A strong converse inequality for the iterated Boolean sums of the Bernstein operator

Borislav R. Draganov

Abstract

We establish a two-term strong converse estimate of the rate of approximation by the iterated Boolean sums of the Bernstein operator. The characterization is stated in terms of appropriate moduli of smoothness or K-functionals. Mathematics Subject Classification (2010): 41A10, 41A17, 41A25, 41A27, 41A35, 41A40.

Keywords: Bernstein polynomials, Boolean sums, strong converse inequality, modulus of smoothness, K-functional.

1. Main results

The Bernstein operator is defined for $f \in C[0,1]$ and $x \in[0,1]$ by

$$
B_{n} f(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n, k}(x), \quad p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Its iterated Boolean sum $\mathcal{B}_{r, n}: C[0,1] \rightarrow C[0,1]$ is then defined by

$$
\mathcal{B}_{r, n}=I-\left(I-B_{n}\right)^{r},
$$

where I stands for the identity and $r \in \mathbb{N}$.
Gonska and Zhou [9] estimated the uniform norm of the approximation error for $\mathcal{B}_{r, n}$. They proved a neat direct inequality and a Stechkin-type converse inequality. The former states

$$
\begin{equation*}
\left\|\mathcal{B}_{r, n} f-f\right\| \leq c\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)+\frac{1}{n^{r}}\|f\|\right) \tag{1.1}
\end{equation*}
$$

Above $\|\circ\|$ denotes the uniform norm on the interval $[0,1], c$ is a constant independent of the approximated function and the order of the operator (not necessarily the same

[^0]at each occurrence), and $\omega_{\varphi}^{r}(f, t)$ denotes the Ditzian-Totik modulus of smoothness with $\varphi(x)=\sqrt{x(1-x)}$, which is given by (see [5, Chapter 1])
$$
\omega_{\varphi}^{r}(f, t)=\sup _{0<h \leq t}\left\|\Delta_{h \varphi}^{r} f\right\|
$$
where
\[

\Delta_{h \varphi(x)}^{r} f(x)= $$
\begin{cases}\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f\left(x+\left(\frac{r}{2}-k\right) h \varphi(x)\right), & x \pm r h \varphi(x) / 2 \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$
\]

Let us recall that the modulus $\omega_{\varphi}^{r}(f, t)$ is equivalent to the K-functional

$$
K_{r, \varphi}\left(f, t^{r}\right)=\inf _{g \in A C_{\text {loc }}^{r-1}(0,1)}\left\{\|f-g\|+t^{r}\left\|\varphi^{r} g^{(r)}\right\|\right\}
$$

More precisely, we say that $\Phi(f, t)$ and $\Psi(f, t)$ are equivalent and write

$$
\Phi(f, t) \sim \Psi(f, t)
$$

if there exists a constant c such that $c^{-1} \Phi(f, t) \leq \Psi(f, t) \leq c \Phi(f, t)$ for all f and t under consideration. Thus there holds (see [5, Theorem 2.1.1])

$$
\begin{equation*}
K_{r, \varphi}\left(f, t^{r}\right) \sim \omega_{\varphi}^{r}(f, t), \quad 0<t \leq t_{0} \tag{1.2}
\end{equation*}
$$

with some fixed $t_{0}>0$. It was shown in [11, Theorem 2.7] that we can take $t_{0}=2 / r$. A smaller value of t_{0} was given in [2, Chapter 6, Theorem 6.2].
Since the operator $\mathcal{B}_{r, n}$ preserves the algebraic polynomials of degree 1 and the modulus $\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)$ is invariant to translation of f by such polynomials, we immediately deduce from (1.1) the estimate

$$
\begin{equation*}
\left\|\mathcal{B}_{r, n} f-f\right\| \leq c\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)+\frac{1}{n^{r}} E_{1}(f)\right) \tag{1.3}
\end{equation*}
$$

where $E_{1}(f)$ is the best approximation of f by algebraic polynomials of degree 1 in the uniform norm on $[0,1]$.
Later on Ding and Cao [3] characterized the error of the multivariate generalization of $\mathcal{B}_{r, n}$ on the simplex. In the univariate case, the direct inequality they proved is of the form

$$
\begin{equation*}
\left\|\mathcal{B}_{r, n} f-f\right\| \leq c K_{r}\left(f, n^{-r}\right) \tag{1.4}
\end{equation*}
$$

where

$$
K_{r}(f, t)=\inf _{g \in C^{2 r}[0,1]}\left\{\|f-g\|+t\left\|D^{r} g\right\|\right\}, \quad D g=\varphi^{2} g^{\prime \prime}
$$

