Fekete-Szegö inequality of bi-starlike and bi-convex functions of order b associated with symmetric q-derivative in conic domains

Bharavi Sharma Rayaprolu, Rajya Laxmi Kalikota and Nanjundan Magesh

Abstract

In this paper, two new subclasses of bi-univalent functions related to conic domains are defined by making use of symmetric q-differential operator. The initial bounds for Fekete-Szegö inequality for the functions f in these classes are estimated.

Mathematics Subject Classification (2010): 30C45, 30C50.
Keywords: Analytic functions, bi-univalent functions, bi-starlike functions, biconvex functions, conic domain, Fekete-Szegö inequality, q-differential operator, univalent functions.

1. Introduction

Let \mathscr{A} denotes the set of all functions which are analytic in the unit disc

$$
\Delta=\{z \in \mathbb{C}:|z|<1\}
$$

with Taylor's series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are normalized by $f(0)=0, f^{\prime}(0)=1$. The subclass of \mathscr{A} consisting of all univalent functions is denoted by \mathscr{S}. A function $f \in \mathscr{A}$ is said to be a starlike function if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \Delta)
$$

A function $f \in \mathscr{A}$ is said to be a convex function if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \Delta)
$$

Goodman [10, 11, 12] introduced the classes uniformly starlike and uniformly convex functions as subclasses of starlike and convex functions. A starlike function (or convex function) is said to be uniformly starlike (or uniformly convex) if the image of every circular arc ζ contained in Δ, with center at ξ also in Δ is starlike (or convex) with respect to $f(\xi)$. The class of uniformly starlike functions is represented by $\mathscr{U} \mathscr{S} \mathscr{T}$ and the class of uniformly convex functions is represented by $\mathscr{U} \mathscr{C} \mathscr{V}$. The class of parabolic starlike functions is represented by \mathscr{S}_{p}. Rønning [24] and Ma-Minda [18, 19] independently gave the characterization for the classes \mathscr{S}_{p} and $\mathscr{U} \mathscr{C} \mathscr{V}$ as follows. A function $f \in \mathscr{A}$ is said to be in the class \mathscr{S}_{p} if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \Delta)
$$

A function $f \in \mathscr{A}$ is said to be in the class $\mathscr{U} \mathscr{C} \mathscr{V}$ if and only if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \Delta)
$$

Also, it is clear that

$$
f \in \mathscr{U} \mathscr{C} \mathscr{V} \Leftrightarrow z f^{\prime}(z) \in \mathscr{S}_{p}
$$

Kanas and Wisniowska [16, 15], introduced k-uniformly starlike functions and k uniformly convex functions as follows.

$$
\begin{aligned}
k-\mathscr{S} \mathscr{T} & =\left\{f: f \in \mathscr{S} \text { and } \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, z \in \Delta, k \geq 0\right\} \\
k-\mathscr{U} \mathscr{C} \mathscr{V} & =\left\{f: f \in \mathscr{S} \text { and } \Re\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, z \in \Delta, k \geq 0\right\} .
\end{aligned}
$$

Bharati, et al. [8], defined $k-\mathscr{S} \mathscr{T}(\beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}(\beta)$ as follows. A function $f \in \mathscr{A}$ is said to be in the class $k-\mathscr{S} \mathscr{T}(\beta)$ if and only if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)-\beta>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \Delta) \tag{1.2}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be in the class $k-\mathscr{U} \mathscr{C} \mathscr{V}(\beta)$ if and only if

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\beta>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \Delta) \tag{1.3}
\end{equation*}
$$

Sim et al.[26], generalized above classes and introduced $k-\mathscr{S} \mathscr{T}(\alpha, \beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}(\alpha, \beta)$ as below:
A function $f \in \mathscr{A}$ is said to be in the class $k-\mathscr{S} \mathscr{T}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)-\beta>k\left|\frac{z f^{\prime}(z)}{f(z)}-\alpha\right| \quad(z \in \Delta) \tag{1.4}
\end{equation*}
$$

where $0 \leq \beta<\alpha \leq 1$ and $k(1-\alpha)<1-\beta$.

