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1. Introduction

Let A denotes the set of all functions which are analytic in the unit disc

∆ = {z ∈ C : |z| < 1}

with Taylor’s series expansion of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are normalized by f(0) = 0, f ′(0) = 1. The subclass of A consisting of all
univalent functions is denoted by S . A function f ∈ A is said to be a starlike
function if

<
(
zf ′(z)

f(z)

)
> 0 (z ∈ ∆).
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A function f ∈ A is said to be a convex function if

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0 (z ∈ ∆).

Goodman [10, 11, 12] introduced the classes uniformly starlike and uniformly convex
functions as subclasses of starlike and convex functions. A starlike function (or convex
function) is said to be uniformly starlike (or uniformly convex) if the image of every
circular arc ζ contained in ∆, with center at ξ also in ∆ is starlike (or convex) with
respect to f(ξ). The class of uniformly starlike functions is represented by U S T
and the class of uniformly convex functions is represented by U C V . The class of
parabolic starlike functions is represented by Sp. Rønning [24] and Ma-Minda [18, 19]
independently gave the characterization for the classes Sp and U C V as follows.
A function f ∈ A is said to be in the class Sp if and only if

<
(
zf ′(z)

f(z)

)
>
∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ (z ∈ ∆).

A function f ∈ A is said to be in the class U C V if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
>
∣∣∣zf ′′(z)
f ′(z)

∣∣∣ (z ∈ ∆).

Also, it is clear that

f ∈ U C V ⇔ zf ′(z) ∈ Sp.

Kanas and Wisniowska [16, 15], introduced k-uniformly starlike functions and k-
uniformly convex functions as follows.

k −S T =

{
f : f ∈ S and <

(
zf ′(z)

f(z)

)
> k

∣∣∣zf ′(z)
f(z)

− 1
∣∣∣, z ∈ ∆, k ≥ 0

}
k −U C V =

{
f : f ∈ S and <

(
1 +

zf ′(z)

f(z)

)
> k

∣∣∣zf ′′(z)
f ′(z)

∣∣∣, z ∈ ∆, k ≥ 0

}
.

Bharati, et al. [8], defined k−S T (β) and k−U C V (β) as follows. A function f ∈ A
is said to be in the class k −S T (β) if and only if

<
(
zf ′(z)

f(z)

)
− β > k

∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ (z ∈ ∆). (1.2)

A function f ∈ A is said to be in the class k −U C V (β) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
− β > k

∣∣∣zf ′′(z)
f ′(z)

∣∣∣ (z ∈ ∆). (1.3)

Sim et al.[26], generalized above classes and introduced k − S T (α, β) and
k −U C V (α, β) as below:
A function f ∈ A is said to be in the class k −S T (α, β) if and only if

<
(
zf ′(z)

f(z)

)
− β > k

∣∣∣zf ′(z)
f(z)

− α
∣∣∣ (z ∈ ∆), (1.4)

where 0 ≤ β < α ≤ 1 and k(1− α) < 1− β.



Fekete-Szegö inequality of bi-starlike and bi-convex functions 477

A function f ∈ A is said to be in the class k −U C V (α, β) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
− β > k

∣∣∣1 +
zf ′′(z)

f ′(z)
− α

∣∣∣ (z ∈ ∆), (1.5)

where 0 ≤ β < α ≤ 1 and k(1− α) < 1− β.

In particular, for α = 1, β = 0 the classes k −S T (α, β) and k −U C V (α, β)
reduces to k − S T and k − U C V respectively. Further, for α = 1 these classes
coincides with the classes studied by Nishiwaki and Owa [20] and Shams et al. [25]. In
2017, Annamalai et al. [7], obtained second Hankel determinant of analytic functions
involving conic domains.