They also proved a strong converse inequality of type D (in the terminology introduced in [4]), that is

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right) \leq c \max _{k \geq n}\left\|\mathcal{B}_{r, k} f-f\right\| \tag{1.5}
\end{equation*}
$$

As it was shown in [6, Theorem 5.1],

$$
\begin{equation*}
K_{r}(f, t) \sim K_{2 r, \varphi}(f, t)+t E_{1}(f), \quad 0<t \leq 1 \tag{1.6}
\end{equation*}
$$

Therefore, taking also into account (1.2), we see that the function characteristics on the right side of (1.3) and (1.4) are equivalent.

Quite recently, Cheng and Zhou [1] derived another converse inequality from the Stechkin-type converse inequality in [9]. It is similar to (1.5), though weaker than it.

Our main result improves (1.5). We will prove the following strong converse inequality of type B according to [4].
Theorem 1.1. Let $r \in \mathbb{N}$. There exists $R \in \mathbb{N}$ such that for all $f \in C[0,1]$ and $k, n \in \mathbb{N}$ with $k \geq$ Rn there holds

$$
K_{r}\left(f, n^{-r}\right) \leq c\left(\frac{k}{n}\right)^{r}\left(\left\|\mathcal{B}_{r, n} f-f\right\|+\left\|\mathcal{B}_{r, k} f-f\right\|\right)
$$

In particular,

$$
K_{r}\left(f, n^{-r}\right) \leq c\left(\left\|\mathcal{B}_{r, n} f-f\right\|+\left\|\mathcal{B}_{r, R n} f-f\right\|\right)
$$

Let us recall that the assertion of the theorem for $r=1$ was established in [4, Theorem 8.1] and then improved to a one-term converse inequality (i.e. $R=1$) in [10, 12].

As we mentioned earlier in (1.6), the more complicated K-functional $K_{r}(f, t)$ can be replaced with the simpler function characteristics $K_{2 r, \varphi}(f, t)+t E_{1}(f)$. In addition to this, we will establish also the following equivalence relation.

Theorem 1.2. Let $r \in \mathbb{N}$. For all $f \in C[0,1]$ and $0<t \leq 1$ we have

$$
K_{r}(f, t) \sim K_{2 r, \varphi}(f, t)+K_{2, \varphi}(f, t)
$$

Taking into account (1.2), we arrive at the following relation between $K_{r}(f, t)$ and the Ditzian-Totik modulus.
Corollary 1.3. Let $r \in \mathbb{N}$. For all $f \in C[0,1]$ and $n \in \mathbb{N}$ such that $n \geq r^{2}$ we have

$$
K_{r}\left(f, n^{-r}\right) \sim \omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)+\omega_{\varphi}^{2}\left(f, n^{-r / 2}\right)
$$

We establish Theorem 1.1 by means of the method given in [4]. To this end, we need a Voronovskaya-type inequality and several Bernstein-type inequalities, which relate the approximation operator $\mathcal{B}_{r, n}$ to the differential operator D^{r}. They are given in Section 2. Then, in the next section we prove Theorem 1.1. We present the short argument that verifies Theorem 1.2 in the last section.

2. Voronovskaya- and Bernstein-type inequalities for $\mathcal{B}_{r, n}$

We will use the following inequalities, which were obtained by Gonska and Zhou [9, (2) and (4)] for algebraic polynomials, but, as it is easy to see, the same considerations verify them for all functions in $C^{2 r}[0,1]$.

Proposition 2.1. For $g \in C^{2 r}[0,1]$ there hold:
(a) $\left\|\varphi^{2 r} g^{(2 r)}\right\| \leq c\left\|D^{r} g\right\|$;
(b) $\left\|D^{j} g\right\| \leq c\left\|D^{r} g\right\|, \quad j=1, \ldots, r$.

We proceed to two Voronovskaya-type estimates (cf. [9, Lemma 4]).