A function $f \in \mathscr{A}$ is said to be in the class $k-\mathscr{U} \mathscr{C} \mathscr{V}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\beta>k\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right| \quad(z \in \Delta) \tag{1.5}
\end{equation*}
$$

where $0 \leq \beta<\alpha \leq 1$ and $k(1-\alpha)<1-\beta$.
In particular, for $\alpha=1, \beta=0$ the classes $k-\mathscr{S} \mathscr{T}(\alpha, \beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}(\alpha, \beta)$ reduces to $k-\mathscr{S} \mathscr{T}$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}$ respectively. Further, for $\alpha=1$ these classes coincides with the classes studied by Nishiwaki and Owa [20] and Shams et al. [25]. In 2017, Annamalai et al. [7], obtained second Hankel determinant of analytic functions involving conic domains.

Now we give the geometric interpretations of the classes $f \in k-\mathscr{S} \mathscr{T}(\alpha, \beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}(\alpha, \beta)$ as follows:

A function $f \in k-\mathscr{S} \mathscr{T}(\alpha, \beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}(\alpha, \beta)$ if and only if $\frac{z f^{\prime}(z)}{f(z)}$ and $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$, respectively takes all the values in the conic domain $\Omega_{k, \alpha, \beta}$

$$
\Omega_{k, \alpha, \beta}=\{\omega: \omega \in \mathbb{C} \text { and } k|\omega-\alpha|<\Re(\omega)-\beta\}
$$

or

$$
\Omega_{k, \alpha, \beta}=\left\{\omega: \omega \in \mathbb{C} \text { and } k \sqrt{[\Re(\omega)-\alpha]^{2}+[\Im(\omega)]^{2}}<\Re(\omega)-\beta\right\}
$$

where $0 \leq \beta<\alpha \leq 1$ and $k(1-\alpha)<1-\beta$. Clearly $1 \in \Omega_{k, \alpha, \beta}$ and $\Omega_{k, \alpha, \beta}$ is bounded by the curve

$$
\partial \Omega_{k, \alpha, \beta}=\left\{\omega: \omega=u+i v \text { and } k^{2}(u-\alpha)^{2}+k^{2} v^{2}=(u-\beta)^{2}\right\} .
$$

The Caratheodory functions $p \in \mathscr{P}$ is said to be in the class $\mathcal{P}\left(p_{k, \alpha, \beta}\right)$ if and only if p takes all the values in the conic domain $\Omega_{k, \alpha, \beta}$. Analytically it is defined as follows:

$$
\begin{aligned}
& \mathcal{P}\left(p_{k, \alpha, \beta}\right)=\left\{p: p \in \mathscr{P} \text { and } p(\Delta) \subset \Omega_{k, \alpha, \beta}\right\} \\
& \mathcal{P}\left(p_{k, \alpha, \beta}\right)=\left\{p: p \in \mathscr{P} \text { and } p(z) \prec p_{k, \alpha, \beta}, z \in \Delta\right\}
\end{aligned}
$$

It is interesting to note that $\partial \Omega_{k, \alpha, \beta}$ represents conic section about real axis. In particular, $\Omega_{k, \alpha, \beta}$ represents an elliptic domain for $k>1$, parabolic domain for $k=1$, hyperbolic domain for $0<k<1$. Sim et al. [26] obtained the functions $p_{k, \alpha \beta}(z)$ which play the role of extremal functions of $\mathcal{P}\left(p_{k, \alpha, \beta}\right)$ as
$p_{k, \alpha \beta}(z)= \begin{cases}\frac{1+(1-2 \beta) z}{1-z}, & \text { for } k=0 \\ \alpha+\frac{2(\alpha-\beta)}{\pi^{2}} \log ^{2}\left(\frac{1+\sqrt{u_{k}(z)}}{1-\sqrt{u_{k}(z)}}\right), & \text { for } k=1 \\ \frac{\alpha-\beta}{1-k^{2}} \cosh \left\{\mathfrak{u}(k) \log \left(\frac{1+\sqrt{u_{k}(z)}}{1-\sqrt{u_{k}(z)}}\right)\right\}+\frac{\beta-\alpha k^{2}}{1-k^{2}}, & \text { for } 0<k<1 \\ \frac{\alpha-\beta}{k^{2}-1} \sin ^{2}\left(\frac{\pi}{2 K(k)} \int_{0}^{\omega} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-t^{2} k^{2}}}\right)+\frac{\alpha k^{2}-\beta}{k^{2}-1}, & \text { for } k>1,\end{cases}$
where $\mathfrak{u}(k)=\frac{2}{\pi} \cos ^{-1} k, u_{k}(z)=\frac{z+\rho_{k}}{1+\rho_{k} z}$ and

