On a system of nonlinear partial functional differential equations of different types

László Simon

Abstract

We consider a system of a semilinear hyperbolic functional differential equation (where the lower order terms contain functional dependence on the unknown function) and a quasilinear parabolic functional differential equation with initial and boundary conditions. Existence of weak solutions for $t \in(0, T)$ and for $t \in(0, \infty)$ will be shown and some qualitative properties of the solutions in $(0, \infty)$ will be formulated.

Mathematics Subject Classification (2010): 35M33.
Keywords: Semilinear hyperbolic equation, quasilinear parabolic equation, partial functional differential equation.

1. Introduction

In the present paper we consider weak solutions of the following system of equations:

$$
\begin{gather*}
u^{\prime \prime}(t)+Q(u(t))+\varphi(x) h^{\prime}(u(t))+H(t, x ; u, z)+\psi(x) u^{\prime}(t)=F_{1}(t, x ; z) \tag{1.1}\\
z^{\prime}(t)-\sum_{j=1}^{n} D_{j}\left[a_{j}(t, x, D z(t), z(t) ; u, z)\right]+a_{0}(t, x, D z(t), z(t) ; u, z)=F_{2}(t, x ; u) \tag{1.2}\\
(t, x) \in Q_{T}=(0, T) \times \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain and we use the notations $u(t)=u(t, x), z(t)=$ $z(t, x) u^{\prime}=D_{t} u, z^{\prime}=D_{t} z u^{\prime \prime}=D_{t}^{2} u, D z=\left(D_{1} z, \ldots, D_{n} z\right), Q$ may be e.g. a linear second order symmetric elliptic differential operator in the variable $x ; h$ is a C^{2} function having certain polynomial growth, H contains nonlinear functional (nonlocal) dependence on u and z, with some polynomial growth and F_{1} contains some functional dependence on z. Further, the functions a_{j} define a quasilinear elliptic differential operator in x (for fixed t) with functional dependence on u and z. Finally,

[^0]F_{2} may non-locally depending on u. (The system (1.1), (1.2) consists of a semilinear hyperbolic functional equation and a parabolic functional equation.)

This paper was motivated by some problems which were modelled by systems consisting of (functional) differential equations of different types. In [4] S. Cinca investigated a model, consiting of an elliptic, a parabolic and an ordinary nonlinear differential equation, which arise when modelling diffusion and transport in porous media with variable porosity. In [6] J.D. Logan, M.R. Petersen and T.S. Shores considered and numerically studied a similar system which describes reaction-mineralogyporosity changes in porous media with one-dimensional space variable. J. H. Merkin, D.J. Needham and B.D. Sleeman considered in [7] a system, consisting of a nonlinear parabolic and an ordinary differential equation, as a mathematical model for the spread of morphogens with density dependent chemosensitivity. In [3], [8], [9] the existence of solutions of such systems were studied.

In Section 2 the existence of weak solutions will be proved for $t \in(0, T)$, in Section 3 some examples will be shown and in Section 4 we shall prove existence and certain properties of solutions for $t \in(0, \infty)$.

2. Solutions in $(0, T)$

Denote by $\Omega \subset \mathbb{R}^{n}$ a bounded domain having the uniform C^{1} regularity property (see $[1]), Q_{T}=(0, T) \times \Omega$. Denote by $W^{1, p}(\Omega)$ the Sobolev space of real valued functions with the norm

$$
\|u\|=\left[\int_{\Omega}\left(\sum_{j=1}^{n}\left|D_{j} u\right|^{p}+|u|^{p}\right) d x\right]^{1 / p} \quad(2 \leq p<\infty)
$$

The number q is defined by $1 / p+1 / q=1$. Further, let $V_{1} \subset W^{1,2}(\Omega)$ and $V_{2} \subset$ $W^{1, p}(\Omega)$ be closed linear subspaces containing $\left.C_{0}^{\infty}(\Omega)\right), V_{j}^{\star}$ the dual spaces of V_{j}, the duality between V_{j}^{\star} and V_{j} will be denoted by $\langle\cdot, \cdot\rangle$, the scalar product in $L^{2}(\Omega)$ will be denoted by (\cdot, \cdot). Finally, denote by $L^{p}\left(0, T ; V_{j}\right)$ the Banach space of the set of measurable functions $u:(0, T) \rightarrow V_{j}$ with the norm

$$
\|u\|_{L^{p}\left(0, T ; V_{j}\right)}=\left[\int_{0}^{T}\|u(t)\|_{V_{j}}^{p} d t\right]^{1 / p}
$$

and $L^{\infty}\left(0, T ; V_{j}\right), L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ the set of measurable functions $u:(0, T) \rightarrow V_{j}, u$: $(0, T) \rightarrow L^{2}(\Omega)$, respectively, with the $L^{\infty}(0, T)$ norm of the functions $t \mapsto\|u(t)\|_{V_{j}}$, $t \mapsto\|u(t)\|_{L^{2}(\Omega)}$, respectively.

Now we formulate the assumptions on the functions in (1.1), (1.2).
$\left(A_{1}\right) . Q: V_{1} \rightarrow V_{1}^{\star}$ is a linear continuous operator such that

$$
\langle Q u, v\rangle=\langle Q v, u\rangle, \quad\langle Q u, u\rangle \geq c_{0}\|u\|_{V_{1}}^{2}
$$

for all $u, v \in V_{1}$ with some constant $c_{0}>0$.
$\left(A_{2}\right) . \varphi, \psi: \Omega \rightarrow \mathbb{R}$ are measurable functions satisfying

$$
c_{1} \leq \varphi(x) \leq c_{2}, \quad c_{1} \leq \psi(x) \leq c_{2} \text { for a.a. } x \in \Omega
$$

with some positive constants c_{1}, c_{2}.
$\left(A_{3}\right) . h: \mathbb{R} \rightarrow \mathbb{R}$ is a twice continuously differentiable function satisfying

$$
\begin{aligned}
& h(\eta) \geq 0, \quad\left|h^{\prime \prime}(\eta)\right| \leq \text { const }|\eta|^{\lambda-1} \text { for }|\eta|>1 \text { where } \\
& 1<\lambda \leq \lambda_{0}=\frac{n}{n-2} \text { if } n \geq 3, \quad 1<\lambda<\infty \text { if } n=2
\end{aligned}
$$

$\left(A_{4}\right) . H: Q_{T} \times L^{2}\left(Q_{T}\right) \times L^{p}\left(Q_{T}\right) \rightarrow \mathbb{R}$ is a function for which $(t, x) \mapsto H(t, x ; u, z)$ is measurable for all fixed $u \in L^{2}(\Omega), z \in L^{p}\left(Q_{T}\right), H$ has the Volterra property, i.e. for all $t \in[0, T], H(t, x ; u, z)$ depends only on the restriction of u and z to $(0, t)$. Further, the following inequality holds for all $t \in[0, T]$ and $u \in L^{2}(\Omega), z \in L^{p}\left(Q_{T}\right)$:

$$
\begin{gathered}
\int_{\Omega}|H(t, x ; u, z)|^{2} d x \leq \mathrm{const}\left[\|z\|_{L^{p}\left(Q_{T}\right)}^{2}+1\right]\left[\int_{0}^{t} \int_{\Omega} h(u(\tau)) d x d \tau+\int_{\Omega} h(u) d x\right] \\
\int_{0}^{t}\left[\int_{\Omega}\left|H\left(\tau, x ; u_{1}, z\right)-H\left(\tau, x ; u_{2}, z\right)\right|^{2} d x\right] d \tau \leq M(K, z) \int_{0}^{t}\left[\int_{\Omega}\left|u_{1}-u_{2}\right|^{2} d x\right] d \tau \\
\text { if }\left\|u_{j}\right\|_{L^{\infty}\left(0, T ; V_{1}\right)} \leq K
\end{gathered}
$$

where for all fixed number $K>0, z \mapsto M(K, z) \in \mathbb{R}^{+}$is a bounded (nonlinear) operator.

Finally, $\left(z_{k}\right) \rightarrow z$ in $L^{p}\left(Q_{T}\right)$ implies

$$
H\left(t, x ; u_{k}, z_{k}\right)-H\left(t, x ; u_{k}, z\right) \rightarrow 0 \text { in } L^{2}\left(Q_{T}\right) \text { uniformly if }\left\|u_{k}\right\|_{L^{2}\left(Q_{T}\right)} \leq \text { const. }
$$

$\left(A_{5}\right) . F_{1}: Q_{T} \times L^{p}\left(Q_{T}\right) \rightarrow \mathbb{R}$ is a function satisfying $(t, x) \mapsto F_{1}(t, x ; z) \in L^{2}\left(Q_{T}\right)$ for all fixed $z \in L^{p}\left(Q_{T}\right)$ and $\left(z_{k}\right) \rightarrow z$ in $L^{p}\left(Q_{T}\right.$ implies that $F_{1}\left(t, x ; z_{k}\right) \rightarrow F_{1}(t, x ; z)$ in $L^{2}\left(Q_{T}\right)$.

Further,

$$
\int_{0}^{T}\left\|F_{1}(\tau, x ; z)\right\|_{L^{2}(\Omega)}^{2} d \tau \leq \mathrm{const}\left[1+\|z\|_{L^{p}\left(Q_{T}\right)}^{\beta_{1}}\right]
$$

with some constant $\beta_{1}>0$.
$\left(B_{1}\right)$ The functions

$$
a_{j}: Q_{T} \times \mathbb{R}^{n+1} \times L^{2}\left(Q_{T}\right) \times L^{p}\left(Q_{T}\right) \rightarrow \mathbb{R} \quad(j=0,1, \ldots n)
$$

are measurable in $(t, x) \in Q_{T}$ for all fixed $\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n+1}, u \in L^{2}\left(Q_{T}\right)$, $z \in L^{p}\left(Q_{T}\right)$ and continuous in $\xi \in \mathbb{R}^{n+1}$ for all fixed $u \in L^{2}\left(Q_{T}\right), z \in L^{p}\left(Q_{T}\right)$ and a.a. fixed $(t, x) \in Q_{T}$.