Proposition 2.2. Let $r \in \mathbb{N}$. For all $g \in C^{2 r+2}[0,1]$ and all $n \in \mathbb{N}$ there hold

$$
\begin{equation*}
\left\|\mathcal{B}_{r, n} g-g-\frac{(-1)^{r-1}}{(2 n)^{r}} D^{r} g\right\| \leq \frac{c}{n^{r+1}}\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{B}_{r, n} g-g-\frac{(-1)^{r-1}}{(2 n)^{r}} D^{r} g\right\| \leq \frac{c}{n^{r+1}}\left\|D^{r+1} g\right\| \tag{2.2}
\end{equation*}
$$

Proof. Assertion (2.1) for $r=1$ follows from [8, Proposition 2.3].
Next, we set $J_{r, n} g=\left(I-B_{n}\right)^{r} g$ and

$$
V_{r, n} g=\mathcal{B}_{r, n} g-g-\frac{(-1)^{r-1}}{(2 n)^{r}} D^{r} g .
$$

For $r \geq 2$ we use the relation

$$
V_{r, n} g=V_{1, n} J_{r-1, n} g-\frac{1}{2 n} D V_{r-1, n} g .
$$

It implies

$$
\begin{equation*}
\left\|V_{r, n} g\right\| \leq\left\|V_{1, n} J_{r-1, n} g\right\|+\frac{1}{n}\left\|\varphi^{2}\left(V_{r-1, n} g\right)^{\prime \prime}\right\| . \tag{2.3}
\end{equation*}
$$

By virtue of (2.1) with $r=1$,

$$
\begin{equation*}
\left\|V_{1, n} J_{r-1, n} g\right\| \leq \frac{c}{n^{2}}\left(\left\|\varphi^{2}\left(J_{r-1, n} g\right)^{(3)}\right\|+\left\|\varphi^{4}\left(J_{r-1, n} g\right)^{(4)}\right\|\right) \tag{2.4}
\end{equation*}
$$

Further, we estimate the first term on the right above by means of [7, Corollary 4.7] with $p=\infty, r-1$ in place of $r, s=3$ and $w=\varphi^{2}$ (i.e. $\gamma_{0}=\gamma_{1}=1$). Thus we get

$$
\begin{equation*}
\left\|\varphi^{2}\left(J_{r-1, n} g\right)^{(3)}\right\| \leq \frac{c}{n^{r-1}}\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r} g^{(2 r+1)}\right\|\right) \tag{2.5}
\end{equation*}
$$

Similarly, again by [7, Corollary 4.7] with $p=\infty$ and $r-1$ in place of r, but $s=4$ and $w=\varphi^{4}$ (i.e. $\gamma_{0}=\gamma_{1}=2$) we have for the other term

$$
\begin{equation*}
\left\|\varphi^{4}\left(J_{r-1, n} g\right)^{(4)}\right\| \leq \frac{c}{n^{r-1}}\left(\left\|\varphi^{4} g^{(4)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.6}
\end{equation*}
$$

Next, by virtue of [7, Proposition 2.1] with $p=\infty, j=1, m=2 r-1, w_{1}=\varphi^{4}$ (i.e. $\gamma_{1,0}=\gamma_{1,1}=2$), $w_{2}=\varphi^{2 r+2}$ (i.e. $\gamma_{2,0}=\gamma_{2,1}=r+1$) and $g^{(3)}$ in place of g, we get

$$
\begin{equation*}
\left\|\varphi^{4} g^{(4)}\right\| \leq c\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.7}
\end{equation*}
$$

Likewise, by means of the same proposition with $p=\infty, m=2 r-1, w_{2}=\varphi^{2 r+2}$ and $g^{(3)}$ in place of g, but with $j=2 r-2$ and $w_{1}=\varphi^{2 r}$ (i.e. $\gamma_{1,0}=\gamma_{1,1}=r$), we get

$$
\begin{equation*}
\left\|\varphi^{2 r} g^{(2 r+1)}\right\| \leq c\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.8}
\end{equation*}
$$

Combining, (2.4)-(2.8), we get

$$
\begin{equation*}
\left\|V_{1, n} J_{r-1, n} g\right\| \leq \frac{c}{n^{r+1}}\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.9}
\end{equation*}
$$

It remains to estimate the second term on the right side of (2.3). To this end, we apply [7, Corollary 4.11] with $p=\infty, r-1$ in place of $r, s=2$, and $w=\varphi^{2}$ (i.e. $\gamma_{0}=\gamma_{1}=1$) and get

$$
\begin{equation*}
\left\|\varphi^{2}\left(V_{r-1, n} g\right)^{\prime \prime}\right\| \leq \frac{c}{n^{r}}\left(\left\|\varphi^{2} g^{(3)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right) \tag{2.10}
\end{equation*}
$$

Now, (2.3), (2.9) and (2.10) imply (2.1) for $r \geq 2$.
To prove the second assertion of the proposition, we observe that Proposition 2.1(a) with $r+1$ in place of r yields

$$
\begin{equation*}
\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\| \leq c\left\|D^{r+1} g\right\| \tag{2.11}
\end{equation*}
$$

