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Existence of solutions for an impulsive
boundary value problem with nonlinear
derivative dependence on unbounded intervals
via variational methods
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Abstract. In this paper, we employ the critical point theory and iterative methods
to establish the existence of solutions for an impulsive boundary value problem
with nonlinear derivative dependence on the half-line.
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1. Introduction

In this paper, we consider the solvability of an impulsive boundary value problem
with nonlinear derivative dependence on the half-line. More precisely, we consider the
problem  −(p(t)u′(t))′ = f(t, u(t), u′(t)), a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,
4(p(tj)u

′(tj)) = g(tj)Ij(u(tj)), j ∈ {1, 2, . . .},
(1.1)

where f : [0,+∞)×R×R −→ R is measurable in t ∈ [0,+∞) for each (x, ξ) ∈ R×R,
and continuous in (x, ξ) ∈ R× R for a.e. t ∈ [0,+∞). We assume that the impulsive
functions Ij : R −→ R are continuous where t0 = 0 < t1 < t2 < . . . < tj < . . . <
tm → +∞, as m→∞, are the impulse points.
The coefficient p : [0,+∞) −→ (0,+∞) satisfies 1

p ∈ L
1(0,+∞), and

M =

∫ +∞

0

(∫ +∞

t

1

p(s)
ds

)
dt < +∞.
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We define the jump

4(p(tj)u
′(tj)) = p(t+j )u′(t+j )− p(t−j )u′(t−j ),

where u′(t+j ) = lim
t→t+j

u′(t) and u′(t−j ) = lim
t→t−j

u′(t) stand for the right and the left limits

of u′ at tj , respectively. Finally g : [0,+∞) −→ [0,+∞) is a continuous function that
satisfies

+∞∑
j=1

g(tj) < +∞.

Recently, in [2, 3], the authors obtained the existence of solutions for BVPs asso-
ciated to impulsive equations on unbounded domains by using variational methods. In
[4], de Figueiredo, Girardi and Matzeu proved the existence of solution for semilinear
elliptic equations with dependence on the gradient through an iterative technique.
However, there are few papers that have studied the existence of solutions for im-
pulsive boundary value problems similar to the problem (1.1) by using variational
methods coupled with the iterative methods.

In order to use variational methods, we consider a family of boundary value
problems with no dependence on the derivative. Namely, for each w ∈ H1

0,p(0,+∞),
we consider the problem −(p(t)u′(t))′ = f(t, u(t), w′(t)), a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,
4(p(tj)u

′(tj)) = g(tj)Ij(u(tj)), j ∈ {1, 2, . . .}.
(1.2)

The class of problems (1.2) is of variational type and we can resolve them by varia-
tional methods and the existence of a solution for the initial problem is obtained by
iterative methods.

Now we need to define the following Banach space and this before giving the
variational formulation of (1.2).

H1
0,p(0,+∞) = {u ∈ AC[0,+∞),R) | u(0) = u(+∞) = 0,

√
pu′ ∈ L2(0,+∞)},

equipped with the norm

‖u‖0,p =

√∫ +∞

0

p(t)u′2(t)dt+

∫ +∞

0

u2(t)dt,

or the equivalent norm
‖u‖p = ‖u‖L2 + ‖√pu′‖L2 .

Moreover the space H1
0,p(0,+∞) is reflexive (see [2]).

Lemma 1.1. On H1
0,p(0,+∞), the quantity ‖u‖ =

√∫ +∞
0

p(t)u′2(t)dt is a norm which

is equivalent to the H1
0,p(0,+∞)-norm.

Now let us recall the following essential embeddings (see [2]).

Lemma 1.2. (H1
0,p(0,+∞), ‖ · ‖) embeds in (C0[0,+∞), ‖u‖∞), where

C0[0,+∞) = {u ∈ C([0,+∞),R) | lim
t→+∞

u(t) = 0} and ‖u‖∞ = sup
t∈[0,+∞)

|u(t)|.
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Lemma 1.3. H1
0,p(0,+∞) embeds continuously in C0[0,+∞) and in L2(0,+∞).

Lemma 1.4. The embedding H1
0,p(0,+∞) ↪→ C0[0,+∞) is compact with

‖u‖∞ ≤M1‖u‖,

where

M1 =

√
‖1

p
‖L1 .

2. Preliminaries

First we recall some basic definitions and lemmas which are used in this paper.

Lemma 2.1. (Minimization Principle[1]) Let X be a reflexive Banach space and J a
functional defined on X such that

(1) lim
‖u‖→+∞

J(u) = +∞ (coercivity condition),

(2) J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u0.

