Fekete-Szegő inequalities for certain subclass of analytic functions associated with quasi-subordination

Shashi Kant and Prem Pratap Vyas

Abstract

In this present investigation, we introduce a certain subclass $\mathcal{S}_{q}(\lambda, \gamma, h)$ of analytic functions which is specify in terms of a quasi-subordination. Sharp bounds of the Fekete-Szegő coefficient for functions belonging to the class $\mathcal{S}_{q}(\lambda, \gamma, h)$ are obtained. The results presented give improved versions for the classes involving the quasi-subordination and majorization.

Mathematics Subject Classification (2010): 30C45.
Keywords: Univalent functions, subordination, quasi-subordination, Fekete-Szegő coefficients.

1. Introduction and definitions

Let \mathcal{A} denote the family of normalized functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$.
A function f in \mathcal{A} is said to be univalent in \mathbb{U} if f is one to one in \mathbb{U}. As usual, we denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}. Let g and f be two analytic functions in \mathbb{U} then function g is said to be subordinate to f if there exists an analytic function w in the unit disk \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that

$$
g(z)=f(w(z)) \quad(z \in \mathbb{U})
$$

We denote this subordination by $g \prec f$.
In particular, if the f is univalent in \mathbb{U}, the above subordination is equivalent to

$$
g(0)=f(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

Further, [14] function g is said to be quasi-subordinate to f in the unit disk \mathbb{U} if there exist the functions w (with constant coefficient zero) and ϕ which are analytic and bounded by one in the unit disk \mathbb{U} such that

$$
g(z)=\phi(z) f(w(z))
$$

and this is equivalent to

$$
\frac{g(z)}{\phi(z)} \prec f(z) \quad(z \in \mathbb{U})
$$

We denote this quasi-subordination by

$$
g(z) \prec_{q} f(z) \quad(z \in \mathbb{U}) .
$$

It is observed that if $\phi(z)=1 \quad(z \in \mathbb{U})$, then the quasi-subordination \prec_{q} become the usual subordination \prec, and for the function $w(z)=z \quad(z \in \mathbb{U})$, the quasisubordination \prec_{q} become the majorization ' $<$ '. In this case:

$$
g(z) \prec_{q} f(z) \Rightarrow g(z)=\phi(z) f(w(z)) \Rightarrow g(z) \ll f(z), \quad(z \in \mathbb{U})
$$

The concept of majorization is due to MacGregor [8].
In geometric function theory, study a functional made up of combinations of the coefficients of the original function is a typical problem. Initially, a sharp bound of the functional $\left|a_{3}-\nu a_{2}^{2}\right|$ for univalent functions $f \in \mathcal{A}$ of the form with real ν was obtained by Fekete and Szegő [3] in 1933. Since then, the problem of finding the sharp bounds for this functional $\left|a_{3}-\nu a_{2}^{2}\right|$ of any compact family of functions $f \in \mathcal{A}$ with any complex number ν is generally known as the classical Fekete-Szegő problem or inequality. Fekete-Szegő problem for several subclasses of \mathcal{A} have been studied by many authors (see [1], [2], [4], [12], [13], [15], [17], [18]).
Throughout this paper it is assumed that functions ϕ and h are analytic in \mathbb{U}.
Also let

$$
\begin{equation*}
\phi(z)=A_{0}+A_{1} z+A_{2} z^{2}+\cdots \quad(|\phi(z)| \leq 1, z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=1+B_{1} z+B_{2} z^{2}+\cdots \quad\left(B_{1} \in \mathbb{R}^{+}\right) \tag{1.3}
\end{equation*}
$$

Motivated by earlier works in ([5],[6],[11],[16]) on quasi-subordination, we introduce here the following subclass of analytic functions:

Definition 1.1. For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \mathcal{A}$ given by (1.1) is said to be in the class $\mathcal{S}_{q}(\lambda, \gamma, h)$, if the following condition are satisfied:

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right) \prec_{q}(h(z)-1), \tag{1.4}
\end{equation*}
$$

where h is given by (1.3) and $z \in \mathbb{U}$.

