{3.2}
\end{equation*}
$$

In (3.2), we set $t^{1 /(n+1)}=y \in[1, \infty)$. Hence

$$
\begin{align*}
g(t)=h(y) & =y^{-(n+1)}\left|\left(\frac{2 y}{1+y^{2}}\right)^{n+1}-1\right| \\
& =\left|\left(\frac{2}{1+y^{2}}\right)^{n+1}-y^{-(n+1)}\right| \\
& =y^{-(n+1)}-\left(\frac{2}{1+y^{2}}\right)^{n+1} \tag{3.3}
\end{align*}
$$

We have $h(1)=0, h(+\infty)=\lim _{y \rightarrow \infty} h(y)=0$. To find the global maxima of $h(y)$ we solve the equation $h^{\prime}(y)=0$. Simple calculations imply that $h^{\prime}\left(y_{0}\right)=0$ for y_{0} satisfying the equation

$$
\begin{equation*}
\frac{2}{1+y_{0}^{2}}=y_{0}^{-(n+3) /(n+2)}, y_{0} \in(1, \infty) \tag{3.4}
\end{equation*}
$$

The equations (3.3) and (3.4) imply

$$
\begin{equation*}
h(y) \leq h\left(y_{0}\right)=y_{0}^{-(n+1)}-y_{0}^{-(n+3)(n+1) /(n+2)} . \tag{3.5}
\end{equation*}
$$

The proof will be completed if we show

$$
\begin{equation*}
h\left(y_{0}\right)<\frac{1}{2(n+3)}, n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

We set in (3.5) $y_{0}^{n+1}=z_{0} \in(1,+\infty)$. Then $h\left(y_{0}\right)=z_{0}^{-1}-z_{0}^{-(n+3) /(n+2)}<\max p(z)$ with $p(z)=z^{-1}-z^{-(n+3) /(n+2)}$. We compute that $p^{\prime}\left(z_{1}\right)$ for $z_{1}=\left(\frac{n+3}{n+2}\right)^{n+2}$. Therefore

$$
\begin{aligned}
p\left(z_{1}\right) & =\left(\frac{n+3}{n+2}\right)^{-(n+2)}-\left(\frac{n+3}{n+2}\right)^{-(n+3)} \\
& =\left(\frac{n+3}{n+2}\right)^{-(n+2)}\left[1-\left(\frac{n+3}{n+2}\right)^{-1}\right] \\
& =\left(1+\frac{1}{n+2}\right)^{-(n+2)} \frac{1}{n+3}<\frac{1}{2(n+3)}
\end{aligned}
$$

due to $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+2}\right)^{-(n+2)}=e^{-1}<1 / 2$.

4. A direct quantitative estimate

Our goal in this section is to obtain a quantitative form of the statement in Theorem 3.1. For the sake of simplicity we slightly modify the weight function and instead of $\phi(x)=1+e^{A x}, x \in R^{+}$we consider $\phi(x)=e^{A x}, x \in R^{+}$, For continuous functions on $[0, \infty)$ with exponential growth i.e.

$$
\begin{equation*}
\|f\|_{A}:=\sup _{x \in[0, \infty)}\left|f(x) \cdot e^{-A x}\right|<\infty, A>0 \tag{4.1}
\end{equation*}
$$

it is easy to observe that

$$
\begin{equation*}
\left\|\widetilde{P}_{n} f\right\|_{A} \leq\|f\|_{A} \tag{4.2}
\end{equation*}
$$

Consequently if the following function series is uniformly convergent on $[0, \infty)$

$$
S(x)=\sum_{k=0}^{\infty} u_{k}(x), x \in[0, \infty)
$$

then

$$
\begin{equation*}
\widetilde{P}_{n}(S(t), x)=\sum_{k=0}^{\infty} \widetilde{P}_{n}\left(u_{k}(t), x\right), x \in[0, \infty) \tag{4.3}
\end{equation*}
$$

where the last series is also uniformly convergent. For our goals in this section we need the first order exponential modulus of continuity, studied by Ditzian in [5] and defined as

$$
\omega_{1}(f, \delta, A):=\sup _{h \leq \delta, 0 \leq x<\infty}|f(x)-f(x+h)| e^{-A x}
$$