Definition 2.2. Let X be a real Banach space, J ∈ C1(X,R). If any sequence (un) ⊂ X
for which (J(un)) is bounded in R and J ′(un) −→ 0 as n → +∞ in X ′ possesses a
convergent subsequence, then we say that J satisfies the Palais-Smale condition (PS
condition for brevity).

Lemma 2.3. ([5, Theorem 2.2], [6, Theorem 3.1]) [Mountain Pass Theorem] Let X be
a real Banach space and J ∈ C1(X,R) satisfying the (PS) condition. Suppose that
J(0) = 0 and

(1) there are constants ρ, α > 0 such that J(u) ≥ α for all u ∈ X with ‖u‖ = ρ,

(2) there exists u0 ∈ X such that ‖u0‖ > ρ and J(u0) < α.
Then J possesses a critical value such that c ≥ α. Moreover, c can be characterized
as

c = inf
γ∈Γ

max
u∈γ([0,1])

J(u),

where

Γ =
{
γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0

}
.

3. Variational setting

Take v ∈ H1
0,p(0,+∞), multiply the equation in problem (1.1) by v and integrate

over (0,+∞), we obtain

−
∫ +∞

0

(p(t)u′(t))′v(t)dt =

∫ +∞

0

f(t, u(t), u′(t))v(t)dt.
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The first term is

−
∫ +∞

0

(p(t)u′(t))′v(t)dt = −
+∞∑
j=0

∫ tj+1

tj

(p(t)u′(t))′v(t)dt

=

+∞∑
j=1

g(tj)Ij(u(tj))v(tj) +

∫ +∞

0

p(t)u′(t)v′(t)dt.

Hence∫ +∞

0

p(t)u′(t)v′(t)dt = −
+∞∑
j=1

g(tj)Ij(u(tj))v(tj) +

∫ +∞

0

f(t, u(t), u′(t))v(t)dt.

Definition 3.1. We say that a function u ∈ H1
0,p(0,+∞) is a weak solution of Problem

(1.1) if∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)−
∫ +∞

0

f(t, u(t), u′(t))v(t)dt = 0,

for every v ∈ H1
0,p(0,+∞).̧

Proposition 3.2. Suppose that the following conditions hold:
(H1) There exists constant σ > 2 and two positive functions ϕ,ψ such that
ϕ ∈ L1(0,+∞), ψ ∈ L∞(0,+∞) with

|f(t, x, ξ)| ≤ ϕ(t)|x|σψ(ξ), for a.e. t ∈ [0,+∞), x ∈ R, ξ ∈ R.

(I0) There exist positive constants c0 and ν such that

|Ij(x)| ≤ c0|x|ν , ∀x ∈ R, j ∈ {1, 2, . . .} .

Then, for each w ∈ H1
0,p(0,+∞) fixed, the functional Jw : H1

0,p(0,+∞) −→ R defined
by

Jw(u) =
1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt,

where F (t, u, ξ) =
∫ u

0
f(t, s, ξ)ds, is continuous, differentiable and

(J ′w(u), v) =

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

(3.1)

for all v ∈ H1
0,p(0,+∞).
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Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Then Jw is Gâteaux-differentiable.

Indeed, for all v ∈ H1
0,p(0,+∞), we have

Jw(u+ hv)− Jw(u) =
1

2

∫ +∞

0

p(t)(u′(t) + hv′(t))2dt

+
+∞∑
j=1

g(tj)

∫ u(tj)+hv(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, u(t) + hv(t), w′(t))dt

− 1

2

∫ +∞

0

p(t)u′ 2(t)dt−
+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ

+

∫ +∞

0

F (t, u(t), w′(t))dt

= h

∫ +∞

0

p(t)u′(t)v′(t)dt+
h2

2

∫ +∞

0

p(t)v′ 2(t)dt

+

+∞∑
j=1

g(tj)

[∫ u(tj)+hv(tj)

0

Ij(τ)dτ −
∫ u(tj)

0

Ij(τ)dτ

]

−
∫ +∞

0

[
F (t, u(t) + hv(t), w′(t))− F (t, u(t), w′(t))

]
dt

Jw(u+ hv)− Jw(u) = h

∫ +∞

0

p(t)u′(t)v′(t)dt+
h2

2

∫ +∞

0

p(t)v′ 2(t)dt

+ h

+∞∑
j=1

g(tj)Ij(u(tj) + chv(tj))v(tj)