Now we give the geometric interpretations of the classes f ∈ k−S T (α, β) and
k −U C V (α, β) as follows:

A function f ∈ k −S T (α, β) and k −U C V (α, β) if and only if
zf ′(z)

f(z)
and

1 +
zf ′′(z)

f ′(z)
, respectively takes all the values in the conic domain Ωk, α, β

Ωk, α, β = {ω : ω ∈ C and k|ω − α| < <(ω)− β}

or

Ωk, α, β =
{
ω : ω ∈ C and k

√
[<(ω)− α]2 + [=(ω)]2 < <(ω)− β

}
,

where 0 ≤ β < α ≤ 1 and k(1 − α) < 1 − β. Clearly 1 ∈ Ωk, α, β and Ωk, α, β is
bounded by the curve

∂Ωk, α, β =
{
ω : ω = u+ iv and k2(u− α)2 + k2v2 = (u− β)2

}
.

The Caratheodory functions p ∈ P is said to be in the class P(pk, α, β) if and
only if p takes all the values in the conic domain Ωk, α, β . Analytically it is defined as
follows:

P(pk, α, β) = {p : p ∈P and p(∆) ⊂ Ωk, α, β},
P(pk, α, β) = {p : p ∈P and p(z) ≺ pk, α, β , z ∈ ∆}.

It is interesting to note that ∂Ωk, α, β represents conic section about real axis.
In particular, Ωk, α, β represents an elliptic domain for k > 1, parabolic domain for
k = 1, hyperbolic domain for 0 < k < 1. Sim et al. [26] obtained the functions
pk,α β(z) which play the role of extremal functions of P(pk, α, β) as

pk,α β(z) =



1 + (1− 2β)z

1− z
, for k = 0

α+
2(α− β)

π2
log2

(
1 +

√
uk(z)

1−
√
uk(z)

)
, for k = 1

α− β
1− k2

cosh

{
u(k) log

(
1 +

√
uk(z)

1−
√
uk(z)

)}
+
β − αk2

1− k2
, for 0 < k < 1

α− β
k2 − 1

sin2

(
π

2K(k)

ω∫
0

dt√
1− t2

√
1− t2k2

)
+
αk2 − β
k2 − 1

, for k > 1,
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where u(k) =
2

π
cos−1 k, uk(z) =

z + ρk
1 + ρkz

and

ρk =



(
eA − 1

eA + 1

)2

, for k = 1exp

(
1

uk(z)
arc coshB

)
− 1

exp

(
1

uk(z)
arc coshB

)
+ 1


2

, for 0 < k < 1

√
ksin

[
2K(κ)

π
arc sinC

]
, for k > 1

with A =

√
1− α

2(α− β)
π, B =

1

α− β
(1−k2−β+αk2), C =

1

α− β
(k2− 1 +β−αk2).

Also

K(κ) =

∫ ω

0

dt√
1− t2

√
1− t2κ2

(0 < κ < 1),

K ′(κ) = K(
√

1− κ2) (0 < κ < 1),

κ = cosh

(
πK ′(κ)

4K(κ)

)
.

According to Koebe’s
1

4
theorem, every analytic and univalent function f in ∆ has

an inverse f−1 and is defined as

f−1(f(z)) = z (z ∈ ∆) and f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

Also the function f−1 can be written as

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.6)

A function f ∈ A is said to be bi-univalent if both f and analytic extension of
f−1 in ∆ are univalent in ∆. The class of all bi-univalent functions is denoted by Σ.
That is a function f is said to be bi-univalent if and only if

1. f is an analytic and univalent function in ∆.
2. There exists an analytic and univalent function g in ∆ such that f(g(z)) =
g(f(z)) = z in ∆.