It follows that a function f is in the class $\mathcal{S}_{q}(\lambda, \gamma, h)$ if and only if there exists an analytic function ϕ with $|\phi(z)| \leq 1$, in \mathbb{U} such that

$$
\frac{\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)}{\phi(z)} \prec(h(z)-1)
$$

where h is given by (1.3) and $z \in \mathbb{U}$.
If we set $\phi(z) \equiv 1(z \in \mathbb{U})$, then the class $\mathcal{S}_{q}(\lambda, \gamma, h)$ is denoted by $\mathcal{S}(\lambda, \gamma, h)$ satisfying the condition that

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right) \prec h(z)(z \in \mathbb{U}) .
$$

In the present paper, we find sharp bounds on the Fekete-Szegő functional for functions belonging in the class $\mathcal{S}_{q}(\lambda, \gamma, h)$. Several known and new consequences of these results are also pointed out. In order to derive our main results, we have to recall here the following well-known lemma:
Let Ω be class of analytic functions of the form

$$
\begin{equation*}
w(z)=w_{1} z+w_{2} z^{2}+\ldots \tag{1.5}
\end{equation*}
$$

in the unit disk \mathbb{U} satisfying the condition $|w(z)|<1$.
Lemma 1.1. ([7], p. 10) If $w(z) \in \Omega$, then for any complex number ν :

$$
\left|w_{1}\right| \leq 1,\left|w_{2}-\nu w_{1}^{2}\right| \leq 1+(|\nu|-1)\left|w_{1}^{2}\right| \leq \max \{1,|\nu|\}
$$

The result is sharp for the functions $w(z)=z$ or $w(z)=z^{2}$.

2. Main results

Theorem 2.1. Let $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{S}_{q}(\lambda, \gamma, h)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\gamma| B_{1}}{2-\lambda} \tag{2.1}
\end{equation*}
$$

and for any $\nu \in \mathbb{C}$

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-K B_{1}\right|\right\} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\gamma\left(\frac{\nu(3-\lambda)}{(2-\lambda)^{2}}-\frac{\lambda}{2-\lambda}\right) \tag{2.3}
\end{equation*}
$$

The results are sharp.
Proof. Let $f \in \mathcal{S}_{q}(\lambda, \gamma, h)$. In view of Definition1.1, there exist then Schwarz functions w and an analytic function ϕ such that

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\phi(z)(h(w(z))-1) \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

Series expansions for f and its successive derivatives from (1.1) gives us

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\frac{1}{\gamma}\left[(2-\lambda) a_{2} z+\left[(3-\lambda) a_{3}-\lambda(2-\lambda) a_{2}^{2}\right] z^{2}+\cdots\right] . \tag{2.5}
\end{equation*}
$$

Similarly from (1.2), (1.3) and (1.5), we obtain

$$
h(w(z))-1=B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) z^{2}+\cdots
$$

and

$$
\begin{equation*}
\phi(z)(h(w(z))-1)=A_{0} B_{1} w_{1} z+\left[A_{1} B_{1} w_{1}+A_{0}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)\right] z^{2}+\cdots \tag{2.6}
\end{equation*}
$$

Equating (2.5) and (2.6) in view of (2.4) and comparing the coefficients of z and z^{2}, we get

$$
\begin{equation*}
a_{2}=\frac{\gamma A_{0} B_{1} w_{1}}{2-\lambda} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{\gamma B_{1}}{3-\lambda}\left[A_{1} w_{1}+A_{0}\left\{w_{2}+\left(\frac{\gamma \lambda A_{0} B_{1}}{2-\lambda}+\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right] . \tag{2.8}
\end{equation*}
$$