− h

∫ +∞

0

f(t, u(t) + θhv(t), w′(t))v(t)dt,

where 0 < θh < 1 and 0 < ch < 1 from the Mean Value Theorem. Thus

Jw(u+ hv)− Jw(u)

h
=

∫ +∞

0

p(t)u′(t)v′(t)dt+
h

2

∫ +∞

0

p(t)v′ 2(t)dt

+

+∞∑
j=1

g(tj)Ij(u(tj) + chv(tj))v(tj)

−
∫ +∞

0

f(t, u(t) + θhv(t), w′(t))v(t)dt.
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By (H1), (I0) and the Lebesgue Dominated Convergence Theorem, we obtain

lim
h→0

Jw(u+ hv)− Jw(u)

h
=

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

so that, Jw is Gâteaux-differentiable and

(J ′w(u), v) =

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

for all v ∈ H1
0,p(0,+∞). Therefore a critical point of Jw is a weak solution of Problem

(1.2).

Claim 2. J ′w is continuous.
Indeed, let (un) be a sequence in H1

0,p(0,+∞) such that un −→ u as n −→ +∞. From
Lemma 1.4, we have (un) converges uniformly to u on [0,+∞) as n −→ +∞. Since f
and Ij are continuous, then

f(t, un(t), w′(t)) −→ f(t, u(t), w′(t)), Ij(un(tj)) −→ Ij(u(tj))

as n −→ +∞ and it follows from (H1) that

|f(t, un(t), w′(t))| ≤ ϕ(t)|un(t)|σ|ψ(w′(t))|
≤ ϕ(t)‖un‖σ∞|ψ(w′(t))|
≤ Mσ

1 ϕ(t)‖un‖σ|ψ(w′(t))|.

And by (I0), we have

|Ij(un(tj))| ≤ c0|un(tj)|ν

≤ c0‖un‖ν∞
≤ Mν

1 c0‖un‖ν .

Then from the Lebesgue Dominated Convergence Theorem, we obtain

lim
n→+∞

∫ +∞

0

f(t, un(t), w′(t))dt =

∫ +∞

0

f(t, u(t), w′(t))dt,

and

lim
n→+∞

+∞∑
j=1

g(tj)Ij(un(tj)) =

+∞∑
j=1

g(tj)Ij(u(tj)).
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So

(J ′w(un)− J ′w(u), v) =

∫ +∞

0

p(t)(u′n(t)− u′(t))v′(t)dt

+

+∞∑
j=1

g(tj)
[
Ij(un(tj))− Ij(u(tj))

]
v(tj)

−
∫ +∞

0

[
f(t, un(t), w′(t))− f(t, u(t), w′(t))

]
v(t)dt.

Passing to the limit in (J ′w(un) − J ′w(u), v) when n −→ +∞, using assumptions
(H1), (I0) and the Lebesgue Dominated Convergence Theorem, we obtain that
J ′w(un) −→ J ′w(u), as n −→ +∞.
Consequently, Jw ∈ C1(H1

0,p(0,+∞),R). �

4. Main results

4.1. Nontrivial weak solution

Theorem 4.1. Assume that f satisfies (H1), Ij satisfies (I0) and the following hy-
potheses:

(H2) lim
x→0

f(t,x,ξ)
x = 0, uniformly in t ∈ [0,+∞) and ξ ∈ R.

(H3) There exist positive functions c1, c2 ∈ L1(0,+∞), and µ > 2 such that
(a) F (t, x, ξ) ≥ c1(t)|x|µ − c2(t), for a.e. t ≥ 0, and all x ∈ R, ξ ∈ R,
(b) µF (t, x, ξ) ≤ xf(t, x, ξ), for a.e. t ≥ 0, and all x ∈ R, ξ ∈ R.

(I1) There exists 0 < γ ≤ 2 such that

γ

∫ x

0

Ij(s)ds ≥ xIj(x) > 0, ∀x ∈ R \ {0}, ∀ j ∈ {1, 2, . . .}.

Then there exist positive constants d1, d2 such that, for each w ∈ H1
0,p(0,+∞),

Problem (1.2) has at least one nontrivial weak solution uw satisfying

d1 ≤ ‖uw‖ ≤ d2.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Then Jw satisfies the (PS) condition.

Indeed, let (un) ⊂ H1
0,p(0,+∞) such that (Jw(un)) is bounded and J ′w(un) −→ 0 as

n −→ +∞. Using (H3)(b) and (I1), there exists some d > 0 such that

d ≥ µJw(un)− (J ′w(un), un)

≥
(µ

2
− 1
)
‖un‖2

−
∫ +∞

0

(
µF (t, un(t), w′(t))− f(t, un(t), w′(t))un(t)

)
dt

+

+∞∑
j=1

g(tj)

(
µ

∫ un(tj)

0

Ij(τ)dτ − Ij(un(tj))un(tj)

)

≥
(µ

2
− 1
)
‖un‖2.
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Since µ > 2, it follows that (un) is bounded in H1
0,p(0,+∞).