Also, by virtue of [7, Proposition 2.1] with $p=\infty, j=1, m=2 r, w_{1}=\varphi^{2}$ (i.e. $\gamma_{1,0}=\gamma_{1,1}=1$), $w_{2}=\varphi^{2 r+2}$ (i.e. $\gamma_{2,0}=\gamma_{2,1}=r+1$) and $g^{(2)}$ in place of g, we get

$$
\left\|\varphi^{2} g^{(3)}\right\| \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+\left\|\varphi^{2 r+2} g^{(2 r+2)}\right\|\right)
$$

Taking into account (2.11) and Proposition 2.1(b) with $j=1$ and $r+1$ in place of r, we arrive at

$$
\begin{equation*}
\left\|\varphi^{2} g^{(3)}\right\| \leq c\left\|D^{r+1} g\right\| \tag{2.12}
\end{equation*}
$$

Now, (2.2) follows from (2.1), (2.11) and (2.12).
Next we shall establish several Bernstein-type inequalities.
Proposition 2.3. Let $r \in \mathbb{N}$. Then for all $f \in C[0,1]$ and $n \in \mathbb{N}$ there holds

$$
\left\|D^{r} \mathcal{B}_{r, n} f\right\| \leq c n^{r}\|f\|
$$

Proof. It is established by induction on r that (cf. [9, p. 24])

$$
D^{r} g=\varphi^{2} \sum_{i=2}^{r+1} q_{r, i-2} g^{(i)}+\sum_{i=2}^{r} \varphi^{2 i} \tilde{q}_{r, r-i} g^{(i+r)}
$$

where $q_{r, j}$ and $\tilde{q}_{r, j}$ are algebraic polynomials of degree at most j.
Therefore

$$
\begin{equation*}
\left\|D^{r} g\right\| \leq c\left(\sum_{i=2}^{r+1}\left\|\varphi^{2} g^{(i)}\right\|+\sum_{i=2}^{r}\left\|\varphi^{2 i} g^{(i+r)}\right\|\right) \tag{2.13}
\end{equation*}
$$

Let $r \geq 2$. We apply [7, Proposition 2.1] with $p=\infty, j=i-2$, where $i \in\{2, \ldots, r+1\}$, $m=2 r-2, w_{1}=\varphi^{2}$ (i.e. $\gamma_{1,0}=\gamma_{1,1}=1$), $w_{2}=\varphi^{2 r}$ (i.e. $\gamma_{2,0}=\gamma_{2,1}=r$) and $g^{(2)}$ in place of g to get

$$
\begin{equation*}
\left\|\varphi^{2} g^{(i)}\right\| \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+\left\|\varphi^{2 r} g^{(2 r)}\right\|\right), \quad i=2, \ldots, r+1 \tag{2.14}
\end{equation*}
$$

Also, this trivially holds for $r=1$.
Let $r \geq 3$. Similarly, [7, Proposition 2.1] with $p=\infty, j=i+r-2$, where $i \in\{2, \ldots, r-1\}, m=2 r-2, w_{1}=\varphi^{2 i}$ (i.e. $\gamma_{1,0}=\gamma_{1,1}=i$), where $i \in\{2, \ldots, r\}$, $w_{2}=\varphi^{2 r}$ (i.e. $\gamma_{2,0}=\gamma_{2,1}=r$) and $g^{(2)}$ in place of g to get

$$
\begin{equation*}
\left\|\varphi^{2 i} g^{(i+r)}\right\| \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+\left\|\varphi^{2 r} g^{(2 r)}\right\|\right), \quad i=2, \ldots, r-1 \tag{2.15}
\end{equation*}
$$

The above estimate trivially holds for $i=r, r \geq 2$, as well.

The inequalities (2.13)-(2.15) yield

$$
\begin{equation*}
\left\|D^{r} g\right\| \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+\left\|\varphi^{2 r} g^{(2 r)}\right\|\right), \quad r \in \mathbb{N} \tag{2.16}
\end{equation*}
$$

Setting $g=\mathcal{B}_{r, n} f$ we get

$$
\begin{equation*}
\left\|D^{r} \mathcal{B}_{r, n} f\right\| \leq c\left(\left\|\varphi^{2}\left(\mathcal{B}_{r, n} f\right)^{(2)}\right\|+\left\|\varphi^{2 r}\left(\mathcal{B}_{r, n} f\right)^{(2 r)}\right\|\right) . \tag{2.17}
\end{equation*}
$$