$$
\rho_{k}= \begin{cases}\left(\frac{e^{A}-1}{e^{A}+1}\right)^{2}, & \text { for } k=1 \\ \left(\frac{\exp \left(\frac{1}{u_{k}(z)} \operatorname{arc} \cosh B\right)-1}{\exp \left(\frac{1}{u_{k}(z)} \operatorname{arc} \cosh B\right)+1}\right)^{2}, & \text { for } 0<k<1 \\ \sqrt{k} \sin \left[\frac{2 K(\kappa)}{\pi} \arcsin C\right], & \text { for } k>1\end{cases}
$$

with $A=\sqrt{\frac{1-\alpha}{2(\alpha-\beta)} \pi}, B=\frac{1}{\alpha-\beta}\left(1-k^{2}-\beta+\alpha k^{2}\right), C=\frac{1}{\alpha-\beta}\left(k^{2}-1+\beta-\alpha k^{2}\right)$. Also

$$
\begin{aligned}
K(\kappa) & =\int_{0}^{\omega} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-t^{2} \kappa^{2}}} \quad(0<\kappa<1) \\
K^{\prime}(\kappa) & =K\left(\sqrt{1-\kappa^{2}}\right) \quad(0<\kappa<1) \\
\kappa & =\cosh \left(\frac{\pi K^{\prime}(\kappa)}{4 K(\kappa)}\right)
\end{aligned}
$$

According to Koebe's $\frac{1}{4}$ theorem, every analytic and univalent function f in Δ has an inverse f^{-1} and is defined as

$$
f^{-1}(f(z))=z \quad(z \in \Delta) \text { and } f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

Also the function f^{-1} can be written as

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.6}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent if both f and analytic extension of f^{-1} in Δ are univalent in Δ. The class of all bi-univalent functions is denoted by Σ. That is a function f is said to be bi-univalent if and only if

1. f is an analytic and univalent function in Δ.
2. There exists an analytic and univalent function g in Δ such that $f(g(z))=$ $g(f(z))=z$ in Δ.
The class of bi-univalent functions was introduced by Lewin [17] in 1967. Recently many researchers $[1,2,4,3,14,21,22,23,28,29,30,31,33,32,34,35]$ have introduced and investigated several interesting subclasses of the bi-univalent functions and they have found non-sharp estimates of two Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$, Fekete-Szegö inequalities and second Hankel determinants. In 2017, Altinkaya and Yalçin [5, 6] estimated the coefficients and Fekete-Szegö inequalities for some subclasses of bi-univalent functions involving symmetric q-derivative operator subordinate to the generating function of Chebyshev polynomials.

Jackson [13], defined q-derivative operator D_{q} of an analytic function f of the form (1.1) as follows:

$$
\begin{gathered}
D_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{(q-1) z}, & \text { for } z \neq 0 \\
f^{\prime}(0), & \text { for } z=0\end{cases} \\
D_{q} f(0)=f^{\prime}(0) \text { and } D_{q}^{2}=D_{q}\left(D_{q} f(z)\right)
\end{gathered}
$$

If $f(z)=z^{n}$ for any positive integer n, the q-derivative of $f(z)$ is defined by

$$
D_{q} z^{n}=\frac{(q z)^{n}-z^{n}}{q z-z}=[n]_{q} z^{n-1}
$$

where $[n]_{q}=\frac{q^{n}-1}{q-1}$. As $q \rightarrow 1^{-}$and $k \in \mathbb{N}$, we have $[n]_{q} \rightarrow n$ and

$$
\lim _{q \rightarrow 1}\left(D_{q} f(z)\right)=f^{\prime}(z)
$$

where f^{\prime} is normal derivative of f. Therefore

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

Brahim and Sidomou [9], defined the symmetric q-derivative operator \widetilde{D}_{q} of an analytic function f of the form (1.1) as follows:

$$
\left(\widetilde{D}_{q} f\right)(z)=\left\{\begin{array}{ll}
\frac{f(q z)-f\left(q^{-1} z\right)}{\left(q-q^{-1}\right) z}, & \text { for } z \neq 0 \\
f^{\prime}(0), & \text { for } z=0
\end{array} .\right.
$$