Then there exists a subsequence of (un) still denoted (un) such that (un) converges
weakly to some u in H1

0,p(0,+∞) because (un) is bounded in the reflexive Banach

space H1
0,p(0,+∞). Lemma 1.4 implies that (un) converges uniformly to u on [0,+∞).

Thus

lim
n→+∞

+∞∑
j=1

g(tj)
(
Ij(un(tj))− Ij(u(tj))

)
(un(tj)− u(tj)) = 0

and

lim
n→+∞

∫ +∞

0

(
f(t, un(t), w′(t))− f(t, u(t), w′(t))

)
(un(t)− u(t)) dt = 0.

Since limn→+∞ J ′(un) = 0 and (un) converges weakly to some u, we get

lim
n→+∞

(J ′w(un)− J ′w(u), un − u) = 0.

From (3.1), we have

(J ′w(un)− J ′w(u), un − u) = ‖un − u‖2

+

+∞∑
j=1

g(tj)
(
Ij(un(tj))− Ij(u(tj))

)
(un(tj)− u(tj))

−
∫ +∞

0

(
f(t, un(t), w′(t))− f(t, u(t), w′(t))

)
(un(t)− u(t)) dt.

Hence lim
n→+∞

‖un − u‖ = 0. Thus (un) converges strongly to u in H1
0,p(0,+∞).

Consequently Jw satisfies the (PS) condition.
Claim 2. Let w ∈ H1

0,p(0,+∞) fixed. Then there exist ρ > 0 and α > 0, independent

of w, such that Jw(u) ≥ α, ∀u ∈ H1
0,p(0,+∞), ‖u‖ = ρ.

Indeed, let 0 < ε < 1
M . By (H2), there exists δ > 0 such that

|x| ≤ δ =⇒ |f(t, x, ξ)| ≤ ε|x|, ∀t ∈ [0,+∞), ξ ∈ R.

We have ‖u‖2L2 ≤M‖u‖2 (see [2]) , so we deduce that∫ +∞

0

|F (t, u(t), w′(t))dt| ≤ ε

2
‖u‖2L2 ≤

ε

2
M‖u‖2, for a.e. t ≥ 0,

whenever ‖u‖∞ ≤ δ.
By choosing 0 < ρ ≤ δ

M1
and α = 1

2 (1− εM)ρ2, hence for ‖u‖ = ρ (note ‖u‖∞ ≤ δ ),
we get

Jw(u) =
1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt

≥ 1

2
‖u‖2 −

∫ +∞

0

F (t, u(t), w′(t))dt

≥ 1

2
(1− εM)‖u‖2 = α.
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So there are ρ > 0 and α > 0 such that Jw(u) ≥ α, ∀u ∈ H1
0,p(0,+∞) with ‖u‖ = ρ.

Claim 3. Let w ∈ H1
0,p(0,+∞) fixed. Then there exists T0 > 0, independent of w, such

that

Jw(ϑu∗) ≤ 0, ∀ϑ ≥ T0,

where u∗ ∈ H1
0,p(0,+∞) with ‖u∗‖ = 1.

Indeed, from (I1), there exists c3 > 0 such that∫ x

0

Ij(s)ds ≤ c3|x|γ , for every x ∈ R.

Take an arbitrary u∗ ∈ H1
0,p(0,+∞) with ‖u∗‖ = 1 and using Lemma 1.4, (H3)(a),

we obtain

Jw(ϑu∗) =
1

2
ϑ2‖u∗‖2 +

+∞∑
j=1

g(tj)

∫ ϑu∗(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, ϑu∗(t), w′(t))dt

≤ 1

2
ϑ2 + c3|ϑ| γ‖u∗‖ϑ∞

+∞∑
j=1

g(tj)

− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt

≤ 1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)

− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt ≤ 0,

when ϑ ≥ T0 for some T0 large, since µ > 2 ≥ γ.
By Proposition 3.2, the functional jw is in C1(H1

0,p(0,+∞),R). Lemma 2.3 guarantees
that Jw possesses a critical point which is a weak solution of Problem (1.2).

Claim 4. Let w ∈ H1
0,p(0,+∞) fixed. Then there is a constant d1 > 0, independent of

w, such that ‖uw‖ ≥ d1, for all solution uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 +

+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj) =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt.