Further, if $\left(u_{k}\right) \rightarrow u$ in $L^{2}\left(Q_{T}\right)$ and $\left(z_{k}\right) \rightarrow z$ in $L^{p}\left(Q_{T}\right)$ then for all $\xi \in \mathbb{R}^{n+1}$, a.a. $(t, x) \in Q_{T}$, for a subsequence

$$
a_{j}\left(t, x, \xi ; u_{k}, z_{k}\right) \rightarrow a_{j}(t, x, \xi ; u, z) \quad(j=0,1, \ldots, n) .
$$

$\left(B_{2}\right)$ For $j=0,1, \ldots, n$

$$
\left|a_{j}(t, x, \xi ; u, z)\right| \leq g_{1}(u, z)|\xi|^{p-1}+\left[k_{1}(u, z)\right](t, x)
$$

where $g_{1}: L^{2}\left(Q_{T}\right) \times L^{p}\left(Q_{T}\right) \rightarrow \mathbb{R}^{+}$is a bounded, continuous (nonlinear) operator,

$$
\begin{aligned}
& k_{1}: L^{2}\left(Q_{T}\right) \times L^{p}\left(Q_{T}\right) \rightarrow L^{q}\left(Q_{T}\right) \text { is continuous and } \\
& \left\|k_{1}(u, z)\right\|_{L^{q}\left(Q_{T}\right)} \leq \operatorname{const}\left(1+\|u\|_{L^{2}\left(Q_{T}\right)}^{\gamma}+\|z\|_{L^{p}\left(Q_{T}\right)}^{p_{1}}\right)
\end{aligned}
$$

with some constants $\gamma>0,0<p_{1}<p-1$.
$\left(B_{3}\right)$ The following inequality holds for all $t \in[0, T]$ with some constants $c_{2}>0$, $c_{3} \geq 0, \beta \geq 0, \gamma_{1} \geq 0($ not depending on $t, u, z)$:

$$
\begin{gathered}
\sum_{j=0}^{n}\left[a_{j}(t, x, \xi ; u, z)-a_{j}\left(t, x, \xi^{\star} ; u, z\right)\right]\left(\xi_{j}-\xi_{j}^{\star}\right) \geq \\
\frac{c_{2}}{1+\|u\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\|z\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}}\left|\xi-\xi^{\star}\right|^{p}-c_{3}\left|\xi_{0}-\xi_{0}^{\star}\right|^{2} .
\end{gathered}
$$

$\left(B_{4}\right)$ For all fixed $u \in L^{2}\left(Q_{T}\right)$ the function

$$
\begin{gathered}
F_{2}: Q_{T} \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R} \text { satisfies }(t, x) \mapsto F_{2}(t, x ; u) \in L^{q}\left(Q_{T}\right) \\
\left\|F_{2}(t, x ; u)\right\|_{L^{q}\left(Q_{T}\right)} \leq \mathrm{const}\left[1+\|u\|_{L^{2}\left(Q_{T}\right)}^{\gamma}\right]
\end{gathered}
$$

(see $\left.\left(B_{2}\right)\right)$ and

$$
\left(u_{k}\right) \rightarrow u \text { in } L^{2}\left(Q_{T}\right) \text { implies } F_{2}\left(t, x ; u_{k}\right) \rightarrow F_{2}(t, x ; u) \text { in } L^{q}\left(Q_{T}\right)
$$

Finally,

$$
\max \left\{\left(\beta_{1} \beta\right) / 2, \gamma_{1}\right\}+\max \left\{\left(\beta_{1} \gamma\right) / 2, p_{1}\right\}<p-1
$$

Theorem 2.1. Assume $\left(A_{1}\right)-\left(A_{5}\right)$ and $\left(B_{1}\right)-\left(B_{4}\right)$. Then for all $u_{0} \in V_{1}, u_{1} \in L^{2}(\Omega)$, $z_{0} \in L^{2}(\Omega)$ there exists $u \in L^{\infty}\left(0, T ; V_{1}\right)$ such that

$$
u^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \quad u^{\prime \prime} \in L^{2}\left(0, T ; V_{1}^{\star}\right) \text { and } z \in L^{p}\left(0, T ; V_{2}\right), \quad z^{\prime} \in L^{q}\left(0, T ; V_{2}^{\star}\right)
$$

such that u satisfies (1.1) in the sense: for a.a. $t \in[0, T]$, all $v \in V_{1}$

$$
\begin{gather*}
\left\langle u^{\prime \prime}(t), v\right\rangle+\langle Q(u(t)), v\rangle+\int_{\Omega} \varphi(x) h^{\prime}(u(t)) v d x+\int_{\Omega} H(t, x ; u, z) v d x+ \tag{2.1}\\
\left.\int_{\Omega} \psi(x) u^{\prime}(t) v d x=\int_{\Omega} F_{1}(t, x ; z) v\right) d x
\end{gather*}
$$

and the initial conditions

$$
\begin{equation*}
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} . \tag{2.2}
\end{equation*}
$$

Further, u, z satisfy (1.2) in the sense: for a.a. $t \in(0, T)$, all $w \in V_{2}$

$$
\begin{gather*}
\left\langle z^{\prime}(t), w\right\rangle+\int_{\Omega}\left[\sum_{j=1}^{n} a_{j}(t, x, D z(t), z(t) ; u, z)\right] D_{j} w d x+ \tag{2.3}\\
\int_{\Omega} a_{0}(t, x, D z(t), z(t) ; u, z) w d x=\int_{\Omega} F_{2}(t, x ; u) w d x \text { and } \\
z(0)=z_{0} \tag{2.4}
\end{gather*}
$$

Proof. The proof is based on the results of [11], the theory of monotone operators (see, e.g. [13]) and Schauder's fixed point theorem as follows.

Consider the problem (2.1), (2.2) for u with an arbitrary fixed $z=\tilde{z} \in L^{p}\left(Q_{T}\right)$. According to [11] assumptions $\left(A_{1}\right)-\left(A_{5}\right)$ imply that there exists a unique solution $u=\tilde{u} \in L^{\infty}\left(0, T ; V_{1}\right)$ with the properties $\tilde{u}^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tilde{u}^{\prime \prime} \in L^{2}\left(0, T ; V_{1}^{\star}\right)$ satisfying (2.1) and the initial condition (2.2). Then consider problem (2.3) (2.4) for
z with the above $u=\tilde{u}$ and with $z=\tilde{z}$ functional terms (see (2.6)). According to the theory of monotone operators (see, e.g., [13]) there exists a unique solution $z \in$ $L^{p}\left(0, T ; V_{2}\right)$ of $(2.3),(2.4)$ such that $z^{\prime} \in L^{q}\left(0, T ; V_{2}^{\star}\right)$. By using the notation $S(\tilde{z})=z$, we shall show that the operator $S: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(Q_{T}\right)$ satisfies the assumptions of Schauder's fixed point theorem: it is continuous, compact and there exists a closed ball $B_{0}(R) \subset L^{p}\left(Q_{T}\right)$ such that

$$
\begin{equation*}
S\left(B_{0}(R)\right) \subset B_{0}(R) \tag{2.5}
\end{equation*}
$$

Then Schauder's fixed point theorem will imply that S has a fixed point $z^{\star} \in$ $L^{p}\left(0, T ; V_{2}\right)$. Defining u^{\star} by the solution of (2.1), (2.2) with $z=z^{\star}$, functions u^{\star}, z^{\star} satisfy (2.1) - (2.4).

Lemma 2.2. Consider problem (2.1), (2.2) for u with an arbitrary fixed $z=\tilde{z} \in$ $L^{p}\left(Q_{T}\right)$. Assumptions $\left(A_{1}\right)-\left(A_{5}\right)$ imply that there exists a unique $u=\tilde{u} \in$ $L^{\infty}\left(0, T ; V_{1}\right)$ such that $\tilde{u}^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, $\tilde{u}^{\prime \prime} \in L^{2}\left(0, T ; V_{1}^{\star}\right)$ and (2.1), (2.2) are satisfied.

Lemma 2.2 directly follows from Theorem 4.1 of [11].
Lemma 2.3. Consider the following modification of problem (2.3), (2.4) with arbitrary fixed $\tilde{u} \in L^{2}\left(Q_{T}\right)$, $\tilde{z} \in L^{p}\left(Q_{T}\right):$ find $z \in L^{p}\left(0, T ; V_{2}\right)$ such that $z^{\prime} \in L^{q}\left(0, T ; V_{2}^{\star}\right)$ and for a.a. $t \in[0, T]$, all $w \in V_{2}$

$$
\begin{gather*}
\left\langle z^{\prime}(t), w\right\rangle+\int_{\Omega}\left[\sum_{j=1}^{n} a_{j}(t, x, D z(t), z(t) ; \tilde{u}, \tilde{z})\right] D_{j} w d x+ \tag{2.6}\\
\int_{\Omega} a_{0}(t, x, D z(t), z(t) ; \tilde{u}, \tilde{z}) w d x=\int_{\Omega} F_{2}(t, x ; \tilde{u}) w d x \\
z(0)=z_{0} \tag{2.7}
\end{gather*}
$$

Assumptions $\left(B_{1}\right)-\left(B_{4}\right)$ imply that there exists a unique solution of (2.6), (2.7).
Proof. Let $a>0$ be a fixed constant. A function z is a solution of (1.2), (2.4) if and only if $\hat{z}(t)=\mathrm{e}^{-a t} z(t)$ satisfies

$$
\begin{gather*}
\hat{z}^{\prime}(t)-\mathrm{e}^{-a t} \sum_{j=1}^{n} D_{j}\left[a_{j}\left(t, x, \mathrm{e}^{a t} D \hat{z}(t), \mathrm{e}^{a t} \hat{z}(t) ; \tilde{u}, \tilde{z}\right)\right]+ \tag{2.8}\\
\mathrm{e}^{-a t} a_{0}\left(t, x, \mathrm{e}^{a t} D \hat{z}(t), \mathrm{e}^{a t} \hat{z}(t) ; \tilde{u}, \tilde{z}\right)+a \hat{z}(t)=\mathrm{e}^{-a t} F_{2}(t, x ; \tilde{u}), \\
\hat{z}(0)=z_{0} . \tag{2.9}
\end{gather*}
$$

We shall apply the theory of monotone operators to (2.8), (2.9) with sufficiently large $a>0$.