The class of bi-univalent functions was introduced by Lewin [17] in 1967. Re-
cently many researchers [1, 2, 4, 3, 14, 21, 22, 23, 28, 29, 30, 31, 33, 32, 34, 35]
have introduced and investigated several interesting subclasses of the bi-univalent
functions and they have found non-sharp estimates of two Taylor-Maclaurin coeffi-
cients |a2|, |a3|, Fekete-Szegö inequalities and second Hankel determinants. In 2017,
Altinkaya and Yalçin [5, 6] estimated the coefficients and Fekete-Szegö inequalities for
some subclasses of bi-univalent functions involving symmetric q-derivative operator
subordinate to the generating function of Chebyshev polynomials.
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Jackson [13], defined q−derivative operator Dq of an analytic function f of the form
(1.1)as follows:

Dqf(z) =


f(qz)− f(z)

(q − 1)z
, for z 6= 0,

f ′(0), for z = 0

Dqf(0) = f ′(0) and D2
q = Dq(Dqf(z)).

If f(z) = zn for any positive integer n, the q-derivative of f(z) is defined by

Dqz
n =

(qz)n − zn

qz − z
= [n]qz

n−1,

where [n]q =
qn − 1

q − 1
. As q → 1− and k ∈ N, we have [n]q → n and

lim
q→1

(Dqf(z)) = f ′(z)

where f ′ is normal derivative of f . Therefore

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1.

Brahim and Sidomou [9], defined the symmetric q−derivative operator D̃q of an an-
alytic function f of the form (1.1) as follows:

(D̃qf)(z) =


f(qz)− f(q−1z)

(q − q−1)z
, for z 6= 0,

f ′(0), for z = 0
.

It is clear that D̃qz
n = [̃n]qz

n−1 and D̃qf(z) = 1 +
∞∑
n=2

[̃n]qanz
n−1, where

[̃n]q =
qn − q−n

q − q−1
.

The relation between q-derivative operator and symmetric q-derivative operator is
given by

(D̃qf)(z) = Dq2f(q−1z).

If g is the inverse of f then

(D̃qg)(w) =
g(qw)− g(q−1w)

(q − q−1)w

= 1− [̃2]qa2w + [̃3]q(2a
2
2 − a3)w2 − [̃4]q(5a

3
2 − 5a2a3 + a4)w3 + · · · .

One could refer [27], for more details of q− calculus and fractional q−calculus and
their applications in Geometric Function Theory.

Motivated by the above mentioned work, in this paper, bi-starlike functions of
order b and bi-convex functions of order b involving q-derivative operator subordinate
to the conic domains are defined and the Fekete-Szegö inequality for the function in
these classes are obtained.
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Definition 1.1. A function f ∈ Σ is said to be in the class k −S T Σ, b(α, β), where
0 ≤ β < α ≤ 1 and k(1−α) < 1−β and b is a non-zero complex number, if it satisfies
the following conditions:

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
≺ pk, α, β(z) (z ∈ ∆) (1.7)

and for g = f−1

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
≺ pk, α, β(w) (w ∈ ∆). (1.8)

Definition 1.2. A function f ∈ Σ is said to be in the class k −
U C V Σ, b(α, β); where 0 ≤ β < α ≤ 1 and k(1 − α) < 1 − β, and b is a non-zero
complex number, if it satisfies the following conditions:

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
≺ pk, α, β(z) (z ∈ ∆) (1.9)

and for g = f−1

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
≺ pk, α, β(w) (w ∈ ∆). (1.10)

2. Main results

In this section, initial estimates |a2|, |a3| and Fekete-Szegö inequalities for the
functions f in the classes k −S T Σ, b(α, β) and k −U C V Σ, b(α, β) are obtained.

Theorem 2.1. If f ∈ k −S T Σ, b(α, β) and is of the form (1.1) then

|a2| ≤
|P1|

√
|P1|b2√

|P 2
1 b
(

[̃3]q − [̃2]q

)
+ 2(P1 − P2)

(
[̃2]q − 1

)2

|
,

|a3| ≤
b2P 2

1(
[̃2]q − 1

)2 +

∣∣∣bP1

∣∣∣
[̃3]q − 1

and

|a3 − µa2
2| ≤


|P1b|

[̃3]q − 1
, if 0 ≤ |s(µ)| ≤ 1

|P1b| |s(µ)|
[̃3]q − 1

if |s(µ)| ≥ 1,

where

s(µ) =
P 2

1 b(1− µ)