It is clear that $\widetilde{D}_{q} z^{n}=\widetilde{[n]_{q}} z^{n-1}$ and $\widetilde{D_{q} f}(z)=1+\sum_{n=2}^{\infty} \widetilde{[n]_{q}} a_{n} z^{n-1}$, where

$$
\widetilde{[n]_{q}}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

The relation between q-derivative operator and symmetric q-derivative operator is given by

$$
\left(\widetilde{D_{q}} f\right)(z)=D_{q^{2}} f\left(q^{-1} z\right)
$$

If g is the inverse of f then

$$
\begin{aligned}
\left(\widetilde{D_{q}} g\right)(w) & =\frac{g(q w)-g\left(q^{-1} w\right)}{\left(q-q^{-1}\right) w} \\
& =1-\widetilde{[2]_{q}} a_{2} w+\widetilde{[3]_{q}}\left(2 a_{2}^{2}-a_{3}\right) w^{2}-\widetilde{[4]_{q}}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\cdots
\end{aligned}
$$

One could refer [27], for more details of $q-$ calculus and fractional q-calculus and their applications in Geometric Function Theory.

Motivated by the above mentioned work, in this paper, bi-starlike functions of order b and bi-convex functions of order b involving q-derivative operator subordinate to the conic domains are defined and the Fekete-Szegö inequality for the function in these classes are obtained.

Definition 1.1. A function $f \in \Sigma$ is said to be in the class $k-\mathscr{S} \mathscr{T}_{\Sigma, b}(\alpha, \beta)$, where $0 \leq \beta<\alpha \leq 1$ and $k(1-\alpha)<1-\beta$ and b is a non-zero complex number, if it satisfies the following conditions:

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z \widetilde{D}_{q} f(z)}{f(z)}-1\right) \prec p_{k, \alpha, \beta}(z) \quad(z \in \Delta) \tag{1.7}
\end{equation*}
$$

and for $g=f^{-1}$

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{w \widetilde{D}_{q} g(w)}{g(w)}-1\right) \prec p_{k, \alpha, \beta}(w) \quad(w \in \Delta) \tag{1.8}
\end{equation*}
$$

Definition 1.2. A function $f \in \Sigma$ is said to be in the class $k-$ $\mathscr{U} \mathscr{C} \mathscr{V}_{\Sigma, b}(\alpha, \beta)$; where $0 \leq \beta<\alpha \leq 1$ and $k(1-\alpha)<1-\beta$, and b is a non-zero complex number, if it satisfies the following conditions:

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(z \widetilde{D}_{q} f(z)\right)}{\widetilde{D}_{q}(f(z))}-1\right) \prec p_{k, \alpha, \beta}(z) \quad(z \in \Delta) \tag{1.9}
\end{equation*}
$$

and for $g=f^{-1}$

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(w \widetilde{D}_{q} g(w)\right)}{\widetilde{D}_{q}(g(w))}-1\right) \prec p_{k, \alpha, \beta}(w) \quad(w \in \Delta) \tag{1.10}
\end{equation*}
$$

2. Main results

In this section, initial estimates $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete-Szegö inequalities for the functions f in the classes $k-\mathscr{S} \mathscr{T}_{\Sigma, b}(\alpha, \beta)$ and $k-\mathscr{U} \mathscr{C} \mathscr{V}_{\Sigma, b}(\alpha, \beta)$ are obtained.
Theorem 2.1. If $f \in k-\mathscr{S} \mathscr{T}_{\Sigma, b}(\alpha, \beta)$ and is of the form (1.1) then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{\left|P_{1}\right| \sqrt{\left|P_{1}\right|} b^{2}}{\sqrt{\left.\mid P_{1}^{2} b(\widetilde{[3]}]_{q}-\widetilde{[2]_{q}}\right)+2\left(P_{1}-P_{2}\right)\left(\widetilde{\left.[2]_{q}-1\right)^{2}} \mid\right.}}, \\
& \left|a_{3}\right| \leq \frac{b^{2} P_{1}^{2}}{\left(\widetilde{[2]_{q}}-1\right)^{2}}+\frac{\left|b P_{1}\right|}{\widetilde{[3]}_{q}-1}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left|P_{1} b\right|}{\widetilde{[3]}-1}, & \text { if } 0 \leq|s(\mu)| \leq 1 \\ \frac{\left|P_{1} b\right||s(\mu)|}{\widetilde{[3]}]_{q}-1} & \text { if }|s(\mu)| \geq 1\end{cases}
$$

where

$$
s(\mu)=\frac{P_{1}^{2} b(1-\mu)}{\left[P_{1}^{2} b\left(\widetilde{[3]_{q}}-\widetilde{[2]_{q}}\right)+\left(P_{1}-P_{2}\right)\left(\widetilde{[2]_{q}}-1\right)^{2}\right]}
$$