It follows from (H1) and (H2) that,

|f(t, x, ξ)| ≤ ε|x|+ ϕ(t)|x|σψ(ξ), for t ∈ [0,+∞), x ∈ R, ξ ∈ R.
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Then

‖uw‖2 ≤ ‖uw‖2 +

+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj)

=

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt

≤ ε

∫ +∞

0

|uw(t)|2dt+

∫ +∞

0

ϕ(t)|uw(t)|σ+1ψ(w′(t))dt

≤ εM‖uw‖2 + ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1
∞

≤ εM‖uw‖2 +Mσ+1
1 ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1,

which implies that

(1− εM)‖uw‖2 ≤Mσ+1
1 ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1.

Hence

‖uw‖ ≥ d1, for some d1 > 0.

Claim 5. Let w ∈ H1
0,p(0,+∞) fixed. Then there is a constant d2 > 0, independent of

w, such that ‖uw‖ ≤ d2, for all solution uw obtained above.
Indeed, by the characterization of the critical point and (H3), it follows that

|Jw(uw)| ≤ max
ϑ∈[0,+∞)

Jw(ϑu∗),

where u∗ is given in Claim 3.
From (H3)(a), we get

|Jw(uw)| ≤ max
ϑ∈[0,+∞)

1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt

+

∫ +∞

0

c2(t)dt

}
.

We define K on [0,+∞) such that

K(ϑ) =
1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt,

and since µ > 2, K(ϑ) can achieve its maximum at some ϑ0.
Hence

|Jw(uw)| ≤ K(ϑ0).
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On the other hand, we have(
1− 2

µ

)
‖uw‖2 = 2Jw(uw)− 2

µ
(J ′w(uw), uw)

+ 2

∫ +∞

0

[
F (t, uw(t), w′(t))− uw(t)

µ
f(t, uw(t), w′(t))

]
dt

+ 2
+∞∑
j=1

g(tj)
[uw(tj)

µ
Ij(uw(tj))−

∫ uw(tj)

0

Ij(τ)dτ
]
.

Using (H3)(b), (I1) and (J ′w(uw), uw) = 0, we obtain(
1− 2

µ

)
‖uw‖2 ≤ K(ϑ0).

Hence

‖uw‖ ≤

(
K(ϑ0)

1− 2
µ

) 1
2

≤ d2, (4.1)

we can choose d2 =

(
K(ϑ0)

1− 2
µ

) 1
2

, which is independent of w. �

Theorem 4.2. Assume hypotheses (H1)− (H3), (I0), (I1) hold and
(H4) there exist positive constants L1 and L2 such that

|f(t, x, ξ)− f(t, y, ξ)| ≤ L1|x− y|, ∀t ∈ [0,+∞), x, y ∈ [0;M1d2], ξ ∈ R,
|f(t, x, ξ)− f(t, x, ξ′)| ≤ L2|ξ − ξ′|, ∀t ∈ [0,+∞), x ∈ [0;M1d2], ξ, ξ′ ∈ R,

(I2) there exist positive constants αj such that

|Ij(x)− Ij(y)| ≤ αj |x− y|, ∀x, y ∈ [0;M1d2], j ∈ {1, 2, . . .}.

Then Problem (1.1) has at least one nontrivial weak solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.

Proof. We construct a sequence (un) ⊂ H1
0,p(0,+∞) as solutions of the problem

(Pn)

 −(p(t)u′n(t))′ = f(t, un(t), u′n−1(t)), a.e. t ≥ 0, t 6= tj ,
un(0) = un(+∞) = 0,
4(p(tj)u

′
n(tj)) = g(tj)Ij(un(tj)), j ∈ {1, 2, . . .},

given in Theorem 4.1, starting with an arbitrary u0 ∈ H1
0,p(0,+∞).

It follows from (4.1) and Lemma 1.4 that

‖un‖∞ ≤M1d2.
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Using (Pn+1) and (Pn), we obtain

∫ +∞

0

p(t)u′n+1(t)(u′n+1(t)− u′n(t))dt = −
+∞∑
j=1

g(tj)Ij(un+1(tj))(un+1(tj)− un(tj))

+

∫ +∞

0

f(t, un+1(t), u′n(t))(un+1(t)− un(t))dt,

and

∫ +∞

0

p(t)u′n(t)(u′n+1(t)− u′n(t))dt = −
+∞∑
j=1

g(tj)Ij(un(tj))(un+1(tj)− un(tj))

+

∫ +∞

0

f(t, un(t), u′n−1(t))(un+1(t)− un(t))dt.