[P 2
1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2

]
.
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Proof. Let f ∈ k −S T Σ, b(α, β) and g be an analytic extension of f−1 in ∆. Then
there exist two Schwarz functions u, v ∈ ∆ such that

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
= pk, α, β(u(z)), (2.1)

and

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
= pk, α, β(v(w)). (2.2)

Define two functions h, q ∈P such that

h(z) =
1 + u(z)

1− u(z)
= 1 + h1z + h2z

2 + h3z
3 + · · ·

and

q(w) =
1 + v(w)

1− v(w)
= 1 + q1w + q2w

2 + q3w
3 + · · · .

Then

pk, α, β

(
h(z)− 1

h(z) + 1

)
=1 +

P1h1z

2
+

(
P1

2
(h2 −

h2
1

2
) +

P2h
2
1

4

)
z2

+

(
P1

2

(
h3

1

4
− h1h2 + h3

)
+
P2

4
(2h1h2 − h3

1) +
P3

8
h3

1

)
z3 + · · ·

(2.3)

and

pk, α, β

(
q(w)− 1

q(w) + 1

)
=1 +

P1q1w

2
+

(
P1

2
(q2 −

q2
1

2
) +

P2q
2
1

4

)
w2

+

(
P1

2

(
q3
1

4
− q1q2 + q3

)
+
P2

4
(2q1q2 − q3

1) +
P3

8
q3
1

)
w3 + · · · .

(2.4)

In view of (2.3) and (2.4), the equations (2.1) and (2.2) become

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
= pk, α, β

(
h(z)− 1

h(z) + 1

)
(2.5)

and

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
= pk, α, β

(
v(w)− 1

v(w) + 1

)
. (2.6)

Comparing the coefficients of like powers of z in the equations (2.7) and (2.8), we get

1

b

(
[̃2]q − 1

)
a2 =

P1h1

2
, (2.7)

1

b

[(
[̃3]q − 1

)
a3 −

(
[̃2]q − 1

)
a2

2

]
=
P1

2

(
h2 −

h2
1

2

)
+
P2h

2
1

4
, (2.8)
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and

−1

b

(
[̃2]q − 1

)
a2 =

P1q1

2
, (2.9)

1

b

[(
[̃3]q − 1

)
(2a2

2 − a3)−
(

[̃2]q − 1
)
a2

2

]
=
P1

2

(
q2 −

q2
1

2

)
+
P2q

2
1

4
. (2.10)

From the equations (2.7) and (2.9)

h1 = −q1. (2.11)

Now, squaring and adding the equations (2.7) from (2.9), we get

h2
1 + q2

1 =
8
(

[̃2]q − 1
)2

a2
2

P 2
1 b

2
. (2.12)

Next, adding (2.8) and (2.10), use the equation (2.12), one can get

a2
2 =

P 3
1 (h2 + q2)b2

4

[
P 2

1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2
] . (2.13)

Subtract the equation (2.10) from (2.8),

a3 = a2
2 +

bP1(h2 − q2)

4
(

[̃3]q − 1
) . (2.14)

Then using the equation (2.12), we get

a3 =
P 2

1 b
2(h2

1 + q2
1)

8
(

[̃2]q − 1
)2 +

bP1(h2 − q2)

4
(

[̃3]q − 1
) . (2.15)

Using the equations (2.13) and (2.14), we get

a3 − µa2
2 =

bP1

4
(

[̃3]q − 1
) [h2(1 + s(µ)) + q2(−1 + s(µ))] , (2.16)

where

s(µ) =
P 2

1 b(1− µ)[
P 2

1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2
] .