Define (with fixed $\left.\tilde{u} \in L^{2}\left(Q_{T}\right), \tilde{z} \in L^{p}\left(Q_{T}\right), t \in[0, T]\right)$ operator $\hat{A}_{\tilde{u}, \tilde{z}}$ by

$$
\begin{gathered}
\left\langle\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), w\right\rangle=\int_{\Omega} \mathrm{e}^{-a t} \sum_{j=1}^{n} a_{j}\left(t, x, \mathrm{e}^{a t} D \hat{z}(t), \mathrm{e}^{a t} \hat{z}(t) ; \tilde{u}, \tilde{z}\right) D_{j} w d x+ \\
\int_{\Omega} \mathrm{e}^{-a t} a_{0}\left(t, x, \mathrm{e}^{a t} D \hat{z}(t), \mathrm{e}^{a t} \hat{z}(t) ; \tilde{u}, \tilde{z}\right) w d x+a \int_{\Omega} \hat{z} w d x
\end{gathered}
$$

$$
\hat{z} \in L^{p}\left(0, T ; V_{2}\right), \quad w \in V_{2} .
$$

By $\left(B_{1}\right),\left(B_{2}\right)$ operator $\hat{A}_{\tilde{u}, \tilde{z}}: L^{p}\left(0, T ; V_{2}\right) \rightarrow L^{q}\left(0, T ; V_{2}^{\star}\right)$ is bounded and demicontinuous (see, e.g. [13]). Further, it is uniformly monotone if $a>0$ is sufficiently large.

Indeed, by $\left(B_{3}\right)$, for arbitrary $\hat{z}_{1}, \hat{z}_{2} \in L^{p}\left(0, T ; V_{2}\right)$

$$
\begin{gather*}
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}, \tilde{z}}\left(\hat{z}_{1}\right)-\hat{A}_{\tilde{u}, \tilde{z}}\left(\hat{z}_{2}\right), \hat{z}_{1}-\hat{z}_{2}\right\rangle d t= \tag{2.10}\\
\int_{Q_{T}} \mathrm{e}^{-2 a t} \sum_{j=1}^{n}\left[a_{j}\left(t, x, \mathrm{e}^{a t} D \hat{z}_{1}(t), \mathrm{e}^{a t} \hat{z}_{1}(t) ; \tilde{u}, \tilde{z}\right)-\right. \\
\left.a_{j}\left(t, x, \mathrm{e}^{a t} D \hat{z}_{2}(t), \mathrm{e}^{a t} \hat{z}_{2}(t) ; \tilde{u}, \tilde{z}\right)\right] \mathrm{e}^{a t} D_{j}\left(\hat{z}_{1}-z_{2}\right) d t d x+ \\
\int_{Q_{T}} \mathrm{e}^{-2 a t}\left[a_{0}\left(t, x, \mathrm{e}^{a t} D \hat{z}_{1}(t), \mathrm{e}^{a t} \hat{z}_{1}(t) ; \tilde{u}, \tilde{z}\right)-\right. \\
\left.a_{0}\left(t, x, \mathrm{e}^{a t} D \hat{z}_{2}(t), \mathrm{e}^{a t} \hat{z}_{2}(t) ; \tilde{u}, \tilde{z}\right)\right] \mathrm{e}^{a t}\left(\hat{z}_{1}-\hat{z}_{2}\right) d t d x \geq \\
c_{2} \\
\frac{c_{3} \int_{Q_{T}}\left|\hat{z}_{1}-\hat{z}_{2}\right|^{2} d t d x+a \int_{Q_{T}}^{\beta}\left|\hat{z}_{1}-\hat{z}_{2}\right|^{2} d t d x \geq}{c_{L^{2}\left(Q_{T}\right)}^{\beta}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}} \int_{Q_{T}} \mathrm{e}^{-2 a t}\left[\mathrm{e}^{a t}\left|D \hat{z}_{1}-D \hat{z}_{2}\right|^{p}+\mathrm{e}^{a t}\left|\hat{z}_{1}-\hat{z}_{2}\right|^{p}\right] d t d x-} \\
\frac{1+\|\tilde{u}\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}}{l} \int_{Q_{T}}\left[\left|D \hat{z}_{1}-D \hat{z}_{2}\right|^{p}+\left|\hat{z}_{1}-\hat{z}_{2}\right|^{p}\right] d t d x
\end{gather*}
$$

with some constant $c_{2}^{\prime}>0$ (depending on T) if $a>0$ is sufficiently large.
Consequently, according to the theory of monotone operators (see, e.g. [13]) problem (2.8), (2.9) for \hat{z} has a unique weak solution, thus (2.6), (2.7) has a unique solution.

By using Lemmas 2.2, 2.3 we may define operator $S: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(Q_{T}\right)$ as follows. Let $\tilde{z} \in L^{p}\left(Q_{T}\right)$ be an arbitrary element. By Lemma 2.2 there exists a unique solution \tilde{u} of (2.1), (2.2). According to Lemma 2.3 there exists a unique solution z of (2.6), (2.7). Operator S is defined by $S(\tilde{z})=z$.

Lemma 2.4. The operator $S: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(Q_{T}\right)$ is compact.
Proof. Let $\left(\tilde{z}_{k}\right)$ be a bounded sequence in $L^{p}\left(Q_{T}\right)$ and consider the (unique) solution \tilde{u}_{k} of (2.1), (2.2) with fixed $z=\tilde{z}_{k}$. We show that $\left(\tilde{u}_{k}\right)$ is bounded in $L^{\infty}\left(0, T ; V_{1}\right)$ and $\left(\tilde{u}_{k}^{\prime}\right)$ is bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$. Indeed, applying the arguments in the proof of Theorem 2.1 in [11], one gets the solutions \tilde{u}_{k} of (2.1), (2.2) as the (weak) limit of Galerkin approximations

$$
\tilde{u}_{m k}(t)=\sum_{l=1}^{m} g_{l m}^{k}(t) w_{l} \text { where } g_{l m}^{k} \in W^{2,2}(0, T)
$$

and w_{1}, w_{2}, \ldots is a linearly independent system in V_{1} such that the linear combinations are dense in V_{1}, further, the functions $\tilde{u}_{m k}$ satisfy (for $j=1, \ldots, m$)

$$
\begin{equation*}
\left\langle\tilde{u}_{m k}^{\prime \prime}(t), w_{j}\right\rangle+\left\langle Q\left(\tilde{u}_{m k}(t)\right), w_{j}\right\rangle+\int_{\Omega} \varphi(x) h^{\prime}\left(\tilde{u}_{m k}(t)\right) w_{j} d x+ \tag{2.11}
\end{equation*}
$$

$$
\begin{gather*}
\int_{\Omega} H\left(t, x ; \tilde{u}_{m k}, \tilde{z}_{k}\right) w_{j} d x+\int_{\Omega} \psi(x) \tilde{u}_{m k}^{\prime}(t) w_{j} d x=\int_{\Omega} F_{1}\left(t, x ; \tilde{z}_{k}\right) w_{j} d x \\
\tilde{u}_{m k}(0)=u_{m 0}, \quad \tilde{u}_{m k}^{\prime}(0)=u_{m 1} \tag{2.12}
\end{gather*}
$$

where $u_{m 0}, u_{m 1}(m=1,2, \ldots)$ are linear combinations of $w_{1}, w_{2}, \ldots w_{m}$, satisfying $\left(u_{m 0}\right) \rightarrow u_{0}$ in V_{1} and $\left(u_{m 1}\right) \rightarrow u_{1}$ in $L^{2}(\Omega)$ as $m \rightarrow \infty$.

Multiplying (2.11) by $\left(g_{l m}^{k}\right)^{\prime}(t)$, summing with respect to j and integrating over $(0, t)$, by Young's inequality we find

$$
\begin{gather*}
\frac{1}{2}\left\|\tilde{u}_{m k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\langle Q\left(\tilde{u}_{m k}(t)\right), \tilde{u}_{m k}(t)\right\rangle+\int_{\Omega} \varphi(x) h\left(\tilde{u}_{m k}(t)\right) d x+ \tag{2.13}\\
\int_{0}^{t}\left[\int_{\Omega} H\left(\tau, x ; \tilde{u}_{m k}, \tilde{z}_{k}\right) \tilde{u}_{m k}^{\prime}(\tau) d x\right] d \tau+\int_{0}^{t}\left[\int_{\Omega} \psi(x)\left|\tilde{u}_{m k}^{\prime}(\tau)\right|^{2} d x\right] d \tau= \\
\int_{0}^{t}\left[\int_{\Omega} F_{1}\left(\tau, x ; \tilde{z}_{k}\right) \tilde{u}_{m k}^{\prime}(\tau) d x\right] d \tau+\frac{1}{2}\left\|\tilde{u}_{m k}^{\prime}(0)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(\tilde{u}_{m k}(0)\right), \tilde{u}_{m k}(0)\right\rangle+ \\
\int_{\Omega} \varphi(x) h\left(\tilde{u}_{m k}(0)\right) d x \leq \frac{1}{2} \int_{0}^{T}\left\|F_{1}\left(\tau, x ; \tilde{z}_{k}\right)\right\|_{L^{2}(\Omega)}^{2} d \tau+\frac{1}{2} \int_{0}^{T}\left\|\tilde{u}_{m k}^{\prime}(\tau)\right\|_{L^{2}(\Omega)}^{2}+\mathrm{const}
\end{gather*}
$$

where the constant is not depending on m, k, t. (See [11].)
By using $\left(A_{2}\right),\left(A_{4}\right),\left(A_{5}\right)$ and the Cauchy-Schwarz inequality, we obtain from (2.13)

$$
\begin{gather*}
\left.\frac{1}{2}\left\|\tilde{u}_{m k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}}{2} \| \tilde{u}_{m k}(t)\right) \|_{V_{1}}^{2}+c_{1} \int_{\Omega} h\left(\tilde{u}_{m k}(t)\right) d x \leq \tag{2.14}\\
\int_{0}^{T}\left\|F_{1}\left(\tau, x ; \tilde{z}_{k}\right)\right\|_{L^{2}(\Omega)}^{2} d \tau+ \\
\text { const }\left\{1+\int_{0}^{t}\left\|\tilde{u}_{m k}^{\prime}(\tau)\right\|_{L^{2}(\Omega)}^{2} d \tau+\int_{0}^{t}\left[\int_{\Omega} h\left(\tilde{u}_{m k}(\tau)\right) d x\right] d \tau\right\} .
\end{gather*}
$$

Consequently,

$$
\begin{gathered}
\left\|\tilde{u}_{m k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} h\left(\tilde{u}_{m k}(t)\right) d x \leq \\
\text { const }\left\{1+\int_{0}^{t}\left[\left\|\tilde{u}_{m k}^{\prime}(\tau)\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} h\left(\tilde{u}_{m k}(\tau)\right) d x\right]\right\}
\end{gathered}
$$

where the constant is not depending on k, m, t. Thus by Gronwall's lemma

$$
\begin{equation*}
\left\|\tilde{u}_{m k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} h\left(\tilde{u}_{m k}(t)\right) d x \leq \mathrm{const} \tag{2.15}
\end{equation*}
$$

and so by $\left(A_{1}\right)$ and (2.14)

$$
\begin{equation*}
\left\|\tilde{u}_{m k}(t)\right\|_{V_{1}} \leq \text { const } \tag{2.16}
\end{equation*}
$$

where the constants are not depending on k, m, t. The inequalities (2.15), (2.16) imply that the weak limits $\tilde{u}_{k}, \tilde{u}_{k}^{\prime}$ of $\left(\tilde{u}_{m k}\right)$ and $\left(\tilde{u}_{m k}^{\prime}\right)$, respectively, are bounded in $L^{\infty}\left(0, T ; V_{1}\right), L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, respectively.