Thus, for any $\nu \in \mathbb{C}$, we have

$$
\begin{align*}
a_{3}-\nu a_{2}^{2} & =\frac{\gamma B_{1}}{3-\lambda}\left[A_{1} w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) A_{0}-\left(\frac{\nu \gamma(3-\lambda)}{(2-\lambda)^{2}}-\frac{\gamma \lambda}{2-\lambda}\right) B_{1} A_{0}^{2} w_{1}^{2}\right] \\
& =\frac{\gamma B_{1}}{3-\lambda}\left[A_{1} w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) A_{0}-K B_{1} A_{0}^{2} w_{1}^{2}\right] \tag{2.9}
\end{align*}
$$

where K is given by (2.3).
Since $\phi(z)=A_{0}+A_{1} z+A_{2} z^{2}+\cdots$ is analytic and bounded by one in \mathbb{U}, therefore we have (see[10], p. 172)

$$
\begin{equation*}
\left|A_{0}\right| \leq 1 \text { and } A_{1}=\left(1-A_{0}^{2}\right) y \quad(y \leq 1) \tag{2.10}
\end{equation*}
$$

From (2.9) into (2.10), we obtain

$$
\begin{equation*}
a_{3}-\nu a_{2}^{2}=\frac{\gamma B_{1}}{3-\lambda}\left[y w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) A_{0}-\left(B_{1} K w_{1}^{2}+y w_{1}\right) A_{0}^{2}\right] \tag{2.11}
\end{equation*}
$$

If $A_{0}=0$ in (2.11), we at once get

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \tag{2.12}
\end{equation*}
$$

But if $A_{0} \neq 0$, let us then suppose that

$$
G\left(A_{0}\right)=y w_{1}+\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right) A_{0}-\left(B_{1} K w_{1}^{2}+y w_{1}\right) A_{0}^{2}
$$

which is a quadratic polynomial in A_{0} and hence analytic in $\left|A_{0}\right| \leq 1$ and maximum value of $\left|G\left(A_{0}\right)\right|$ is attained at $A_{0}=e^{\iota \theta}(0 \leq \theta<2 \pi)$, we find that

$$
\begin{aligned}
\max \left|G\left(A_{0}\right)\right| & =\max _{0 \leq \theta<2 \pi}\left|G\left(e^{\iota \theta}\right)\right|=|G(1)| \\
& =\left|w_{2}-\left(K B_{1}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right|
\end{aligned}
$$

Therefore, it follows from (2.11) that

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda}\left|w_{2}-\left(K B_{1}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right|, \tag{2.13}
\end{equation*}
$$

which on using Lemma1.1, shows that

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-K B_{1}\right|\right\}
$$

and this last above inequality together with (2.12) establish the results. The results are sharp for the function f given by

$$
\begin{aligned}
& 1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=h(z) \\
& 1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=h\left(z^{2}\right)
\end{aligned}
$$

and

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=z(h(z)-1)
$$

This completes the proof of Theorem 2.1.
For $\lambda=1$ the Theorem 2.1 reduces to following corollary:
Corollary 2.2. If $f \in \mathcal{A}$ of the form (1.1) satisfies

$$
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec_{q}(h(z)-1) \quad(z \in \mathbb{U}, \gamma \in \mathbb{C} \backslash\{0\})
$$

then

$$
\left|a_{2}\right| \leq|\gamma| B_{1}
$$

and for some $\nu \in \mathbb{C}$

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{2} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\gamma(1-2 \nu) B_{1}\right|\right\}
$$

The results are sharp.
Remark 2.3. For $\phi \equiv 1, \gamma=\lambda=1$, Theorem 2.1 reduces to an improved result of given in [9].

The next theorems gives the result based on majorization.
Theorem 2.4. Let $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If $f \in \mathcal{A}$ of the form (1.1) satisfies

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right) \ll(h(z)-1) \quad(z \in \mathbb{U}) \tag{2.14}
\end{equation*}
$$

then

$$
\left|a_{2}\right| \leq \frac{|\gamma| B_{1}}{2-\lambda}
$$

and for any $\nu \in \mathbb{C}$

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-K B_{1}\right|\right\}
$$

where K is given by (2.3). The results are sharp.