By subtracting, we obtain

‖un+1 − un‖2 = −
+∞∑
j=1

g(tj)
[
Ij(un+1(tj))− Ij(un(tj))

]
(un+1(tj)− un(tj))

+

∫ +∞

0

[
f(t, un+1(t), u′n(t))− f(t, un(t), u′n−1(t))

]
(un+1(t)− un(t))dt,

then

‖un+1 − un‖2 = −
+∞∑
j=1

g(tj)
[
Ij(un+1(tj))− Ij(un(tj))

]
(un+1(tj)− un(tj))

+

∫ +∞

0

[
f(t, un+1(t), u′n(t))− f(t, un(t), u′n(t))

]
(un+1(t)− un(t))dt

+

∫ +∞

0

[
f(t, un(t), u′n(t))− f(t, un(t), u′n−1(t))

]
(un+1(t)− un(t))dt.

By (H4) and (I2), we get

‖un+1 − un‖2 ≤
+∞∑
j=1

g(tj)αj |un+1(tj)− un(tj)|2

+ L1

∫ +∞

0

|un+1(t)− un(t)|2dt

+ L2

∫ +∞

0

|u′n(t)− u′n−1(t)| |un+1(t)− un(t)|dt.
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Using the Cauchy-Schwarz inequality, we have

‖un+1 − un‖2 ≤ ‖un+1 − un‖2∞
+∞∑
j=1

g(tj)αj + L1‖un+1 − un‖2L2

+L2‖u′n − u′n−1‖L2 ‖un+1 − un‖L2

≤ M2
1 ‖un+1 − un‖2

+∞∑
j=1

g(tj)αj + L1M‖un+1 − un‖2

+L2M‖un − un−1‖ ‖un+1 − un‖,

which implies that

‖un+1 − un‖ ≤
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

‖un − un−1‖.

Since

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1,

it follows that (un) is a Cauchy sequence in the reflexive Banach space H1
0,p(0,+∞).

Then the sequence (un) strongly converges in H1
0,p(0,+∞) to some u ∈ H1

0,p(0,+∞).
Since ‖un‖ ≥ d1, ∀n ∈ N, it follows that u 6= 0.
Consequently, we obtain a nontrivial solution for Problem (1.1). �

Now we prove the existence of a solution for the problem (1.1) by using the Mini-
mization principle.

4.2. The sublinear case

Theorem 4.3. Suppose that the following conditions hold:
(H5) There exist a constant α ∈ [0, 1) and positive functions a1, b1 ∈ L1(0,+∞) such
that

|f(t, x, ξ)| ≤ a1(t)|x|α + b1(t), for a.e. t ∈ [0,+∞) and all x ∈ R, ξ ∈ R.

(I3) There exist constants c4 > 0 and β ∈ [0, 1) such that

|Ij(s)| ≤ c4|s|β , ∀ s ∈ R, j ∈ {1, 2, . . .}.

Then there exists positive constant d3 such that, for each w ∈ H1
0,p(0,+∞), Problem

(1.2) has at least one weak solution uw satisfying

‖uw‖ ≤ d3.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. The functional Jw is well defined.

Indeed, take u in H1
0,p(0,+∞). From (H5), we deduce that

|F (t, u(t), w′(t))| ≤ a1(t)

α+ 1
|u(t)|α+1 + b1(t)|u(t)|.
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Thus, by using Lemma 1.4∣∣∣∣∫ +∞

0

F (t, u(t), w′(t))dt

∣∣∣∣ ≤ ‖u‖α+1
∞

∫ +∞

0

a1(t)dt+ ‖u‖∞
∫ +∞

0

b1(t)dt

≤ Mα+1
1

α+ 1
‖u‖α+1

∫ +∞

0

a1(t)dt+M1‖u‖
∫ +∞

0

b1(t)dt

≤ Mα+1
1

α+ 1
‖u‖α+1‖a1‖L1 +M1‖u‖‖b1‖L1 .

It follows from (I3) that∣∣∣∣∣∣
+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ

∣∣∣∣∣∣ ≤ c4
β + 1

‖u‖ β+1
∞

+∞∑
j=1

g(tj)

≤ c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj).

Hence

|Jw(u)| ≤ 1

2
‖u‖2 +

c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj)

+
M α+1

1

α+ 1
‖u‖α+1‖a1‖L1 + M1‖u‖‖b1‖L1

<∞.

Claim 2. Let w ∈ H1
0,p(0,+∞) fixed. Jw is sequentially weakly lower semicontinuous.

Indeed, let (un) be a sequence in H1
0,p(0,+∞) such that un ⇀ u in H1

0,p(0,+∞), as
n → ∞. Lemma 1.4 implies that (un) converges uniformly to u on [0,+∞) and by
the fact that the norm is weakly lower semicontinuous, we have

lim inf
n→+∞

‖un‖ ≥ ‖u‖.