Consequently, by the well known compact imbedding theorem (see [5]) there is a subsequence of $\left(\tilde{u}_{k}\right)$, again denoted by $\left(\tilde{u}_{k}\right)$, for simplicity, which is convergent in $L^{2}\left(Q_{T}\right)$ to some \tilde{u} and $\left(\tilde{u}_{k}\right) \rightarrow \tilde{u}$ a.e. in Q_{T}.

Consider the sequence of solutions z_{k} of (2.6) (2.7) with $\tilde{u}=\tilde{u}_{k}, \tilde{z}=\tilde{z}_{k}$. We show that the sequence z_{k} is bounded in $L^{p}\left(0, T ; V_{2}\right)$. Indeed, for the functions $\hat{z}_{k}=\mathrm{e}^{-a t} z_{k}$ we have

$$
\begin{equation*}
\left\langle\hat{z}_{k}^{\prime}, w\right\rangle+\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right), w\right\rangle=\left\langle\mathrm{e}^{-a t} F_{2}\left(t, x ; \tilde{u}_{k}\right), w\right\rangle, \tag{2.17}
\end{equation*}
$$

thus, integrating (2.17) over $(0, T)$ with $w=\hat{z}_{k}$ one obtains

$$
\begin{align*}
\frac{1}{2}\left\|\hat{z}_{k}(T)\right\|_{L^{2}(\Omega)}^{2}- & \frac{1}{2}\left\|\hat{z}_{k}(0)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right), \hat{z}_{k}\right\rangle d t= \tag{2.18}\\
& \int_{0}^{T}\left\langle\mathrm{e}^{-a t} F_{2}\left(t, x ; \tilde{u}_{k}\right), w\right\rangle d t .
\end{align*}
$$

Applying the inequality (2.10) to $\hat{z}_{1}=\hat{z}_{k}$ and $\hat{z}_{2}=0$, we obtain

$$
\begin{gather*}
\frac{\text { const }}{1+\left\|\tilde{u}_{k}\right\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\left\|\tilde{z}_{k}\right\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}} \int_{Q_{T}}\left[\left|D \hat{z}_{k}\right|^{p}+\left|\hat{z}_{k}\right|^{p}\right] d t \leq \tag{2.19}\\
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right)-\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(0), \hat{z}_{k}-0\right\rangle d t= \\
\left.\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right), \hat{z}_{k}\right\rangle d t-\int_{0}^{T} \hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(0), \hat{z}_{k}\right\rangle d t .
\end{gather*}
$$

By (2.18)

$$
\begin{gather*}
\left|\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right), \hat{z}_{k}\right\rangle d t\right| \leq\left|\int_{0}^{T}\left\langle\mathrm{e}^{-a t} F_{2}\left(t, x ; \tilde{u}_{k}\right), w\right\rangle d t\right|+\mathrm{const} \leq \tag{2.20}\\
\operatorname{const}\left\|F_{2}\left(t, x ; \tilde{u}_{k}\right)\right\|_{L^{q}\left(Q_{T}\right)}\left\|\hat{z}_{k}\right\|_{L^{p}\left(Q_{T}\right)}
\end{gather*}
$$

and by $\left(B_{2}\right)$

$$
\begin{equation*}
\left|\int_{0}^{T} \hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(0), \hat{z}_{k}\right\rangle d t \mid \leq \mathrm{const}\left\|\hat{z}_{k}\right\|_{L^{p}\left(Q_{T}\right)} \tag{2.21}
\end{equation*}
$$

Hence by (2.19), (2.20), ($\left.B_{4}\right),\left(\hat{z}_{k}\right)$ is bounded in $L^{p}\left(0, T ; V_{2}\right)$ (as $p>1$ and $\left\|\tilde{u}_{k}\right\|_{L^{2}\left(Q_{T}\right)}$, $\left\|\tilde{z}_{k}\right\|_{L^{p}\left(Q_{T}\right)}$ are bounded).

Further, the equality (2.17) implies that $\left(\hat{z}_{k}^{\prime}\right)$ is bounded in $L^{q}\left(0, T ; V_{2}^{\star}\right)$. So by the well known compact imbedding theorem (see [5]) there is a subsequence of (\hat{z}_{k}) which is convergent in $L^{p}\left(Q_{T}\right)$. Therefore, the corresponding subsequence of $\left(z_{k}\right)$ is convergent, too in $L^{p}\left(Q_{T}\right)$.

Lemma 2.5. The operator $S: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(Q_{T}\right)$ is continuous.
Proof. Assume that

$$
\begin{equation*}
\left(\tilde{z}_{k}\right) \rightarrow \tilde{z} \text { in } L^{p}\left(Q_{T}\right) \tag{2.22}
\end{equation*}
$$

Now we show that for the solutions \tilde{u}_{k} of (2.1), (2.2) with $z=\tilde{z}_{k}$

$$
\begin{equation*}
\left(\tilde{u}_{k}\right) \rightarrow \tilde{u} \text { in } L^{2}\left(Q_{T}\right) \tag{2.23}
\end{equation*}
$$

and a.e. in Q_{T} for a subsequence where \tilde{u} is the solution of (2.1), (2.2) with $z=\tilde{z}$.
In the proof of (2.23) we use the (uniqueness) Theorem 4.1 of [11]. Since (\tilde{z}_{k}) is bounded in $L^{p}\left(0, T ; V_{2}\right),\left(\tilde{u}_{k}\right)$ is bounded in $L^{2}\left(Q_{T}\right)$ (see the proof of Lemma 2.4).

Further, \tilde{u} and \tilde{u}_{k} are weak solutions of (1.1) (i.e. of (2.1) with $z=\tilde{z}$ and $z=\tilde{z}_{k}$, respectively and satisfy the initial conditions (2.2), thus

$$
\begin{gather*}
\tilde{u}^{\prime \prime}(t)+Q(\tilde{u}(t))+\varphi(x) h^{\prime}(\tilde{u}(t))+H(t, x ; \tilde{u}, \tilde{z})+ \tag{2.24}\\
\psi(x) \tilde{u}^{\prime}(t)=F_{1}(t, x ; \tilde{z}) \\
\tilde{u}_{k}^{\prime \prime}(t)+Q\left(\tilde{u}_{k}(t)\right)+\varphi(x) h^{\prime}\left(\tilde{u}_{k}(t)\right)+H\left(t, x ; \tilde{u}_{k}, \tilde{z}\right)+ \tag{2.25}\\
\psi(x) \tilde{u}_{k}^{\prime}(t)=F_{1}\left(t, x ; \tilde{z}_{k}\right)+H\left(t, x ; \tilde{u}_{k}, \tilde{z}\right)-H\left(t, x ; \tilde{u}_{k}, \tilde{z}_{k}\right) .
\end{gather*}
$$

Theorem 4.1 of [11] implies that for the solutions \tilde{u} of (2.24) and \tilde{u}_{k} of (2.25) we have for any $s \in[0, T]$ an estimation of the form

$$
\begin{gathered}
\left\|\tilde{u}_{k}(s)-\tilde{u}(s)\right\|_{L^{2}(\Omega)}^{2} \leq \operatorname{const} \int_{Q_{T}}\left|\int_{0}^{t}\left[F_{1}\left(\tau, x ; \tilde{z}_{k}\right)-F_{1}(\tau, x ; \tilde{z})\right] d \tau\right|^{2} d t d x+ \\
\quad \text { const } \int_{Q_{T}}\left|\int_{0}^{t}\left[H\left(\tau, x ; \tilde{u}_{k}, \tilde{z}_{k}\right)-H\left(\tau, x ; \tilde{u}_{k}, \tilde{z}\right)\right] d \tau\right|^{2} d t d x
\end{gathered}
$$

where the right hand side is converging to 0 as $k \rightarrow \infty$ by $\left(A_{4}\right),\left(A_{5}\right)$.
So we have proved (2.23).
Now we show that (2.22), (2.23) imply:

$$
\begin{equation*}
\left(z_{k}\right) \rightarrow z \text { in } L^{p}\left(Q_{T}\right), \text { i.e. }\left(\hat{z}_{k}\right) \rightarrow \hat{z} \text { in } L^{p}\left(Q_{T}\right) \tag{2.26}
\end{equation*}
$$

for the solutions of (2.6), (2.7) and (2.8), (2.9), respectively (in the case of z_{k}, \hat{z}_{k}, instead of \tilde{u}, \tilde{z} we have $\left.\tilde{u}_{k}, \tilde{z}_{k}\right)$. Since

$$
\begin{gathered}
\left\langle\left(\hat{z}_{k}-\hat{z}\right)^{\prime}, \hat{z}_{k}-\hat{z}\right\rangle+\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right)-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle= \\
\left\langle\mathrm{e}^{-a t} F_{2}\left(t, x ; \tilde{u}_{k}\right)-\mathrm{e}^{-a t} F_{2}(t, x ; \tilde{u}), \hat{z}_{k}-\hat{z}\right\rangle,
\end{gathered}
$$

integrating over $(0, T)$ with respect to t, we find

$$
\begin{gather*}
\frac{1}{2}\left\|\hat{z}_{k}(T)-\hat{z}(T)\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\left\|\hat{z}_{k}(0)-\hat{z}(0)\right\|_{L^{2}(\Omega)}^{2}+ \tag{2.27}\\
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right)-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t= \\
\int_{0}^{T}\left\langle\mathrm{e}^{-a t} F_{2}\left(t, x ; \tilde{u}_{k}\right)-\mathrm{e}^{-a t} F_{2}(t, x ; \tilde{u}), \hat{z}_{k}-\hat{z}\right\rangle d t
\end{gather*}
$$

where by (2.10)

$$
\begin{gather*}
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right)-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t= \tag{2.28}\\
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}\left(\hat{z}_{k}\right)-\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t+\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(\hat{z})-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t \geq \\
\frac{c_{2}^{\prime}}{1+\left\|\tilde{u}_{k}\right\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\left\|\tilde{z}_{k}\right\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}} \int_{Q_{T}}\left[\left|D \hat{z}_{k}-D \hat{z}\right|^{p}+\left|\hat{z}_{k}-\hat{z}\right|^{p}\right] d t d x+ \\
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(\hat{z})-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t .
\end{gather*}
$$