Proof. Assume that (2.14) holds. From the definition of majorization, there exist an analytic function ϕ such that

$$
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\phi(z)(h(z)-1) \quad(z \in \mathbb{U})
$$

Following similar steps as in the proof of Theorem 2.1, and by setting $w(z) \equiv z$, so that $w_{1}=1, w_{n}=0, n \geq 2$, we obtain

$$
a_{2}=\frac{\gamma A_{0} B_{1}}{2-\lambda}
$$

and also we obtain that

$$
\begin{equation*}
a_{3}-\nu a_{2}^{2}=\frac{\gamma B_{1}}{3-\lambda}\left[A_{1}+\frac{B_{2}}{B_{1}} A_{0}-K B_{1} A_{0}^{2}\right] \tag{2.15}
\end{equation*}
$$

On putting the value of A_{1} from (2.10) into (2.15), we obtain

$$
\begin{equation*}
a_{3}-\nu a_{2}^{2}=\frac{\gamma B_{1}}{3-\lambda}\left[y+\frac{B_{2}}{B_{1}} A_{0}-\left(B_{1} K+y\right) A_{0}^{2}\right] \tag{2.16}
\end{equation*}
$$

If $A_{0}=0$ in (2.16), we at once get

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \tag{2.17}
\end{equation*}
$$

But if $A_{0} \neq 0$, let us then suppose that

$$
T\left(A_{0}\right)=y+\frac{B_{2}}{B_{1}} A_{0}-\left(B_{1} K+y\right) A_{0}^{2}
$$

which is a quadratic polynomial in A_{0} and hence analytic in $\left|A_{0}\right| \leq 1$ and maximum value of $\left|T\left(A_{0}\right)\right|$ is attained at $A_{0}=e^{\iota \theta}(0 \leq \theta<2 \pi)$, we find that

$$
\max \left|T\left(A_{0}\right)\right|=\max _{0 \leq \theta<2 \pi}\left|T\left(e^{\iota \theta}\right)\right|=|T(1)|
$$

Hence, from (2.16), we obtain

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda}\left|K B_{1}-\frac{B_{2}}{B_{1}}\right|
$$

Thus, the assertion of Theorem 2.4 follows from this last above inequality together with (2.17). The results are sharp for the function given by

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=h(z)
$$

which completes the proof of Theorem 2.4.
Theorem 2.5. Let $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{S}(\lambda, \gamma, h)$, then

$$
\left|a_{2}\right| \leq \frac{|\gamma| B_{1}}{2-\lambda}
$$

and for any $\nu \in \mathbb{C}$

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{|\gamma| B_{1}}{3-\lambda} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-K B_{1}\right|\right\}
$$

where K is given by (2.3), the results are sharp.
Proof. The proof is similar to Theorem 2.1, Let $f \in \mathcal{S}(\lambda, \gamma, h)$.
If $\phi(z)=1$, then $A_{0}=1, A_{n}=0(n \in \mathbb{N})$. Therefore, in view of (2.7) and (2.10) and by application of Lemma 1.1, we obtain the desired assertion. The results are sharp for the function $f(z)$ given by

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=h(z)
$$

or

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=h\left(z^{2}\right)
$$

Thus, the proof of Theorem 2.5 is completed.
Now, we determine the bounds for the functional $\left|a_{3}-\nu a_{2}^{2}\right|$ for real ν.
Theorem 2.6. Let $0 \leq \lambda \leq 1$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{S}_{q}(\lambda, \gamma, h)$, then for real ν and γ, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\frac{|\gamma| B_{1}}{3-\lambda}\left[B_{1}\left(\frac{\lambda}{2-\lambda}-\frac{3-\lambda}{(2-\lambda)^{2}} \nu\right)+\frac{B_{2}}{B_{1}}\right] & \left(\nu \leq \sigma_{1}\right) \tag{2.18}\\
\frac{|\gamma| B_{1}}{3-\lambda} & \left(\sigma_{1} \leq \nu \leq \sigma_{1}+2 \rho\right) \\
-\frac{|\gamma| B_{1}}{3-\lambda}\left[B_{1}\left(\frac{\lambda}{2-\lambda}-\frac{3-\lambda}{(2-\lambda)^{2}} \nu\right)+\frac{B_{2}}{B_{1}}\right] & \left(\nu \geq \sigma_{1}+2 \rho\right)
\end{array}\right.
$$

where

$$
\begin{equation*}
\sigma_{1}=\frac{\lambda(2-\lambda)}{(3-\lambda)}-\frac{(2-\lambda)^{2}}{\gamma(3-\lambda)}\left(\frac{1}{B_{1}}-\frac{B_{2}}{B_{1}^{2}}\right) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho=\frac{(2-\lambda)^{2}}{\gamma(3-\lambda) B_{1}} \tag{2.20}
\end{equation*}
$$