Proof. Let $f \in k-\mathscr{S} \mathscr{T}_{\Sigma, b}(\alpha, \beta)$ and g be an analytic extension of f^{-1} in Δ. Then there exist two Schwarz functions $u, v \in \Delta$ such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z \widetilde{D}_{q} f(z)}{f(z)}-1\right)=p_{k, \alpha, \beta}(u(z)) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{w \widetilde{D}_{q} g(w)}{g(w)}-1\right)=p_{k, \alpha, \beta}(v(w)) \tag{2.2}
\end{equation*}
$$

Define two functions $h, q \in \mathscr{P}$ such that

$$
h(z)=\frac{1+u(z)}{1-u(z)}=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdots
$$

and

$$
q(w)=\frac{1+v(w)}{1-v(w)}=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots
$$

Then

$$
\begin{align*}
p_{k, \alpha, \beta}\left(\frac{h(z)-1}{h(z)+1}\right)= & 1+\frac{P_{1} h_{1} z}{2}+\left(\frac{P_{1}}{2}\left(h_{2}-\frac{h_{1}^{2}}{2}\right)+\frac{P_{2} h_{1}^{2}}{4}\right) z^{2} \\
& +\left(\frac{P_{1}}{2}\left(\frac{h_{1}^{3}}{4}-h_{1} h_{2}+h_{3}\right)+\frac{P_{2}}{4}\left(2 h_{1} h_{2}-h_{1}^{3}\right)+\frac{P_{3}}{8} h_{1}^{3}\right) z^{3}+\cdots \tag{2.3}
\end{align*}
$$

and
$p_{k, \alpha, \beta}\left(\frac{q(w)-1}{q(w)+1}\right)=1+\frac{P_{1} q_{1} w}{2}+\left(\frac{P_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{P_{2} q_{1}^{2}}{4}\right) w^{2}$

$$
\begin{equation*}
+\left(\frac{P_{1}}{2}\left(\frac{q_{1}^{3}}{4}-q_{1} q_{2}+q_{3}\right)+\frac{P_{2}}{4}\left(2 q_{1} q_{2}-q_{1}^{3}\right)+\frac{P_{3}}{8} q_{1}^{3}\right) w^{3}+\cdots \tag{2.4}
\end{equation*}
$$

In view of (2.3) and (2.4), the equations (2.1) and (2.2) become

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z \widetilde{D}_{q} f(z)}{f(z)}-1\right)=p_{k, \alpha, \beta}\left(\frac{h(z)-1}{h(z)+1}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{w \widetilde{D}_{q} g(w)}{g(w)}-1\right)=p_{k, \alpha, \beta}\left(\frac{v(w)-1}{v(w)+1}\right) . \tag{2.6}
\end{equation*}
$$

Comparing the coefficients of like powers of z in the equations (2.7) and (2.8), we get

$$
\begin{align*}
\left.\frac{1}{b}(\widetilde{[2]}]_{q}-1\right) a_{2} & =\frac{P_{1} h_{1}}{2} \tag{2.7}\\
\frac{1}{b}\left[\left(\widetilde{[3]_{q}}-1\right) a_{3}-\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}\right] & =\frac{P_{1}}{2}\left(h_{2}-\frac{h_{1}^{2}}{2}\right)+\frac{P_{2} h_{1}^{2}}{4} \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
\frac{-1}{b}\left(\widetilde{[2]_{q}}-1\right) a_{2} & =\frac{P_{1} q_{1}}{2} \tag{2.9}\\
\frac{1}{b}\left[\left(\widetilde{[3]_{q}}-1\right)\left(2 a_{2}^{2}-a_{3}\right)-\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}\right] & =\frac{P_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{P_{2} q_{1}^{2}}{4} \tag{2.10}
\end{align*}
$$

From the equations (2.7) and (2.9)

$$
\begin{equation*}
h_{1}=-q_{1} . \tag{2.11}
\end{equation*}
$$

Now, squaring and adding the equations (2.7) from (2.9), we get

$$
\begin{equation*}
h_{1}^{2}+q_{1}^{2}=\frac{8\left(\widetilde{[2]_{q}}-1\right)^{2} a_{2}^{2}}{P_{1}^{2} b^{2}} . \tag{2.12}
\end{equation*}
$$