Then we take into account that the operator $\mathcal{B}_{r, n}$ is a linear combination of iterates of B_{n} and also that (see $[5,(9.3 .7)]$)

$$
\begin{equation*}
\left\|\varphi^{2 \ell}\left(B_{n} g\right)^{(2 \ell)}\right\| \leq c\left\|\varphi^{2 \ell} g^{(2 \ell)}\right\|, \quad g \in C^{2 \ell}[0,1] \tag{2.18}
\end{equation*}
$$

to derive from (2.17) the estimate

$$
\left\|D^{r} \mathcal{B}_{r, n} f\right\| \leq c\left(\left\|\varphi^{2}\left(B_{n} f\right)^{(2)}\right\|+\left\|\varphi^{2 r}\left(B_{n} f\right)^{(2 r)}\right\|\right)
$$

Now, the assertion of the proposition follows from

$$
\left\|\varphi^{2 \ell}\left(B_{n} f\right)^{(2 \ell)}\right\| \leq c n^{\ell}\|f\|, \quad \ell \in \mathbb{N}
$$

which was established in [5, Theorem 9.4.1].
Proposition 2.4. Let $r \in \mathbb{N}$. Then for all $g \in C^{2 r}[0,1]$ and $n \in \mathbb{N}$ there holds

$$
\left\|D^{r+1} \mathcal{B}_{r, n} g\right\| \leq c n\left\|D^{r} g\right\|
$$

Proof. We make use of (2.16) with $r+1$ in place of r and $\mathcal{B}_{r, n} g$ in place of g, then apply (2.18), [7, Proposition 4.13(a)] with $p=\infty, w=\varphi^{2 r}$ (i.e. $\left.\gamma_{0}=\gamma_{1}=r\right), \ell=1$, $s=2 r$, and, finally, Proposition 2.1 with $j=1$, to arrive at

$$
\begin{aligned}
\left\|D^{r+1} \mathcal{B}_{r, n} g\right\| & \leq c\left(\left\|\varphi^{2}\left(\mathcal{B}_{r, n} g\right)^{(2)}\right\|+\left\|\varphi^{2 r+2}\left(\mathcal{B}_{r, n} g\right)^{(2 r+2)}\right\|\right) \\
& \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+\left\|\varphi^{2 r+2}\left(B_{n} g\right)^{(2 r+2)}\right\|\right) \\
& \leq c\left(\left\|\varphi^{2} g^{(2)}\right\|+n\left\|\varphi^{2 r} g^{(2 r)}\right\|\right) \\
& \leq c n\left\|D^{r} g\right\| .
\end{aligned}
$$

Thus the proposition is verified.

3. A proof of the converse inequalities

Equipped with the estimates established in the previous section, we are now ready to verify Theorem 1.1.

Proof of Theorem 1.1. We apply [4, Theorem 3.2] with the operator $Q_{n}=\mathcal{B}_{r, n}$ and the spaces $X=C[0,1]$ (with the uniform norm on $[0,1]$), $Y=C^{2 r}[0,1]$ and $Z=C^{2 r+2}[0,1]$.
As is known,

$$
\left\|B_{n} f\right\| \leq\|f\| .
$$

Therefore, since $\mathcal{B}_{r, n}$ is linear combination of iterates of B_{n}, we have

$$
\left\|\mathcal{B}_{r, n} f\right\| \leq c\|f\|, \quad f \in C[0,1], n \in \mathbb{N} .
$$

Thus [4, (3.3)] is satisfied.
By virtue of the Voronovskaya-type inequality (2.2), we have [4, (3.4)] with $(-1)^{r-1} D^{r}$ in place of $D, \Phi(f)=\left\|D^{r+1} f\right\|, \lambda(n)=(2 n)^{-r}$ and $\lambda_{1}(\alpha)=c n^{-r-1}$, where the constant c is the one in (2.2).

Next, Proposition 2.4 with $g=\mathcal{B}_{r, n} f$ implies [4, (3.5)] with $\ell=1$ and $m=2$.
Finally, Proposition 2.3 yields [4, (3.6)].
Let us note that [4, Theorems 10.4 and 10.5] are not applicable because condition (c) there is not satisfied.