By (2.22), ($\left.B_{1}\right),\left(B_{2}\right)$, Vitali's theorem and Hölder's inequality

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{T}\left\langle\hat{A}_{\tilde{u}_{k}, \tilde{z}_{k}}(\hat{z})-\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}_{k}-\hat{z}\right\rangle d t=0 \tag{2.29}
\end{equation*}
$$

as $\left\|\hat{z}_{k}-\hat{z}\right\|_{L^{p}\left(Q_{T}\right)}$ is bounded. Similarly, the right hand side of (2.27) is coverging to 0 by $\left(B_{4}\right)$. Therefore, (2.27) - (2.29) imply (2.26).

Lemma 2.6. There is a closed ball

$$
\overline{B_{R}(0)}=\left\{z \in L^{p}\left(Q_{T}\right):\|z\|_{L^{p}\left(Q_{T}\right)} \leq R\right\}
$$

such that $S\left(\overline{B_{R}(0)}\right) \subset \overline{B_{R}(0)}$.
Proof. According to (2.14) we have for the sequence (\tilde{u}_{m}) of Galerkin approximation of the solution of (2.1), (2.2) (with $z=\tilde{z}$)

$$
\begin{gather*}
\frac{1}{2}\left\|\tilde{u}_{m}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}}{2}\left\|\tilde{u}_{m}(t)\right\|_{V_{1}}^{2}+c_{1} \int_{\Omega} h\left(\tilde{u}_{m}(t)\right) d x \leq \tag{2.30}\\
\frac{1}{2} \int_{0}^{T}\left\|F_{1}(\tau, x ; \tilde{z})\right\|_{L^{2}(\Omega)}^{2} d \tau+\mathrm{const} \int_{0}^{t}\left\|\tilde{u}_{m}^{\prime}(\tau)\right\|_{L^{2}(\Omega)}^{2} d \tau+ \\
\int_{0}^{t}\left[\int_{\Omega} h\left(\tilde{u}_{m}(\tau)\right) d x\right] d \tau+\mathrm{const}
\end{gather*}
$$

where the constants are not depending on m, t, \tilde{z}. Hence, by Gronwall's lemma one obtains

$$
\begin{gather*}
\left\|\tilde{u}_{m}^{\prime}(t)\right\|_{H}^{2}+\int_{\Omega} h\left(\tilde{u}_{m}(t)\right) d x \leq \mathrm{const}\left[1+\int_{0}^{T}\left\|F_{1}(\tau, x ; \tilde{z})\right\|_{L^{2}(\Omega)}^{2} d \tau\right]+ \tag{2.31}\\
\text { const } \int_{0}^{t}\left[1+\int_{0}^{T}\left\|F_{1}(\tau, x ; \tilde{z})\right\|_{L^{2}(\Omega)}^{2} d \tau \cdot \mathrm{e}^{t-s}\right] d s= \\
\text { const }\left[1+\int_{0}^{T}\left\|F_{1}(\tau, x ; \tilde{z})\right\|_{L^{2}(\Omega)}^{2} d \tau\right]
\end{gather*}
$$

where the constants are independent of m, t, \tilde{z}. Thus by (2.30) and $\left(A_{5}\right)$ we find

$$
\left\|\tilde{u}_{m}(t)\right\|_{V_{1}}^{2} \leq \mathrm{const}\left[1+\int_{0}^{T}\left\|F_{1}(\tau, x ; \tilde{z})\right\|_{L^{2}(\Omega)}^{2} d \tau\right] \leq \operatorname{const}\left[1+\|\tilde{z}\|_{L^{p}\left(0, T ; V_{2}\right)}^{\beta_{1}}\right]
$$

which implies (for the solution \tilde{u} of (2.1), (2.2), the limit of $\left(\tilde{u}_{m}\right)$)

$$
\begin{equation*}
\|\tilde{u}\|_{L^{2}\left(Q_{T}\right)}^{2} \leq \mathrm{const}\left[1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\beta_{1}}\right] . \tag{2.32}
\end{equation*}
$$

On the other hand, similarly to (2.19) - (2.21), by $\left(B_{2}\right),\left(B_{4}\right)$ we have for $\hat{z}(t)=$ $\mathrm{e}^{-a t} z(t)$ (where z is the solution of (2.3), (2.4))

$$
\begin{gathered}
\frac{\text { const }}{1+\|\tilde{u}\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}} \int_{Q_{T}}\left[|D \hat{z}|^{p}+|\hat{z}|^{p}\right] d t \leq \\
\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}, \tilde{z}}(\hat{z}), \hat{z}\right\rangle d t-\int_{0}^{T}\left\langle\hat{A}_{\tilde{u}, \tilde{z}}(0), \hat{z}\right\rangle d t \leq
\end{gathered}
$$

$$
\begin{aligned}
& \text { const }+ \text { const }\left\|F_{2}(t, x ; \tilde{u})\right\|_{L^{q}\left(Q_{T}\right)}\|\hat{z}\|_{L^{p}\left(Q_{T}\right)}+\operatorname{const}\left\|k_{1}(\tilde{u}, \tilde{z})\right\|_{L^{q}\left(Q_{T}\right)}\|\hat{z}\|_{L^{p}\left(Q_{T}\right)} \leq \\
& \text { const }+\operatorname{const}\left(1+\|\tilde{u}\|_{L^{2}\left(Q_{T}\right)}^{\gamma}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{p_{1}}\right)\|\hat{z}\|_{L^{p}\left(Q_{T}\right)} \leq \\
& \text { const }+\operatorname{const}\left(1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\beta_{1} \gamma / 2}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{p_{1}}\right)\|\hat{z}\|_{L^{p}\left(Q_{T}\right)} \leq \\
& \tilde{c}_{1}+\tilde{c}_{2}\left(1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\left.\max \left(\beta_{1} \gamma\right) / 2, p_{1}\right\}}\right)\|\hat{z}\|_{L^{p}\left(Q_{T}\right)} .
\end{aligned}
$$

Thus for $\|\hat{z}\|_{L^{p}\left(Q_{T}\right)} \geq \tilde{c}_{1} / \tilde{c}_{2}$

$$
\begin{gather*}
\|\hat{z}\|_{L^{p}\left(Q_{T}\right)}^{p-1} \leq \operatorname{const}\left[1+\|\tilde{u}\|_{L^{2}\left(Q_{T}\right)}^{\beta}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}\right]\left[1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\max \left\{\left(\beta_{1} \gamma\right) / 2, p_{1}\right\}}\right] \leq \tag{2.33}\\
\operatorname{const}\left[\left(1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\beta_{1}}\right)^{\beta / 2}+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\gamma_{1}}\right] \cdot\left[1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\max \left\{\left(\beta_{1} \gamma\right) / 2, p_{1}\right\}}\right] \leq \\
\operatorname{const}\left[1+\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)}^{\delta}\right]
\end{gather*}
$$

where

$$
\begin{equation*}
\delta=\max \left\{\left(\beta_{1} \beta\right) / 2, \gamma_{1}\right\}+\max \left\{\left(\beta_{1} \gamma\right) / 2, p_{1}\right\} \tag{2.34}
\end{equation*}
$$

By $\left(B_{4}\right) \delta<p-1$, thus for sufficiently large R

$$
\tilde{z} \in \overline{B_{R}(0)}=\left\{\tilde{z} \in L^{p}\left(Q_{T}\right), \quad\|\tilde{z}\|_{L^{p}\left(Q_{T}\right)} \leq R\right\}
$$

implies

$$
\|z\|_{L^{p}\left(Q_{T}\right)} \leq R \text {, i.e. } z \in \overline{B_{R}(0)}
$$

(The norm of $\|z\|_{L^{p}\left(Q_{T}\right)}$ can be estimated by $\|\hat{z}\|_{L^{p}\left(Q_{T}\right)}$, multiplied by a constant.) So the proof of Lemma 2.6 is completed.

Finally, Lemmas 2.4-2.6 and Schauder's fixed point theorem imply that S has a fixed point and, consequently, there exists a solution of (2.1) - (2.4).

3. Examples

Let the operator Q be defined by

$$
\langle Q u, v\rangle=\int_{\Omega}\left[\sum_{j, l=1}^{n} a_{j l}(x)\left(D_{l} u\right)\left(D_{j} v\right)+d(x) u v\right] d x+
$$

where $a_{j l}, d \in L^{\infty}(\Omega), a_{j l}=a_{l j}, \sum_{j, l=1}^{n} a_{j l}(x) \xi_{j} \xi_{l} \geq c_{0}|\xi|^{2}, d \geq c_{0}$ with some positive constant c_{0}. Then, clearly, assumption $\left(A_{1}\right)$ is satisfied.