Next, adding (2.8) and (2.10), use the equation (2.12), one can get

$$
\begin{equation*}
a_{2}^{2}=\frac{P_{1}^{3}\left(h_{2}+q_{2}\right) b^{2}}{\left.\left.4\left[P_{1}^{2} b(\widetilde{[3]}]_{q}-\widetilde{[2]_{q}}\right)+\left(P_{1}-P_{2}\right)(\widetilde{[2]}]_{q}-1\right)^{2}\right]} . \tag{2.13}
\end{equation*}
$$

Subtract the equation (2.10) from (2.8),

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{b P_{1}\left(h_{2}-q_{2}\right)}{4\left(\widetilde{[3]}_{q}-1\right)} \tag{2.14}
\end{equation*}
$$

Then using the equation (2.12), we get

$$
\begin{equation*}
a_{3}=\frac{P_{1}^{2} b^{2}\left(h_{1}^{2}+q_{1}^{2}\right)}{8\left(\widetilde{[2]_{q}}-1\right)^{2}}+\frac{b P_{1}\left(h_{2}-q_{2}\right)}{4\left(\widetilde{[3]_{q}}-1\right)} . \tag{2.15}
\end{equation*}
$$

Using the equations (2.13) and (2.14), we get

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b P_{1}}{4\left(\widetilde{[3]}_{q}-1\right)}\left[h_{2}(1+s(\mu))+q_{2}(-1+s(\mu))\right] \tag{2.16}
\end{equation*}
$$

where

$$
s(\mu)=\frac{P_{1}^{2} b(1-\mu)}{\left[P_{1}^{2} b\left(\widetilde{[3]_{q}}-\widetilde{[2]_{q}}\right)+\left(P_{1}-P_{2}\right)\left(\widetilde{[2]_{q}}-1\right)^{2}\right]} .
$$

By applying the modulus for the equations (2.13), (2.15) and (2.16), we get the required results.

Theorem 2.2. If $f \in k-\mathscr{U} \mathscr{C} \mathscr{V}_{\Sigma, b}(\alpha, \beta)$ and is of the form (1.1), then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{\left|P_{1}\right||b| \sqrt{\left|P_{1}\right|}}{\sqrt{\left|\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)-\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)\right) b P_{1}^{2}+\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)^{2}\left(P_{1}-P_{2}\right)\right|}} \\
& \left|a_{3}\right| \leq \frac{P_{1}^{2} b^{2}}{\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)^{2}}+\frac{\left|b P_{1}\right|}{\widetilde{[3]}]_{q}\left(\widetilde{[3]_{q}}-1\right)}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left|P_{1} b\right|}{\widetilde{[3]_{q}}(\widetilde{[3]}-1)}, & \text { if } 0 \leq|s(\mu)| \leq 1 \\ \frac{\left|P_{1} b s(\mu)\right|}{\widetilde{[3]}]_{q}\left(\widetilde{[3]_{q}}-1\right)} & \text { if }|s(\mu)| \geq 1\end{cases}
$$

where

$$
s(\mu)=\frac{P_{1}^{2} b(1-\mu)}{\left.\left.4\left[\widetilde{\left[[3]_{q}\right.}\left(\widetilde{[3]_{q}}-1\right)-\widetilde{[2]}_{q}^{2}(\widetilde{[2]}]_{q}-1\right)\right) b P_{1}^{2}+\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)^{2}\left(P_{1}-P_{2}\right)\right]} .
$$

Proof. If $f \in k-\mathscr{U} \mathscr{C} \mathscr{V}_{\Sigma, b}(\alpha, \beta)$ and g is an analytic extension of f^{-1} in Δ, then there exist two Schwarz functions $u, v \in \Delta$ such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(z \widetilde{D}_{q} f(z)\right)}{\widetilde{D}_{q}(f(z))}-1\right)=p_{k, \alpha, \beta}(u(z)) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(w \widetilde{D}_{q} g(w)\right)}{\widetilde{D}_{q}(g(w))}-1\right)=p_{k, \alpha, \beta}(v(w)) \tag{2.18}
\end{equation*}
$$

Then in view of (2.3) and (2.4) the equations (2.17) and (2.18) reduces to

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(z \widetilde{D}_{q} f(z)\right)}{\widetilde{D}_{q}(f(z))}-1\right)=p_{k, \alpha, \beta}\left(\frac{h(z)-1}{h(z)+1}\right) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\widetilde{D}_{q}\left(w \widetilde{D}_{q} g(w)\right)}{\widetilde{D}_{q}(g(w))}-1\right)=p_{k, \alpha, \beta}\left(\frac{v(w)-1}{v(w)+1}\right) . \tag{2.20}
\end{equation*}
$$