Using the Lebesgue Dominated Convergence Theorem and the continuity of the func-
tions f and Ij , j ∈ {1, 2, . . .}, we obtain

lim inf
n→+∞

Jw(un) = lim inf
n→+∞

1

2
‖un‖2 +

+∞∑
j=1

g(tj)

∫ un(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, un(t), w′(t))dt

)
≥ 1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt

= J(u).

Consequently, Jw is sequentially weakly lower semicontinuous.
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Claim 3. Let w ∈ H1
0,p(0,+∞) fixed. Jw is coercive.

Indeed, From (H5), (I3) and Lemma 1.4, we have

Jw(u) ≥ 1

2
‖u‖2 − c4M

β+1
1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj)

− Mα+1
1

α+ 1
‖u‖α+1‖a1‖L1 − M1‖u‖‖b1‖L1 . (4.2)

Since α < 1 and β < 1, then (4.2) implies that

lim
‖u‖−→+∞

Jw(u) = +∞.

So, by Lemma 2.1, Jw has a minimum point uw. Under hypothesis (H5) and using
the same ideas as in Proposition 3.2, we get, Jw is Gâteaux differentiable. Thus uw
is a critical point of Jw.
Claim 4. Let w ∈ H1

0,p(0,+∞) fixed. Then ‖uw‖ ≤ d3, for some d3 > 0, for all
solutions uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt−
+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj).

By (H5) and (I3), we get

‖uw‖2 ≤
∫ +∞

0

a1(t)|uw(t)|α+1dt+

∫ +∞

0

b1(t)|uw(t)|dt

+c4

+∞∑
j=1

g(tj)|uw(tj)|β+1

≤ ‖uw‖α+1
∞

∫ +∞

0

a1(t)dt+ ‖uw‖∞
∫ +∞

0

b1(t)dt+ c4‖uw‖β+1
∞

+∞∑
j=1

g(tj)

≤ Mα+1
1 ‖uw‖α+1‖a1‖L1 +M1‖uw‖‖b1‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Hence

‖uw‖ ≤ d3, for some d3 > 0.

Therefor uw is a weak solution of Problem (1.2). �

Remark 4.4. In addition, if uw ∈ H2
p (tj , tj+1), for all j ∈ {1, 2, . . .}, where

H2
p (tj , tj+1) = {u ∈ AC[0,+∞),R) :

√
pu′ ∈ L2(tj , tj+1), (pu′)′ ∈ L2(tj , tj+1)},

then uw will be called a strong solution of Problem (1.2).

Proposition 4.5. In (H5), assume that a1, b1 ∈ L2(0,+∞). Then every weak solution
is a strong solution of Problem (1.2).



528 Sihem Boumaraf and Toufik Moussaoui

Proof. We know that uw ∈ H1
0,p(0,+∞) is a critical point of Jw. Then, for any

v ∈ H1
0,p(0,+∞), we have∫ +∞

0

p(t)u′w(t)v′(t)dt +

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj)

−
∫ +∞

0

f(t, uw(t), w′(t))v(t)dt = 0. (4.3)

For j ∈ {1, 2, . . .}, if v ∈ H1
0,p(tj , tj+1) (v = vj), then∫ tj+1

tj

p(t)u′w(t)v′(t)dt =

∫ tj+1

tj

f(t, uw(t), w′(t))v(t)dt.

So uw,j ∈ H1
0,p(tj , tj+1) is a solution of the equation:

−(p(t)u′w)′ = f(t, uw(t), w′(t)), t ∈ (tj , tj+1), (4.4)

Since, uw ∈ C0[0,+∞), and by (H5), we get

|f(t, uw(t), w′(t))|2 ≤ 2
(
a1(t)2‖uw‖2α∞ + b1(t)2

)
,

thus uw,j ∈ H2
p (tj , tj+1). Then (4.4), implies that the limits

u′(t+j ), u′(t−j ), j ∈ {1, 2, . . .} exist.

Using the integration by parts in (4.3), we obtain

0 = −
j=+∞∑
j=0

∫ tj+1

tj

(p(t)u′w(t))′v(t)dt−
+∞∑
j=1

4(p(tj)u
′
w(tj))v(tj)

+

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj)−
∫ +∞

0

f(t, uw(t), w′(t))v(t)dt.

Since uw satisfies the equation in problem (1.2) a.e. on [0,+∞), we deduce that

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj) =

+∞∑
j=1

4(p(tj)u
′
w(tj))v(tj), for all v ∈ H1

0,p(0,+∞).