We consider the sequence of operators $\widetilde{P}_{n}: E \rightarrow C[0, \infty)$, where the domain of the operator \widetilde{P}_{n} contains the space of functions f with exponential growth, i.e. $\|f\|_{A}<\infty$. Our main result states the following:

Theorem 4.1. Let $\widetilde{P}_{n}: E \rightarrow C[0, \infty)$ be sequence of linear positive operators of PostWidder type defined in (1.2). Then

$$
\left|\widetilde{P}_{n}(f, x)-f(x)\right| \leq e^{A x}[3+C(n, x)] \omega_{1}\left(f, \sqrt{U_{2}^{\widetilde{P}_{n}}(x)}, A\right)
$$

where

$$
C(n, x)=2 \sum_{k=1}^{\infty} \frac{A^{k}}{k!} \sqrt{U_{2 k}^{\widetilde{P}_{n}}(x)}, n \rightarrow \infty \text { for fixed } x \in[0, \infty)
$$

Proof. We observe that

$$
|f(t)-f(x)| \leq\left\{\begin{array}{l}
e^{A x} \omega_{1}(f, \delta, A),|t-x| \leq \delta \tag{4.4}\\
e^{A x} \omega_{1}(f, k \delta, A), \delta \leq|t-x| \leq k \delta
\end{array}\right.
$$

where k is the smallest natural number in the above upper bound. Now [12, Lemma 2.2] (also see [10]) implies

$$
\begin{align*}
\omega_{1}(f, k \delta, A) & \leq k e^{A(k-1) \delta} \omega_{1}(f, \delta, A) \\
& \leq \omega_{1}(f, \delta, A)\left[\frac{|t-x|}{\delta}+1\right] e^{A \cdot|t-x|} \tag{4.5}
\end{align*}
$$

Now (4.4) and (4.5) imply

$$
\begin{equation*}
|f(t)-f(x)| \leq\left[1+\left(\frac{|t-x|}{\delta}+1\right) e^{A .|t-x|}\right] e^{A x} \omega_{1}(f, \delta, A) \tag{4.6}
\end{equation*}
$$

For fixed $x \in[0, \infty)$ the following series is uniformly convergent for $t \in[0, \infty)$

$$
\begin{align*}
S_{1}(t, x) & =e^{A \cdot|t-x|}=\sum_{k=0}^{\infty} \frac{(A|t-x|)^{k}}{k!} \\
\frac{|t-x|}{\delta} S_{1}(t, x) & =\frac{|t-x|}{\delta}+\frac{1}{\delta} \sum_{k=1}^{\infty} \frac{A^{k}|t-x|^{k+1}}{k!} \tag{4.7}
\end{align*}
$$

Obviously for linear positive operators \widetilde{P}_{n} using (4.4), (4.6) and (4.7), we obtain

$$
\begin{align*}
\mid \widetilde{P}_{n}(f(t)-f(x) \mid \leq & \widetilde{P}_{n}(|f(t)-f(x)|, x) \\
\leq & e^{A x}\left\{1+\widetilde{P}_{n}\left(S_{1}(t, x), x\right)+\frac{1}{\delta} \widetilde{P}_{n}(|t-x|, x)\right. \\
& \left.+\frac{1}{\delta} \sum_{k=1}^{\infty} \frac{A^{k} \widetilde{P}_{n}\left(|t-x|^{k+1}, x\right)}{k!}\right\} \omega_{1}(f, \delta, A) \tag{4.8}
\end{align*}
$$

From Cauchy Schwarz inequality, we have

$$
\begin{align*}
\widetilde{P}_{n}\left(|t-x|^{k+1}, x\right) & \leq \sqrt{\widetilde{P}_{n}\left((t-x)^{2}, x\right)} \sqrt{\widetilde{P}_{n}\left((t-x)^{2 k, x}\right)} \\
& =\sqrt{U_{2}^{\widetilde{P}_{n}}(x)} \sqrt{U_{2 k}^{\widetilde{P}_{n}}(x)} . \tag{4.9}
\end{align*}
$$

Further

$$
S_{1}(t, x)=1+A|t-x|+\sum_{k=2}^{\infty} \frac{(A|t-x|)^{k}}{k!}
$$

Hence

$$
\begin{equation*}
\widetilde{P}_{n}\left(S_{1}(t, x), x\right) \leq 1+A \sqrt{U_{2}^{\widetilde{P}_{n}}(x)}+\sum_{k=2}^{\infty} \frac{A^{k} \sqrt{U_{2 k}^{\widetilde{P}_{n}}(x)}}{k!} \tag{4.10}
\end{equation*}
$$