Comparing the coefficients of similar powers of z in equations (2.19) and (2.20)

$$
\begin{align*}
\frac{1}{b}[2]_{q}\left(\widetilde{[2]_{q}}-1\right) a_{2} & =\frac{P_{1} h_{1}}{2} \tag{2.21}\\
\frac{1}{b}\left[\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right) a_{3}-\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}\right] & =\frac{P_{1}}{2}\left(h_{2}-\frac{h_{1}^{2}}{2}\right)+\frac{P_{2} h_{1}^{2}}{4} \tag{2.22}
\end{align*}
$$

and

$$
\begin{align*}
\frac{-1}{b} \widetilde{[2]_{q}}\left(\widetilde{[2]_{q}}-1\right) a_{2} & =\frac{P_{1} q_{1}}{2} \tag{2.23}\\
\frac{1}{b}\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)\left(2 a_{2}^{2}-a_{3}\right)-\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}\right) & =\frac{P_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{P_{2} q_{1}^{2}}{4} \tag{2.24}
\end{align*}
$$

From the equations (2.21) and (2.23), we get

$$
\begin{equation*}
h_{1}=-q_{1} . \tag{2.25}
\end{equation*}
$$

Squaring and adding the equations (2.21) from (2.23), we get

$$
\begin{equation*}
h_{1}^{2}+q_{1}^{2}=\frac{8\left(\widetilde{[2]_{q}}\right)^{2}\left(\widetilde{[2]}_{q}-1\right)^{2} a_{2}^{2}}{P_{1}^{2} b^{2}} \tag{2.26}
\end{equation*}
$$

Adding (2.22) and (2.24), and using the equation (2.26), one can get

$$
\begin{equation*}
a_{2}^{2}=\frac{P_{1}^{3}\left(h_{2}+q_{2}\right) b^{2}}{4\left[\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)-\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)\right) b P_{1}^{2}+\left(\widetilde{[2]_{q}}\right)^{2}\left(\widetilde{[2]_{q}}-1\right)^{2}\left(P_{1}-P_{2}\right)\right]} . \tag{2.27}
\end{equation*}
$$

Subtracting the equation (2.24) from (2.22), we get

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{b P_{1}\left(h_{2}-q_{2}\right)}{4\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)\right.} \tag{2.28}
\end{equation*}
$$

Using the equation (2.26), we obtain

$$
\begin{equation*}
a_{3}=\frac{P_{1}^{2} b^{2}\left(h_{1}^{2}+q_{1}^{2}\right)}{8 \widetilde{[2]}_{q}^{2}\left(\widetilde{[3]_{q}}-1\right)\left(\widetilde{[2]_{q}}-1\right)^{2}}+\frac{b P_{1}\left(h_{2}-q_{2}\right)}{4\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)\right.} . \tag{2.29}
\end{equation*}
$$

Then using the equations (2.27) and (2.28), we get

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b P_{1}}{4\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)\right.}\left[h_{2}(1+s(\mu))+q_{2}(-1+s(\mu))\right] \tag{2.30}
\end{equation*}
$$

where

$$
s(\mu)=\frac{b P_{1}^{2}(1-\mu)}{4\left[\left(\widetilde{[3]_{q}}\left(\widetilde{[3]_{q}}-1\right)-\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)^{2} b P_{1}^{2}+\widetilde{[2]}_{q}^{2}\left(\widetilde{[2]_{q}}-1\right)^{2}\left(P_{1}-P_{2}\right)\right]\right.} .
$$

By applying modulus for the equations (2.27), (2.29) and (2.30) on both sides we get the required results.

Acknowledgment. The authors are very much thankful to the referee for her/his insightful suggestions and betterment of the current form of the Paper. The work presented in this paper is partially supported by DST-FIST-Grant No.SR/FST/MSI$101 / 2014$, dated $14 / 1 / 2016$.