Each of the estimates in (2.18) are sharp.
Proof. For real values of ν and γ the above bounds can be obtained from (2.2), respectively, under the following cases:

$$
B_{1} K-\frac{B_{2}}{B_{1}} \leq-1,-1 \leq B_{1} K-\frac{B_{2}}{B_{1}} \leq 1 \text { and } B_{1} K-\frac{B_{2}}{B_{1}} \geq 1
$$

where K is given by (2.3). We also note the following:
(i) When $\nu<\sigma_{1}$ or $\nu>\sigma_{1}+2 \rho$, then the equality holds if and only if $\phi(z) \equiv 1$ and $w(z)=z$ or one of its rotations.
(ii) When $\sigma_{1}<\nu<\sigma_{1}+2 \rho$, then the equality holds if and only if $\phi(z) \equiv 1$ and $w(z)=z^{2}$ or one of its rotations.
(iii) Equality holds for $\nu=\sigma_{1}$ if and only if $\phi(z) \equiv 1$ and $w(z)=\frac{z(z+\epsilon)}{1+\epsilon z}(0 \leq \epsilon \leq 1)$, or one of its rotations, while for $\nu=\sigma_{1}+2 \rho$, the equality holds if and only if $\phi(z) \equiv 1$ and $w(z)=-\frac{z(z+\epsilon)}{1+\epsilon z}(0 \leq \epsilon \leq 1)$, or one of its rotations.

The bounds of the functional $a_{3}-\nu a_{2}^{2}$ for real values of ν and γ for the middle range of the parameter ν can be improved further as follows:

Theorem 2.7. Let $0 \leq \lambda \leq 1$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{S}_{q}(\lambda, \gamma, h)$, then for real ν and γ, we have

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right|+\left(\nu-\sigma_{1}\right)\left|a_{2}\right|^{2} \leq \frac{|\gamma| B_{1}}{3-\lambda} \quad\left(\sigma_{1} \leq \nu \leq \sigma_{1}+\rho\right) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}-\nu a_{2}^{2}\right|+\left(\sigma_{1}+2 \rho-\nu\right)\left|a_{2}\right|^{2} \leq \frac{|\gamma| B_{1}}{3-\lambda} \quad\left(\sigma_{1}+\rho \leq \nu \leq \sigma_{1}+2 \rho\right) \tag{2.22}
\end{equation*}
$$

where σ_{1} and ρ are given by (2.19) and (2.20), respectively.
Proof. Let $f \in \mathcal{S}_{q}(\lambda, \gamma, h)$. For real ν satisfying $\sigma_{1}+\rho \leq \nu \leq \sigma_{1}+2 \rho$ and using (2.7) and (2.13) we get

$$
\begin{aligned}
\left|a_{3}-\nu a_{2}^{2}\right|+\left(\nu-\sigma_{1}\right)\left|a_{2}\right|^{2} & \leq \frac{|\gamma| B_{1}}{3-\lambda}\left[\left|w_{2}\right|-\frac{|\gamma| B_{1}(3-\lambda)}{(2-\lambda)^{2}}\left(\nu-\sigma_{1}-\rho\right)\left|w_{1}\right|^{2}\right. \\
& \left.+\frac{|\gamma| B_{1}(3-\lambda)}{(2-\lambda)^{2}}\left(\nu-\sigma_{1}\right)\left|w_{1}\right|^{2}\right] .
\end{aligned}
$$