If h is a C^{2} function such that $h(\eta)=|\eta|^{\lambda+1}$ if $|\eta|>1$ then $\left(A_{3}\right)$ is satisfied.
The condition $\left(A_{4}\right)$ is satisfied e.g. if

$$
\begin{gathered}
H(t, x ; u, z)=\chi(t, x) g_{1}\left(L_{1} z\right) g_{2}\left(L_{2} u\right) \text { where } \chi \in L^{\infty}\left(Q_{T}\right), \\
L_{1}: L^{p}\left(0, T ; V_{2}\right) \rightarrow L^{2}\left(Q_{T}\right), \quad L_{2}: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)
\end{gathered}
$$

are continuous linear operators (with the Volterra property); g_{1} is a globally Lipschitz bounded function, g_{2} is a globally Lipschitz function. In the particular case when

$$
\begin{equation*}
L_{2} \text { is an } L^{2}\left(Q_{T}\right) \rightarrow L^{\infty}\left(Q_{T}\right) \text { bounded linear operator } \tag{3.1}
\end{equation*}
$$

then g_{2} may be a locally Lipschitz function satisfying

$$
\left|g_{2}(\eta)\right| \leq \operatorname{const}|\eta|^{(\lambda+1) / 2} \text { for }|\eta|>1
$$

The operator L_{2} has the property (3.1) e.g. if

$$
\begin{gathered}
\left(L_{2} u\right)(t, x)=\int_{Q_{t}} \tilde{K}(t, x ; \tau, \xi) u(\tau, \xi) d \tau d \xi \text { where } \\
\int_{Q_{T}}|\tilde{K}(t, x ; \tau, \xi)|^{2} d \tau d \xi \leq \mathrm{const} \text { for all }(t, x) \in Q_{T}
\end{gathered}
$$

The operator $F_{1}: Q_{T} \times L^{p}\left(0, T ; V_{2}\right) \rightarrow \mathbb{R}$ may have the form

$$
F_{1}(t, x ; z)=f_{1}\left(t, x, L_{3} z\right)
$$

where $f_{1}(t, x, \mu)$ is measurable in (t, x), continuous in μ and

$$
\begin{gathered}
\left|f_{1}(t, x, \mu)\right| \leq \mathrm{const}|\mu|^{\beta_{1} / 2}+\tilde{f}_{1}(t, x) \text { where } \\
0 \leq \beta_{1} \leq 2, \quad \tilde{f}_{1} \in L^{2}\left(Q_{T}\right), \quad L_{3}: L^{p}\left(0, T ; V_{2}\right) \rightarrow L^{2}\left(Q_{T}\right)
\end{gathered}
$$

is a linear continuous operator. Then $\left(A_{5}\right)$ is fulfilled. In the particular case when

$$
L_{3} \text { is } L^{p}\left(0, T ; V_{2}\right) \rightarrow L^{\infty}\left(Q_{T}\right)
$$

linear and continuous then $\beta_{1} \leq 2$ is not assumed.
Now we formulate examples for a_{j} satisfying $\left(B_{1}\right)-\left(B_{3}\right)$:

$$
a_{j}(t, x, \xi ; u, z)=\alpha\left(t, x, L_{4} u, L_{5} z\right) \xi_{j}|\zeta|^{p-2}, \quad j=1, \ldots, n \text { where } \zeta=\left(\xi_{1}, \ldots \xi_{n}\right)
$$

$\alpha\left(t, x, \nu_{1}, \nu_{2}\right)$ is measurable in (t, x), continuous in ν_{1}, ν_{2} and satisfies

$$
\frac{\text { const }}{1+\left|\nu_{1}\right|^{\beta}+\left|\nu_{2}\right|^{\gamma_{1}}} \leq \alpha\left(t, x, \nu_{1}, \nu_{2}\right) \leq \operatorname{const}\left(1+\left|\nu_{1}\right|^{\gamma}+\left|\nu_{2}\right|^{p_{1}}\right)
$$

with some positive constants, $L_{4}, L_{5}: L^{2}\left(Q_{T}\right) \rightarrow L^{\infty}\left(Q_{T}\right)$ are continuous linear operators,

$$
a_{0}(t, x, \xi ; u, z)=\alpha_{0}\left(t, x, L_{6} u, L_{7} z\right) \xi_{0}\left|\xi_{0}\right|^{p-2}+\alpha_{1}(z)
$$

where $\alpha_{0}\left(t, x, \nu_{1}, \nu_{2}\right)$ is measurable in (t, x), continuous in ν_{1}, ν_{2},

$$
\frac{\text { const }}{1+\left|\nu_{1}\right|^{\beta}+\left|\nu_{2}\right|^{\gamma_{1}}} \leq \alpha_{0}\left(t, x, \nu_{1}, \nu_{2}\right) \leq \operatorname{const}\left(1+\left|\nu_{1}\right|^{\gamma}+\left|\nu_{2}\right|^{p_{1}}\right)
$$

with some positive constants, $L_{6}, L_{7}: L^{2}\left(Q_{T}\right) \rightarrow L^{\infty}\left(Q_{T}\right)$ are continuous linear operators and α_{1} is a globally Lipschitz function. If the values of α, α_{0} are between two positive constants then $L_{4}-L_{7}$ may be $L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)$ continuous linear operators.

Finally, the function $F_{2}: Q_{T} \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ may have the form

$$
F_{2}(t, x ; u)=f_{2}\left(t, x, L_{8} u\right)
$$

where $f_{2}(t, x, \mu)$ is measurable in (t, x), continuous in μ and

$$
\begin{gathered}
\left|f_{2}(t, x, \mu)\right| \leq \mathrm{const}|\mu|^{\gamma}+\tilde{f}_{2}(t, x), \\
0 \leq \gamma \leq 1, \quad \tilde{f}_{2} \in L^{2}\left(Q_{T}\right) \text { and } L_{8}: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)
\end{gathered}
$$

is a continuous linear operator. Then $\left(B_{4}\right)$ is satisfied. In the particular case when

$$
L_{8} \text { is an } L^{2}\left(Q_{T}\right) \rightarrow L^{\infty}\left(Q_{T}\right) \text { bounded linear operator }
$$

then $\gamma \leq 1$ is not assumed.

4. Solutions in $(0, \infty)$

Now we formulate an existence theorem with respect to solutions for $t \in(0, \infty)$. Denote by $L_{l o c}^{p}\left(0, \infty ; V_{1}\right)$ the set of functions $u:(0, \infty) \rightarrow V_{1}$ such that for each fixed finite $T>0$, their restrictions to $(0, T)$ satisfy $\left.u\right|_{(0, T)} \in L^{p}\left(0, T ; V_{1}\right)$ and let $Q_{\infty}=(0, \infty) \times \Omega, L_{l o c}^{\alpha}\left(Q_{\infty}\right)$ the set of functions $u: Q_{\infty} \rightarrow \mathbb{R}$ such that $\left.u\right|_{Q_{T}} \in L^{\alpha}\left(Q_{T}\right)$ for any finite T.

Now we formulate assumptions on H, F_{1}, a_{j}, F_{2}.
$\left(\tilde{A}_{4}\right)$ The function $H: Q_{\infty} \times L_{l o c}^{2}\left(Q_{\infty}\right) \times L_{l o c}^{p}\left(Q_{\infty}\right) \rightarrow \mathbb{R}$ is such that for all fixed $u \in L_{l o c}^{2}\left(Q_{\infty}\right), z \in L_{l o c}^{p}\left(Q_{\infty}\right)$ the function $(t, x) \stackrel{ }{\mapsto} H(t, x ; u, z)$ is measurable, H has the Volterra property (see $\left(A_{4}\right)$) and for each fixed finite $T>0$, the restriction H_{T} of H to $Q_{T} \times L^{2}\left(Q_{T}\right) \times L^{p}\left(Q_{T}\right)$ satisfies $\left(A_{4}\right)$.
Remark. Since H has the Volterra property, this restriction H_{T} is well defined by the formula

$$
H_{T}(t, x ; \tilde{u}, \tilde{z})=H(t, x ; u, z), \quad(t, x) \in Q_{T} \quad \tilde{u} \in L^{2}\left(Q_{T}\right), \tilde{z} \in L^{p}\left(Q_{T}\right)
$$

where $u \in L_{l o c}^{2}\left(Q_{\infty}\right), z \in L_{l o c}^{p}\left(Q_{\infty}\right)$ may be any function satisfying $u(t, x)=\tilde{u}(t, x)$, $z(t, x)=\tilde{z}(t, x)$ for $(t, x) \in Q_{T}$.
$\left(\tilde{A}_{5}\right) F_{1}: Q_{\infty} \times L_{l o c}^{p}\left(Q_{\infty}\right) \rightarrow \mathbb{R}$ has the Volterra property and for each fixed finite $T>0$, the restriction of F_{1} to $(0, T)$ satisfies $\left(A_{5}\right)$.
$(\tilde{B}) a_{j}: Q_{\infty} \times \mathbb{R}^{n+1} \times L_{l o c}^{2}\left(Q_{\infty}\right) \times L_{l o c}^{p}\left(Q_{\infty}\right) \rightarrow \mathbb{R}(j=0,1, \ldots, n)$ have the Volterra property and for each finite $T>0$, their restrictions to $(0, T)$ satisfy $\left(B_{1}\right)$ $\left(B_{3}\right)$.
$\left(\tilde{B}_{4}\right) F_{2}: Q_{\infty} \times L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow \mathbb{R}$ has the Volterra property and for each fixed finite $T>0$, the restriction of F_{2} to $(0, T)$ satisfies $\left(B_{4}\right)$.
Theorem 4.1. Assume $\left(A_{1}\right)-\left(A_{3}\right),\left(\tilde{A}_{4}\right),\left(\tilde{A}_{5}\right),(\tilde{B}),\left(\tilde{B}_{4}\right)$. Then for all $u_{0} \in V_{1}$, $u_{1} \in L^{2}(\Omega)$ there exist

$$
\begin{gathered}
u \in L_{l o c}^{\infty}\left(0, \infty ; V_{1}\right), \quad z \in L_{l o c}^{p}\left(0, \infty ; V_{2}\right) \text { such that } \\
u^{\prime} \in L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \quad u^{\prime \prime} \in L_{l o c}^{2}\left(0, \infty ; V_{1}^{\star}\right), \quad z^{\prime} \in L_{l o c}^{q}\left(0, \infty ; V_{2}^{\star}\right)
\end{gathered}
$$

(2.1) - (2.4) hold for a.a. $t \in(0, \infty)$ and the initial condition (2.2) is fulfilled.