References

[1] Abirami, C., Magesh, N., Gatti, N.B., Yamini, J., Horadam polynomial coefficient estimates for a class of λ-bi-pseudo-starlike functions, J. Anal., (2020), 1-10 (https://doi.org/10.1007/s41478-020-00224-2).
[2] Abirami, C., Magesh, N., Yamini, J., Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal., 2020(2020), Art. ID 7391058, 1-8.
[3] Ali, R.M., Lee, S.K., Ravichandran, V., Supramanian, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), no. 3, 344-351.
[4] Altınkaya, S., Yalçın, S., Upper bound of second Hankel determinant for bi-Bazilevič functions, Mediterr. J. Math., 13(2016), no. 6, 4081-4090.
[5] Altınkaya, S., Yalçın, S., Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric $q-$ derivative operator by means of the chebyshev polynomials, Asia Pacific Journal of Mathematics, 4(2017), no. 2, 90-99.
[6] Altınkaya, S., Yalçı, S., On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math., 5(2017), no. 3, 34-40.
[7] Annamalai, S., Sivasubramanian, S., Ramachandran, C., Hankel determinant for a class of analytic functions involving conical domains defined by subordination, Math. Slovaca, 67(2017), no. 4, 945-956.
[8] Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), no. 1, 17-32.
[9] Brahim, K., Sidomou, Y., On some symmetric q-special functions, Matematiche (Catania), 68(2013), no. 2, 107-122.
[10] Goodman, A.W., Univalent Functions, Vol. I \& II, Mariner Publishing Co., Inc., Tampa, FL, 1983.
[11] Goodman, A.W., On uniformly convex functions, Ann. Polon. Math., 56(1991), no. 1, 87-92.
[12] Goodman, A.W., On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), no. 2, 364-370.
[13] Jackson, F.H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1908), 253-281.
[14] Jahangiri, J.M., Magesh, N., Yamini, J., Fekete-Szegö inequalities for classes of bistarlike and bi-convex functions, Electron. J. Math. Anal. Appl., 3(2015), no. 1, 133-140.
[15] Kanas, S., Wisniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), no. 4, 647-657.
[16] Kanas, S., Wisniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), no. 1-2, 327-336.
[17] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[18] Ma, W.C., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.
[19] Ma, W.C., Minda, D., Uniformly convex functions, II, Ann. Polon. Math., 58(1993), no. 3, 275-285.
[20] Nishiwaki, J., Owa, S., Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput., 187(2007), no. 1, 350-355.
[21] Orhan, H., Magesh, N., Balaji, V.K., Fekete-Szegö problem for certain classes of MaMinda bi-univalent functions, Afr. Mat., 27(2016), no. 5-6, 889-897.
[22] Orhan, H., Magesh, N., Yamini, J., Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40(2016), no. 3, 679-687.
[23] Raina, R.K., Sokół, J., On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44(2015), no. 6, 1427-1433.
[24] Rønning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 45(1991), 117-122.
[25] Shams, S., Kulkarni, S.R., Jahangiri, J.M., Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 2004, no. 53-56, 2959-2961.
[26] Sim, Y.J., Kwon, O.S., Cho, N.E., Srivastava, H.M., Some classes of analytic functions associated with conic regions, Taiwanese J. Math., 16(2012), no. 1, 387-408.
[27] Srivastava, H.M., Operators of basic (or $q-$) calculus and fractional $q-$ calculus and their applications in Geometric Function Theory of Complex Analysis, Iran J. Sci. Technol Trans Sci., (2020), 1-18.
[28] Srivastava, H.M., Bulut, S., Çağlar, M., Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), no. 5, 831-842.
[29] Srivastava, H.M., Eker, S.S., Ali, R.M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), no. 8, 1839-1845.
[30] Srivastava, H.M., Gaboury, S., Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 36(2016), no. 3, 863-871.
[31] Srivastava, H.M., Gaboury, S., Ghanim, F., Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), no. 5-6, 693-706.
[32] Srivastava, H.M., Magesh, N., Yamini, J., Initial coefficient estimates for bi- λ-convex and bi- μ-starlike functions connected with arithmetic and geometric means, Electron. J. Math. Anal. Appl., 2(2014), no. 2, 152-162.
[33] Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), no. 10, 1188-1192.
[34] Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P., The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), no. 4, 1063-1092.
[35] Zaprawa, P., On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), no. 1, 169-178.

Bharavi Sharma Rayaprolu
Department of Mathematics, Kakatiya University,
Warangal-506 009, Telangana, India
e-mail: rbsharma005@gmail.com
Rajya Laxmi Kalikota
Department of Mathematics, SRIIT,
Hyderabad, India
e-mail: rajyalaxmi2206@gmail.com

Nanjundan Magesh
Post-Graduate and Research Department of Mathematics
Government Arts College for Men,
Krishnagiri - 635 001, Tamilnadu, India
(Corresponding author)
e-mail: nmagi_2000@yahoo.co.in