From Lemma 2.4, for fixed $x \in[0, \infty)$, we have

$$
\begin{equation*}
U_{2 k}^{\widetilde{P}_{n}}(x)=O\left(n^{-k}\right), n \rightarrow \infty \tag{4.11}
\end{equation*}
$$

We set in (4.8) that

$$
\begin{equation*}
\delta=\sqrt{U_{2}^{\widetilde{P}_{n}}(x)}=O\left(n^{-1 / 2}\right), n \rightarrow \infty \tag{4.12}
\end{equation*}
$$

Therefore estimates (4.8)-(4.12) imply

$$
\left|\widetilde{P}_{n}(f, x)-f(x)\right| \leq e^{A x}[3+C(n, x)] \omega_{1}\left(f, \sqrt{U_{2}^{\widetilde{P}_{n}}(x)}, A\right)
$$

where

$$
C(n, x)=A \sqrt{U_{2}^{\widetilde{P}_{n}}(x)}+\sum_{k=2}^{\infty} \frac{A^{k} \sqrt{U_{2 k}^{\widetilde{P}_{n}}(x)}}{k!}+\sum_{k=1}^{\infty} \frac{A^{k} \sqrt{U_{2 k}^{\widetilde{P}_{n}}(x)}}{k!}=O\left(n^{-1 / 2}\right), n \rightarrow \infty
$$

by fixed $x \in[0, \infty)$. This completes the proof of theorem.

References

[1] Acar, T., Aral, A., Morales, D., Garrancho, P., Szász-Mirakyan operators which fix exponentials, Results Math., 72(2017), 1393-1404. https://doi.org/10.1007/s00025-017-0665-9
[2] Agratini, O., A sequence of positive linear operators associated with an approximation process, Appl. Math. Comput., 269(2015), 23-28.
[3] Agratini, O., On an approximation process of integral type, Appl. Math. Comput., 236(2014), 195-201.
[4] Agratini, O., Aral, A., Deniz, E., On two classes of approximation processes of integral type, Positivity, 21(2017), no. 3, 1189-1199.
[5] Ditzian, Z., On global inverse theorems of Szász and Baskakov operators, Canad. J. Math., 31(1979), no. 2, 255-263.
[6] Gupta, V., Agrawal, D., Convergence by modified Post-Widder operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113(2019), no. 2, 1475-1486.
[7] Gupta, V., Maheshwari, P., Approximation with certain Post-Widder operators, Publ. Inst. Math. (Beograd) (N.S.), 105(119)(2019), 1-6.
[8] Gupta, V., Rassias, M.T., Moments of Linear Positive Operators and Approximation, Series: Springer Briefs in Mathematics, Springer Nature Switzerland AG, 2019.
[9] Gupta, V., Singh, V.K., Modified Post-Widder Operators Preserving Exponential Functions, Advances in Mathematical Methods and High Performance Computing, Advances in Mechanics and Mathematics, 41, Editors V.K. Singh et al., Springer Nature Switzerland, 2019, 181-192.
[10] Gupta, V., Tachev, G., Approximation with Positive Linear Operators and Linear Combinations, Series: Developments in Mathematics, Vol. 50, Springer, 2017.
[11] Gupta, V., Tachev, G., Some results on Post-Widder operators preserving test function x^{r}, Kragujevac J. Math., 46(2022), no. 1, 149-165.
[12] Tachev, G., Gupta, V., Aral, A., Voronovskja's theorem for functions with exponential growth, Georgian Math. J., 27(2020) no. 3, 459-468.
https://doi.org/10.1515/gmj-2018-0041
[13] Widder, D.V., The Laplace Transform, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.

Vijay Gupta
Department of Mathematics,
Netaji Subhas University of Technology,
Sector 3 Dwarka, New Delhi 110078, India
e-mail: vijaygupta2001@hotmail.com
ORCID: 0000-0002-5768-5763
Gancho Tachev
Department of Mathematics,
University of Architecture Civil Engineering and Geodesy,
Sofia, Bulgaria
e-mail: gtt_fte@uacg.bg