By applying the modulus for the equations (2.13), (2.15) and (2.16), we get the
required results. �
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Theorem 2.2. If f ∈ k −U C V Σ, b(α, β) and is of the form (1.1), then

|a2| ≤
|P1| |b|

√
|P1|√∣∣∣∣([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

))
bP 2

1 + [̃2]
2

q

(
[̃2]q − 1

)2

(P1 − P2)

∣∣∣∣
|a3| ≤

P 2
1 b

2

[̃2]
2

q

(
[̃2]q − 1

)2 +

∣∣∣bP1

∣∣∣
[̃3]q

(
[̃3]q − 1

)
and

|a3 − µa2
2| ≤


|P1b|

[̃3]q

(
[̃3]q − 1

) , if 0 ≤ |s(µ)| ≤ 1

|P1bs(µ)|

[̃3]q

(
[̃3]q − 1

) if |s(µ)| ≥ 1,

where

s(µ) =
P 2

1 b(1− µ)

4
[
([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)
)bP 2

1 + [̃2]
2

q

(
[̃2]q − 1

)2

(P1 − P2)
] .

Proof. If f ∈ k − U C V Σ, b(α, β) and g is an analytic extension of f−1 in ∆, then
there exist two Schwarz functions u, v ∈ ∆ such that

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
= pk, α, β(u(z)), (2.17)

and

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
= pk, α, β(v(w)). (2.18)

Then in view of (2.3) and (2.4) the equations (2.17) and (2.18) reduces to

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
=pk, α, β

(
h(z)− 1

h(z) + 1

)
, (2.19)

and

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
=pk, α, β

(
v(w)− 1

v(w) + 1

)
. (2.20)

Comparing the coefficients of similar powers of z in equations (2.19) and (2.20)

1

b
[̃2]q

(
[̃2]q − 1

)
a2 =

P1h1

2
, (2.21)

1

b

[
[̃3]q

(
[̃3]q − 1

)
a3 − [̃2]

2

q

(
[̃2]q − 1

)
a2

2

]
=
P1

2

(
h2 −

h2
1

2

)
+
P2h

2
1

4
, (2.22)



484 B.S. Rayaprolu, R.L. Kalikota and N. Magesh

and

−1

b
[̃2]q

(
[̃2]q − 1

)
a2 =

P1q1

2
, (2.23)

1

b
([̃3]q

(
[̃3]q − 1

)
(2a2

2 − a3)− [̃2]
2

q

(
[̃2]q − 1

)
a2

2) =
P1

2

(
q2 −

q2
1

2

)
+
P2q

2
1

4
. (2.24)

From the equations (2.21) and (2.23), we get

h1 = −q1. (2.25)

Squaring and adding the equations (2.21) from (2.23), we get

h2
1 + q2

1 =
8([̃2]q)

2
(

[̃2]q − 1
)2

a2
2

P 2
1 b

2
. (2.26)

Adding (2.22) and (2.24), and using the equation (2.26), one can get

a2
2 =

P 3
1 (h2 + q2)b2

4[([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)
)bP 2

1 + ([̃2]q)
2
(

[̃2]q − 1
)2

(P1 − P2)]
. (2.27)

Subtracting the equation (2.24) from (2.22), we get

a3 = a2
2 +

bP1(h2 − q2)

4([̃3]q

(
[̃3]q − 1

) . (2.28)

Using the equation (2.26), we obtain

a3 =
P 2

1 b
2(h2

1 + q2
1)

8[̃2]
2

q

(
[̃3]q − 1

)(
[̃2]q − 1

)2 +
bP1(h2 − q2)

4([̃3]q

(
[̃3]q − 1

) . (2.29)

Then using the equations (2.27) and (2.28), we get

a3 − µa2
2 =

bP1

4([̃3]q

(
[̃3]q − 1

)[h2(1 + s(µ)) + q2(−1 + s(µ))
]
, (2.30)

where

s(µ) =
bP 2

1 (1− µ)

4[([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)2

bP 2
1 + [̃2]

2

q

(
[̃2]q − 1

)2

(P1 − P2)]
.

By applying modulus for the equations (2.27), (2.29) and (2.30) on both sides we get
the required results. �
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