4. Relations between K-functionals

Proof of Theorem 1.2. In view of (1.6), it is sufficient to show that

$$
\begin{equation*}
K_{2 r, \varphi}(f, t)+t E_{1}(f) \sim K_{2 r, \varphi}(f, t)+K_{2, \varphi}(f, t), \quad 0<t \leq 1 \tag{4.1}
\end{equation*}
$$

Trivially, for any $g \in C[0,1]$ such that $g \in A C_{l o c}^{1}(0,1)$ and $\varphi^{2} g^{\prime \prime} \in L_{\infty}[0,1]$, and any $t \in(0,1]$ we have the estimates

$$
t E_{1}(f) \leq\|f-g\|+t\left\|g-B_{1} g\right\| \leq\|f-g\|+c t\left\|\varphi^{2} g^{\prime \prime}\right\|
$$

hence

$$
t E_{1}(f) \leq c K_{2, \varphi}(f, t), \quad 0<t \leq 1
$$

Above we used the inequality

$$
\left\|g-B_{1} g\right\| \leq\left\|\varphi^{2} g^{\prime \prime}\right\|
$$

which is directly established by Taylor's formula (see e.g. [4, p. 87]).
To complete the proof of (4.1), it remains to show that

$$
\begin{equation*}
K_{2, \varphi}(f, t) \leq c\left(K_{2 r, \varphi}(f, t)+t E_{1}(f)\right), \quad 0<t \leq 1 \tag{4.2}
\end{equation*}
$$

Let $g \in C[0,1]$ be such that $g \in A C_{l o c}^{2 r-1}(0,1)$ and $\varphi^{2 r} g^{(2 r)} \in L_{\infty}[0,1]$. Then, by e.g. [7, (2.9)] with $p=\infty, w=1, j=1$ and $m=r$, we deduce that $\varphi^{2} g^{(2)} \in L_{\infty}[0,1]$ too, as, moreover,

$$
\left\|\varphi^{2} g^{(2)}\right\| \leq c\left(\|g\|+\left\|\varphi^{2 r} g^{(2 r)}\right\|\right)
$$

Consequently, we have for $t \in(0,1]$

$$
\begin{aligned}
K_{2, \varphi}(f, t) & \leq\|f-g\|+t\left\|\varphi^{2} g^{(2)}\right\| \\
& \leq c\left(\|f-g\|+t\left\|\varphi^{2 r} g^{(2 r)}\right\|\right)+c t\|f\|
\end{aligned}
$$

Taking the infimum on g, we arrive at

$$
K_{2, \varphi}(f, t) \leq c\left(K_{2 r, \varphi}(f, t)+t\|f\|\right)
$$

Finally, we replace f with $f-p_{1}$, where p_{1} is the algebraic polynomial of degree 1 of best approximation in $C[0,1]$ to f, to get (4.2).

References

[1] Cheng, L., Zhou, X., Strong inequalities for the iterated Boolean sums of Bernstein operators, Stud. Univ. Babeş-Bolyai Math., 64(2019), no. 3, 299-304.
[2] DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
[3] Ding, C., Cao, F., K-functionals and multivariate Bernstein polynomials, J. Approx. Theory, 155(2008), 125-135.
[4] Ditzian, Z., Ivanov, K.G., Strong converse inequalities, J. Anal. Math., 61(1993), 61-111.
[5] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer-Verlag, New York, 1987.
[6] Draganov, B.R., On simultaneous approximation by iterated Boolean sums of Bernstein operators, Results Math., 66(2014), 21-41.
[7] Draganov, B.R., Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums, J. Approx. Theory, 200(2015), 92-135.
[8] Draganov, B.R., Gadjev, I., Direct and converse Voronovskaya estimates for the Bernstein operator, Results Math., 73:11(2018).
[9] Gonska, H., Zhou, X.-L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comput. Appl. Math., 53(1994), 21-31.
[10] Knoop, H.-B., Zhou, X.-L., The lower estimate for linear positive operators (II), Results Math., 25(1994), 315-330.
[11] Kopotun, K., Leviatan, D., Shevchuk, I.A., New moduli of smoothness: weighted DT moduli revisited and applied, Constr. Approx., 42(2015), 129-159.
[12] Totik, V., Approximation by Bernstein polynomials, Amer. J. Math., 116(1994), 995-1018.

Borislav R. Draganov
Sofia University "St. Kl. Ohridski",
Department of Mathematics and Informatics,
5 James Bourchier Blvd., 1164 Sofia, Bulgaria
and
Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, bl. 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mail: bdraganov@fmi.uni-sofia.bg

[^0]: This work was supported by grant DN 02/14 of the Fund for Scientific Research of the Bulgarian Ministry of Education and Science.
 Received 13 November 2019; Accepted 18 February 2020.