Therefore, by virtue of Lemma 1.1, we get

$$
\left|a_{3}-\nu a_{2}^{2}\right|+\left(\nu-\sigma_{1}\right)\left|a_{2}\right|^{2} \leq \frac{|\gamma| B_{1}}{3-\lambda}\left[1-\left|w_{1}\right|^{2}+\left|w_{1}\right|^{2}\right]
$$

which yields the assertion (2.21).
If $\sigma_{1}+\rho \leq \nu \leq \sigma_{1}+2 \rho$, then again from (2.7), (2.13) and the application of Lemma 1.1, we have

$$
\begin{aligned}
\left|a_{3}-\nu a_{2}^{2}\right|+\left(\sigma_{1}+2 \rho-\nu\right)\left|a_{2}\right|^{2} & \leq \frac{|\gamma| B_{1}}{3-\lambda}\left[\left|w_{2}\right|+\frac{|\gamma| B_{1}(3-\lambda)}{(2-\lambda)^{2}}\left(\nu-\sigma_{1}-\rho\right)\left|w_{1}\right|^{2}\right. \\
& \left.+\frac{|\gamma| B_{1}(3-\lambda)}{(2-\lambda)^{2}}\left(\sigma_{1}+2 \rho-\nu\right)\left|w_{1}\right|^{2}\right] \\
& \leq \frac{|\gamma| B_{1}}{3-\lambda}\left[1-\left|w_{1}\right|^{2}+\left|w_{1}\right|^{2}\right],
\end{aligned}
$$

which estimates (2.22).

References

[1] Ahuja, O.P., Jahangiri, M., Fekete-Szegő problem for a unified class of analytic functions, Pan Amer. Math. J., 7(1997), no. 2, 67-78.
[2] Bansal, D., Fekete-Szegő problem for a new class of analytic functions, Int. J. Math. Math. Sci., (2011), Article ID 143096, 5 pages.
[3] Fekete, M., Szegő, G., Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc., 8(1933), 85-89.
[4] Goyal, S.P., Singh, O., Fekete-Szegő problems and coefficient estimates of quasisubordination classes, J. Rajasthan Acad. Phys. Sci., 13(2014), no. 2, 133-142.
[5] Kant, S., Coefficients estimate for certain subclasses of bi-univalent functions associated with quasi-subordination, J. Fract. Calc. Appl., 9(2018), no. 1, 195-203.
[6] Kant, S., Vyas, P.P., Sharp bounds of Fekete-Szegő functional for quasi-subordination class, Acta Univ. Sapientiae Math., 11(2019), no. 1, 87-98.
[7] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[8] MacGregor, T.H., Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.
[9] Mohd, M.H., Darus, M., Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal., 14(2012), Art. ID 192956.
[10] Nehari, Z., Conformal Mapping, Dover, New York, 1975 (reprinting of the 1952 edition).
[11] Panigrahi, T., Raina, R.K., Fekete-Szegő coefficient functional for quasi-subordination class, Afr. Mat., DOI 10.1007/s13370-016-0477-1, 10 pages, (2017).
[12] Ravichandran, V., Darus, M., Khan, M.H., Subramanian, K.G., Fekete-Szegő inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl., 4(2004), no. 1, 1-7.
[13] Ravichandran, V., Gangadharan, A., Darus, M., Fekete-Szegő inequality for certain class of Bazilevic functions, Far East J. Math. Sci., 15(2004), 171-180.
[14] Robertson, M.S., Quasi-subordination and coefficient conjuctures, Bull. Amer. Math. Soc., 76(1970), 1-9.
[15] Shanmugam, T.N., Sivasubramanian, S., On the Fekete-Szegő problem for some subclasses of analytic functions, J. Inequal. Pure and Appl. Math., 6(2005), no. 3, Art. 71, 6 pp.
[16] Sharma, P., Raina, R.K., On a Sakaguchi type class of analytic functions associated with quasi-subordination, Comment. Math. Univ. St. Pauli, 64(2015), no. 1, 59-70.
[17] Srivastava, H.M., Mishra, A.K., Das, M.K., The Fekete-Szegő problem for a subclass of close-to-convex functions, Complex Var. Elliptic Equ., 44(2001), 145-163.
[18] Tuneski, N., Darus, M., Fekete-Szegő functional for non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyházi, (N.S.), 18(2002), no. 2, 63-65.

Shashi Kant

Department of Mathematics, Government Dungar College, Bikaner-334001, India
e-mail: drskant.2007@yahoo.com
Prem Pratap Vyas
Department of Mathematics, Government Dungar College, Bikaner-334001, India
e-mail: prempratapvyas@gmail.com