Assume that the following additional conditions are satisfied: there exist H^{∞}, $F_{1}^{\infty} \in L^{2}(\Omega), u_{\infty} \in V_{1}$, a bounded function $\tilde{\beta}$, belonging to $L^{2}\left(0, \infty ; L^{2}(\Omega)\right)$ such that

$$
\begin{gather*}
Q\left(u_{\infty}\right)=F_{1}^{\infty}-H^{\infty} \tag{4.1}\\
\left|H(t, x ; u, z)-H^{\infty}\right| \leq \tilde{\beta}(t, x), \quad\left|F_{1}(t, x ; z)-F_{1}^{\infty}(x)\right| \leq \tilde{\beta}(t, x) \tag{4.2}
\end{gather*}
$$

for all fixed $\left.u \in L_{l o c}^{2}\left(Q_{\infty}\right), z \in L_{l o c}^{p}\left(Q_{\infty}\right)\right)$. Further, there exist functions

$$
a_{j}^{\infty}: \Omega \times \mathbb{R}^{n+1} \times L^{2}(\Omega) \rightarrow \mathbb{R}, \quad j=1, \ldots, n \quad F_{2}^{\infty}: \Omega \times L^{2}(\Omega) \rightarrow \mathbb{R}
$$

such that for each fixed $z_{0} \in V_{2}, z \in L_{l o c}^{p}\left(Q_{\infty}\right)$ and $u \in L_{l o c}^{2}\left(Q_{\infty}\right), w_{0} \in V_{1}$ with the property

$$
\lim _{t \rightarrow \infty}\left\|u(t)-w_{0}\right\|_{L^{2}(\Omega)}=0
$$

for the functions

$$
\begin{gather*}
\varphi_{j}(t)=\left\|a_{j}\left(t, x, D z_{0}, z_{0} ; u, z\right)-a_{j}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right)\right\|_{L^{q}(\Omega)}, \quad j=0,1, \ldots, n, \tag{4.3}\\
\psi(t)=\left\|F_{2}(t, x ; u)-F_{2}^{\infty}\left(x ; w_{0}\right)\right\|_{L^{q}(\Omega)} \tag{4.4}
\end{gather*}
$$

we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \varphi_{j}(t)=0, \quad \lim _{t \rightarrow \infty} \psi(t)=0 \tag{4.5}
\end{equation*}
$$

Finally, $\left(B_{3}\right)$ is satisfied such that the following inequalities hold for all $t>0$ with constants $c_{2}>0, \beta>0$, not depending on t :

$$
\begin{gather*}
\sum_{j=0}^{n}\left[a_{j}(t, x, \xi ; u, z)-a_{j}\left(t, x, \xi^{\star} ; u, z\right)\right]\left[\xi_{j}-\xi_{j}^{\star}\right] \tag{4.6}\\
\frac{c_{2}}{1+\|u\|_{L^{2}\left(Q_{t} \backslash Q_{t-a}\right)}^{\beta}}\left|\xi-\xi^{\star}\right|^{p}
\end{gather*}
$$

with some fixed $a>0$ (finite delay).
Then for the above solutions u, z we have

$$
\begin{gather*}
u \in L^{\infty}\left(0, \infty ; V_{1}\right) \tag{4.7}\\
\left\|u^{\prime}(t)\right\|_{L^{2}(\Omega)} \leq \text { conste }^{-c_{1} t} \tag{4.8}
\end{gather*}
$$

where c_{1} is given in $\left(A_{2}\right)$ and there exists $w_{0} \in V_{1}$ such that

$$
\begin{equation*}
u(T) \rightarrow w_{0} \text { in } L^{2}(\Omega) \text { as } T \rightarrow \infty, \quad\left\|u(T)-w_{0}\right\|_{L^{2}(\Omega)} \leq \text { conste }^{-c_{1} T} \tag{4.9}
\end{equation*}
$$

and w_{0} satisfies

$$
\begin{equation*}
Q\left(w_{0}\right)+\varphi h^{\prime}\left(w_{0}\right)=F_{1}^{\infty}-H^{\infty} \tag{4.10}
\end{equation*}
$$

Finally, there exists a unique solution $z_{0} \in V_{2}$ of

$$
\begin{gathered}
\sum_{j=1}^{n} \int_{\Omega} a_{j}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right) D_{j} v d x+\int_{\Omega} a_{0}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right) v d x= \\
\int_{\Omega} F_{2}^{\infty}\left(x ; w_{0}\right) v d x \text { for all } v \in V_{2}
\end{gathered}
$$

(where w_{0} is the solution of (4.10)) and

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|z(t)-z_{0}\right\|_{L^{2}(\Omega)}=0, \quad \lim _{T \rightarrow \infty} \int_{T-b}^{T+b}\left\|z(t)-z_{0}\right\|_{V_{2}}^{p} d t=0 \tag{4.12}
\end{equation*}
$$

for arbitrary fixed $b>0$. If

$$
\begin{equation*}
\varphi_{j}, \psi \in L^{q}(0, \infty) \text { then } z \in L^{p}\left(0, \infty ; V_{2}\right) \tag{4.13}
\end{equation*}
$$

Proof. Let $\left(T_{k}\right)_{k \in \mathbb{N}}$ be a monotone increasing sequence, converging to $+\infty$. According to Theorem 2.1, there exist solutions u_{k}, z_{k} of (2.1) - (2.4) for $t \in\left(0, T_{k}\right)$. The Volterra property of H, F_{1}, a_{j}, F_{2} implies that the restrictions of u_{k}, z_{k} to $t \in\left(0, T_{l}\right)$ with $T_{l}<T_{k}$ satisfy (2.1) - (2.4) for $t \in\left(0, T_{l}\right)$.

Now consider the restrictions $\left.u_{k}\right|_{\left(0, T_{1}\right)},\left.z_{k}\right|_{\left(0, T_{1}\right)}, k=2,3, \ldots$ Applying (2.33), (2.34) and $\delta<p-1$ to $T=T_{1}$ and $\tilde{z}=\left.z_{k}\right|_{\left(0, T_{1}\right)}$ we obtain that the sequence

$$
\begin{equation*}
\left(\left.z_{k}\right|_{\left(0, T_{1}\right)}\right)_{k \in \mathbb{N}} \text { is bounded in } L^{p}\left(Q_{T_{1}}\right) \tag{4.14}
\end{equation*}
$$

thus by Lemma 2.4 there is a subsequence $\left(z_{1 k}\right)_{k \in \mathbb{N}}$ of $\left(z_{k}\right)_{k \in \mathbb{N}}$ such that the sequence of restrictions $\left(\left.z_{1 k}\right|_{\left(0, T_{1}\right)}\right)_{k \in \mathbb{N}}$ is convergent in $L^{p}\left(Q_{T_{1}}\right)$.

Now consider the restrictions $\left.z_{1 k}\right|_{\left(0, T_{2}\right)}$ By using the above arguments, we find that there exists a subsequence $\left(z_{2 k}\right)_{k \in \mathbb{N}}$ of $\left(z_{21}\right)_{k \in \mathbb{N}}$ such that $\left(\left.z_{2 k}\right|_{\left(0, T_{2}\right)}\right)_{k \in \mathbb{N}}$ is convergent in $L^{p}\left(Q_{T_{2}}\right)$.

Thus for all $l \in \mathbb{N}$ we obtain a subsequence $\left(z_{l k}\right)_{k \in \mathbb{N}}$ of $\left(z_{k}\right)_{k \in \mathbb{N}}$ such that $\left(\left.z_{l k}\right|_{\left(0, T_{l}\right)}\right)_{k \in \mathbb{N}}$ is convergent in $L^{p}\left(Q_{T_{l}}\right)$. Then the diagonal sequence $\left(z_{k k}\right)_{k \in \mathbb{N}}$ is a subsequence of $\left(z_{k}\right)_{k \in \mathbb{N}}$ such that for all fixed $l \in \mathbb{N},\left(\left.z_{k k}\right|_{\left(0, T_{l}\right)}\right)_{k \in \mathbb{N}}$ is convergent in $L^{p}\left(Q_{T_{l}}\right)$ to some $z^{\star} \in L_{l o c}^{p}\left(Q_{\infty}\right)$. Since $z_{l l}$ is a fixed point of $S=S_{l}: L^{p}\left(Q_{T_{l}}\right) \rightarrow$ $L^{p}\left(Q_{T_{l}}\right)$ and S_{l} is continuous thus the limit $\left.z^{\star}\right|_{\left(0, T_{l}\right)}$ in $L^{p}\left(Q_{T_{l}}\right)$ of $\left(\left.z_{k k}\right|_{\left(0, T_{l}\right)}\right)_{k \in \mathbb{N}}$ is a fixed point of $S=S_{l}$.

Consequently, the solutions u_{l}^{\star} of (2.1), (2.2) when z is the restriction of z^{\star} to $\left(0, T_{l}\right)$ and the restriction of z^{\star} to $\left(0, T_{l}\right)$ satisfy (2.1) - (2.4) for $t \in\left(0, T_{l}\right)$. Since for $m<l,\left.u_{l}^{\star}\right|_{\left(0, T_{m}\right)}=u_{m}^{\star}$ (by the Volterra property of H, F_{1}, a_{j}, F_{2}), we obtain $u^{\star} \in L_{l o c}^{2}\left(Q_{\infty}\right)$ such that for all fixed $l,\left.u^{\star}\right|_{\left(0, T_{l}\right)},\left.z^{\star}\right|_{\left(0, T_{l}\right)}$ satisfy (2.1) - (2.4) for $t \in\left(0, T_{l}\right)$, so the first part of Theorem 4.1 is proved.

Now assume that the additional conditions (4.1) - (4.6) are satisfied. Then we obtain (4.7) - (4.10) for $u=u^{\star}, z=z^{\star}$ by using the arguments of the proof of Theorem 3.2 in [11]. For convenience we formulate the main steps of the proof.