Thus

4(p(tj)u
′
w(tj)) = g(tj)Ij(uw(tj)), for every j ∈ {1, 2, . . .}.

Actually, uw is even a classical solution, i.e., u ∈ C2(tj , tj+1), for all
j ∈ {1, 2, . . .}, when f : [0,+∞)× R× R −→ R is continuous. �

Theorem 4.6. Assume that (H4), (H5), (I2) and (I3) hold.
Then Problem (1.1) has at least one classical solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.

Proof. The proof is similar to the proof of Theorem 4.2. �



Existence of solutions for an impulsive boundary value problem 529

Example 4.7. Consider the impulsive boundary value problem
−(etu′(t))′ =

√
|u|

(1+t)2 cosu′ + 1
(1+t)3 , a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,

4(eju′(j)) =
3
√
u(j)

1+j2 , j ∈ {1, 2, . . .}.

(4.5)

We know that all hypotheses of Theorem 4.3 are satisfied with

f(t, x, ξ) =

√
|x|

(1 + t)2
cos ξ +

1

(1 + t)3
,

α = 1/2, a1(t) =
1

(1 + t)2
, b1(t) =

1

(1 + t)3
,

Ij(s) = s1/3, β =
1

3
, c4 = 1,

g(t) =
1

1 + t2
and

∞∑
j=1

g(j) =
π

4
.

Consequently, problem (4.5) has at least one solution.

4.3. The limit case α = 1

Theorem 4.8. Suppose that (I3) holds and
(H6) there exist positive functions a2, b2 ∈ L1(0,+∞) with ||a2||L1 < 1

M 2
1

and

|f(t, x, ξ)| ≤ a2(t)|x|+ b2(t), for a.e. t ∈ [0,+∞) and ∀x ∈ R, ξ ∈ R.

Then there exists positive constant d4 such that, for each w ∈ H1
0,p(0,+∞), Problem

(1.2) has at least one weak solution uw satisfying

‖uw‖ ≤ d4.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Jw is sequentially weakly lower semicon-

tinuous.
Indeed, we use the same technique as in the proof of Theorem 4.3.

Claim 2. Let w ∈ H1
0,p(0,+∞) fixed. Jw is coercive.

Indeed, by (H6), we obtain

|F (t, u(t), w′(t))| ≤ a2(t)

2
|u(t)|2 + b2(t)|u(t)|,

hence ∣∣∣∣∫ +∞

0

F (t, u(t), w′(t))dt

∣∣∣∣ ≤ ∫ +∞

0

(
a2(t)

2
|u(t)|2 + b 2(t)|u(t)|

)
dt

≤ M 2
1

2
‖u‖ 2‖a 2‖L1 +M1‖u‖‖b 2‖L1 .
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Thus

Jw(u) ≥ 1

2

(
1−M 2

1 ‖a 2‖L1

)
‖u‖2 −M1‖u‖‖b2‖L1

−c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj). (4.6)

Since ‖a2‖L1 < 1
M2

1
and β < 1, we pass to the limit in (4.6) when n→ +∞, we get

lim
‖u‖−→+∞

Jw(u) = +∞.

Therefore, Jw is coercive.
By applying Lemma 2.1, we find that Jw has a minimum point uw. Under hypothesis
(H6) and using the same ideas as in Proposition 3.2, we get, Jw is Gâteaux differen-
tiable. Then uw is a critical point of Jw which is a weak solution of Problem (1.2).
Claim 3. Let w ∈ H1

0,p(0,+∞) fixed. Then ‖uw‖ ≤ d4, for some d4 > 0, for all
solutions uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt−
+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj).

It follows from (H6) and (I3) that

‖uw‖2 ≤
∫ +∞

0

a2(t)|uw(t)|2dt+

∫ +∞

0

b2(t)|uw(t)|dt

+c4

+∞∑
j=1

g(tj)|uw(tj)|β+1

≤ ‖uw‖2∞
∫ +∞

0

a2(t)dt+ ‖uw‖∞
∫ +∞

0

b2(t)dt+ c4‖uw‖β+1
∞

+∞∑
j=1

g(tj)

≤ M2
1 ‖a2‖L1‖uw‖2 +M1‖uw‖‖b2‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Thus

(1−M2
1 ‖a2‖L1)‖uw‖2 ≤ M1‖uw‖‖b2‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Hence

‖uw‖ ≤ d4, for some d4 > 0. �

Theorem 4.9. Assume that (H4), (H6), (I2) and (I3) hold.
Then Problem (1.1) has at least one weak solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.
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Proof. Reasoning like in the proof of Theorem 4.2, we can prove that Problem (1.1)
has at least one weak solution. �
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