The sequence $\left.\left(z_{k k}\right)\right|_{k \in \mathbb{N}}$ is bounded in $L^{p}\left(0, T_{l} ; V_{2}\right)$ for each fixed l by (2.19) (2.21), (B_{4}), (4.14)), consequently, from (2.13) (with $\tilde{z}_{k}=z_{k k}$) we obtain for the solutions $u_{k k}$ of (2.1), (2.2) with $\tilde{z}=z_{k k}$ (since $u_{k k}$ is the limit of the Galerkin approximations $\tilde{u}_{m k}$)

$$
\begin{gather*}
\frac{1}{2}\left\|u_{k k}^{\prime}(t)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(u_{k k}(t)\right), u_{k k}(t)\right\rangle+\int_{\Omega} \varphi(x) h\left(u_{k k}(t)\right) d x+ \tag{4.15}\\
\int_{0}^{t}\left[\int_{\Omega} \psi(x)\left|u_{k k}^{\prime}(\tau)\right|^{2} d x\right] d \tau+\int_{0}^{t}\left[\int_{\Omega} H\left(\tau, x ; u_{k k}, z_{k k}\right) u_{k k}^{\prime}(\tau) d x\right] d \tau= \\
\int_{0}^{t}\left[\int_{\Omega} F_{1}\left(\tau, x ; z_{k k}\right) u_{k k}^{\prime}(\tau) d x\right] d \tau+\frac{1}{2}\left\|u_{k k}^{\prime}(0)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(u_{k k}(0)\right), u_{k k}(t)\right\rangle+ \\
\int_{\Omega} \varphi(x) h\left(u_{k k}(0)\right) d x
\end{gather*}
$$

for all $t>0$. Hence we find by (4.1), (4.2) and Young's inequality for $w_{k k}=u_{k k}-u_{\infty}$

$$
\begin{equation*}
\left.\frac{1}{2}\left\|w_{k k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}}{2} \| u_{k k}(t)\right) \|_{V_{1}}^{2}+c_{1} \int_{\Omega} h\left(u_{k k}(t)\right) d x+\text { const } \int_{0}^{t}\left[\int_{\Omega}\left|w_{k k}^{\prime}\right|^{2} d x\right] d \tau \leq \tag{4.16}
\end{equation*}
$$

$$
\begin{gathered}
\text { const }\left\{\int_{0}^{t}\left\|F_{1}\left(\tau, x ; z_{k k}\right)-F_{1}^{\infty}\right\|_{H}^{2} d \tau+\int_{0}^{t}\left\|H\left(\tau, x ; u_{k k} z_{k k}\right)-H^{\infty}\right\|_{H}^{2} d \tau\right\}+ \\
\varepsilon \int_{0}^{t}\left[\int_{\Omega}\left|w_{k k}^{\prime}\right|^{2} d x\right] d \tau+\frac{1}{2}\left\|u_{k k}^{\prime}(0)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(u_{k k}(0)\right), u_{k k}(0)\right\rangle+c_{2} \int_{\Omega} h\left(u_{k k}(0)\right) d x \leq \\
\varepsilon \int_{0}^{t}\left[\int_{\Omega}\left|w_{k k}^{\prime}\right|^{2} d x\right] d \tau+\mathrm{const}+C(\varepsilon)\|\tilde{\beta}\|_{L^{2}(0, \infty ; H)}^{2} .
\end{gathered}
$$

Choosing sufficiently small $\varepsilon>0$, we obtain

$$
\begin{equation*}
\int_{0}^{t}\left[\int_{\Omega}\left|w_{k k}^{\prime}\right|^{2} d x\right] d \tau \leq \mathrm{const} \tag{4.17}
\end{equation*}
$$

and thus by (4.16)

$$
\left\|u_{k k}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\tilde{c} \int_{0}^{t}\left\|u_{k k}^{\prime}(\tau)\right\|_{L^{2}(\Omega)}^{2} d \tau \leq c^{\star}
$$

with some positive constants \tilde{c} and c^{\star} not depending on k and $t \in(0, \infty)$. Hence by Gronwall's lemma we obtain (4.8) and by (4.16) we find (4.7).

It is not difficult to show that

$$
\begin{equation*}
\left\|u\left(T_{2}\right)-u\left(T_{1}\right)\right\|_{H} \leq \int_{T_{1}}^{T_{2}}\left\|u^{\prime}(t)\right\|_{H} d t \tag{4.18}
\end{equation*}
$$

(see [11]), thus (4.8) implies (4.9) and by $u \in L^{\infty}\left(0, \infty ; V_{1}\right)$, the limit w_{0} of $u(t)$ as $t \rightarrow \infty$ must belong to V_{1}.

In order to prove (4.10) we apply equation (1.1) to $v \chi_{T_{k}}(t)$ with arbitrary fixed $v \in V_{1}$ where $\lim _{k \rightarrow \infty}\left(T_{k}\right)=+\infty$ and

$$
\chi_{T_{k}}(t)=\chi\left(t-T_{k}\right), \quad \chi \in C_{0}^{\infty}, \quad \text { supp } \chi \subset[0,1], \quad \int_{0}^{1} \chi(t) d t=1
$$

Then by (4.8) one obtains (4.10) as $k \rightarrow \infty$.
Now we show that there exists a unique solution $z_{0} \in V_{2}$ of (4.11). This statement follows from the fact that the operator (applied to $z_{0} \in V_{2}$) on the left hand side of (4.11) is bounded, demicontinuous and uniformly monotone (see, e.g. [13]) by (B_{1}), (B_{2}), (4.9), (4.5), (4.6).

Finally, we show (4.12). By (4.6) we have

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left\|z(t)-z_{0}\right\|_{H}^{2}+\frac{c_{2}}{1+\|u\|_{L^{2}\left(Q_{t} \backslash Q_{t-a}\right)}}\left\|z(t)-z_{0}\right\|_{V_{2}}^{p} \leq \tag{4.19}\\
\int_{\Omega} \sum_{j=1}^{n}\left[a_{j}(t, x, D z, z ; u, z)-a_{j}\left(t, x, D z_{0}, z_{0} ; u, z\right)\right]\left(D_{j} z-D_{j} z_{0}\right) d x+ \\
\int_{\Omega}\left[a_{0}(t, x, D z, z ; u, z)-a_{0}\left(t, x, D z_{0}, z_{0} ; u, z\right)\right]\left(z-z_{0}\right) d x= \\
\int_{\Omega}\left[F_{2}(t, x ; u)-F_{2}^{\infty}\left(x, w_{0}\right)\right]\left(z-z_{0}\right) d x- \\
\int_{\Omega} \sum_{j=1}^{n}\left[a_{j}\left(t, x, D z_{0}, z_{0} ; u, z\right)-a_{j}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right)\right]\left(D_{j} z-D_{j} z_{0}\right) d x-
\end{gather*}
$$

$$
\begin{gathered}
\int_{\Omega}\left[a_{0}\left(t, x, D z_{0}, z_{0} ; u, z\right)-a_{0}^{\infty}\left(t, x, D z_{0}, z_{0} ; w_{0}\right)\right]\left(z-z_{0}\right) d x \leq \\
C(\varepsilon)\left\|F_{2}(t, x ; u)-F_{2}^{\infty}\left(x, w_{0}\right)\right\|_{L^{q}(\Omega)}+\varepsilon\left\|z(t)-z_{0}\right\|_{L^{p}(\Omega)}+ \\
C(\varepsilon) \sum_{j=1}^{n}\left\|a_{j}\left(t, x, D z_{0}, z_{0} ; u, z\right)-a_{j}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right)\right\|_{L^{q}(\Omega)}^{q}+\varepsilon\left\|D_{j} z(t)-D_{j} z_{0}\right\|_{L^{p}(\Omega)}^{p}+ \\
C(\varepsilon)\left\|a_{0}\left(t, x, D z_{0}, z_{0} ; u, z\right)-a_{0}^{\infty}\left(x, D z_{0}, z_{0} ; w_{0}\right)\right\|_{L^{q}(\Omega)}^{q}+\varepsilon\left\|z(t)-z_{0}\right\|_{L^{p}(\Omega)}^{p} .
\end{gathered}
$$

Since $\|u\|_{L^{2}\left(Q_{t} \backslash Q_{t-a}\right)}^{\beta}$ is bounded for $t \in(0, \infty)$ by (4.9) and

$$
\left\|z(t)-z_{0}\right\|_{V_{2}} \geq \mathrm{const}\left\|z(t)-z_{0}\right\|_{L^{2}(\Omega)}
$$

with some positive constant, thus by (4.3) - (4.5), (4.19) with sufficiently small $\varepsilon>0$ we obtain for

$$
y(t)=\left\|z(t)-z_{0}\right\|_{H}^{2}
$$

the inequality

$$
\begin{equation*}
y^{\prime}(t)+c^{\star}[y(t)]^{p / 2} \leq g(t) \tag{4.20}
\end{equation*}
$$

where c^{\star} is a positive constant and $\lim _{\infty} g=0$.
The inequality (4.20) implies the first part of (4.12):

$$
\begin{equation*}
\lim _{\infty} y=0 \tag{4.21}
\end{equation*}
$$

(see [10]). Integrating (4.19) with respect to t over $(T-b, T+b)$ we obtain the second part of (4.12) by (4.21). Integrating (4.19) with respect to t over $(0, T)$, by (4.21) we obtain (4.13) as $T \rightarrow \infty$.
Acknowledgement. This work was supported by the Hungarian National Foundation for Scientific Research under grant OTKA K 115926.

References

[1] Adams, R.A., Sobolev spaces, Academic Press, New York - San Francisco - London, 1975.
[2] Berkovits, J., Mustonen, V., Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Ser. VII, 12(1992), 597-621.
[3] Besenyei, A., On nonlinear systems containing nonlocal terms, PhD Thesis, Eötvós Loránd University, Budapest, 2008.
[4] Cinca, S., Diffusion und Transport in porösen Medien bei veränderlichen Porosität, Diplomawork, Univ. Heidelberg, 2000.
[5] Lions, J.L., Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
[6] Logan, J.D., Petersen, M.R., Shores, T.S., Numerical study of reaction-mineralogyporosity changes in porous media, Appl. Math. Comput., 127(2002), 149-164.
[7] Merkin, J.H., Needham, D.J., Sleeman, B.D., A mathematical model for the spread of morphogens with density dependent chemosensitivity, Nonlinearity, 18(2005), 2745-2773.
[8] Simon, L., On some singular systems of parabolic functional equations, Math. Bohem., 135(2010), 123-132.
[9] Simon, L., On singular systems of parabolic functional equations, Operator Theory: Advances and Applications, 216(2011), 317-330.
[10] Simon, L., Application of monotone type operators to parabolic and functional parabolic PDE's, Handbook of Differential Equations. Evolutionary Equations, Vol. 4, Elsevier, 2008, 267-321.
[11] Simon, L., Semilinear hyperbolic functional equations, Banach Center Publications, 101(2014), 205-222.
[12] Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer, 1996.
[13] Zeidler, E., Nonlinear functional analysis and its applications II A and II B, Springer, 1990.

László Simon

L. Eötvös University of Budapest, Hungary
e-mail: simonl@cs.elte.hu

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications (ICNODEA), July 14-17, 2015, Cluj-Napoca, Romania.

