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Unit exchange elements in rings
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Abstract. Replacing left principal ideals by cosets in the monoid (R, ·) of a unital
ring R, we say that an element a ∈ R is left unit exchange (or suitable) if there is
an idempotent e ∈ R such that e− a ∈ U(R)(a− a2) where U(R) denotes the set
of units. Unit-regular and clean elements are left (and right) unit suitable, and
left (or right) unit suitable elements are exchange (suitable). The paper studies
the multiple facets of this new notion.
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1. Introduction

First recall that an element a in a ring R is clean if it is a sum of an idempotent
and unit and strongly clean if these two commute. For an idempotent e ∈ R we denote
by e = 1− e the complementary idempotent. The set of units of a (unital) ring R is
denoted by U(R).

An element a in a ring R was defined as (see [5] for this numbering) left suitable
(or exchange) by any of the following equivalent conditions:

(1) there is an idempotent e ∈ R such that e− a ∈ R(a− a2).

(3) there is an idempotent e ∈ R such that e ∈ Ra and Re+R(1− a) = R.

(4) there is an idempotent e ∈ R such that e ∈ Ra and 1− e ∈ R(1− a).

Replacing R by U(R), we introduce (similar to (1)) the following definition.

Definition 1.1. An element a ∈ R is left unit suitable if there exists e2 = e ∈ R such
that e − a ∈ U(R)(a − a2). When we intend to emphasize the idempotent, a will be
called e-left unit suitable.

For an idempotent e and a unit u we consider the equation (called left eu-equation)

Pu,e(x) := x2 − (1 + u)x+ eu = 0.
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It is readily seen that x ∈ R is a solution of this equation iff

∃e2 = e ∈ R,∃u ∈ U(R) : u−1eu− x = u−1(x− x2).

Therefore the left unit suitable elements in a ring are exactly the solutions of such
eu-equations (more precisely, e− a = u(a− a2) is equivalent to Pu−1,ueu−1(a) = 0).
By computation Pu,e(u+ e) = 0, so

{clean elements} ⊆ {left unit suitable elements} ⊆ {suitable elements}.
Examples in Section 3 will show that both inclusions may be proper.

However, it is easy to see that the left inclusion is equality in the following cases:
(i) R has no zero divisors;
(ii) R is a clean ring and in particular, is a matrix ring Mn(R) over any clean

ring R;
(iii) R is Abelian and in particular commutative.
(iv) R is Artinian and in particular finite.
Right unit suitable elements are defined symmetrically and similarly clean ele-

ments are right unit suitable and right unit suitable elements are suitable.
As an easy first example (which is largely generalized further), any square-zero

element is trivially left and right unit suitable, since since 0− a = (−1)(a− a2) holds
whenever a2 = 0.

In the first section, we give some useful characterizations for (left) unit suitable
elements, for clean elements and for unit-regular elements, since such elements turn
out to be left (or right) unit suitable. Since eu-equations are of degree two, some hints
are given on the (possible) not clean solution.

The second section is devoted to results on left unit suitable 2× 2 matrices. We
show that over any commutative domain left unit suitable 2×2 matrices are also right
unit suitable, we characterize left unit suitable zero lower row integral 2× 2 matrices,
trace 1 left (or right) unit suitable integral matrices via Diophantine equations and
diagonal 2× 2 left unit suitable matrices over any commutative domain. The matrix[

3 9
7 −2

]
, already used in [1] as nil-clean but not clean, turns out to be suitable

but not left (or right) unit suitable. Finally, a characterization of 2× 2 unit-suitable
matrices over any commutative domain is given, in connection again with unit-regular
elements.

2. Basic properties

As already mentioned above, (left) suitable elements were defined in [5], by
four equivalent conditions. Our definition corresponds to (1). Here is an equivalent
definition corresponding to (4).

Proposition 2.1. An element a ∈ R is left unit suitable iff there exist e2 = e ∈ R and
b, c ∈ R such that e = ba, 1− e = c(1− a) and b− c ∈ U(R).

Proof. If e − a = u(a − a2) with u ∈ U(R) then e = [1 + u(1 − a)]a ∈ Ra and
1− e = (1−ua)(1−a) ∈ R(1−a) and b− c = 1 +u(1−a)− (1−ua) = u. Conversely,



Unit exchange elements in rings 335

if e = ba, 1 − e = c(1 − a) and b − c = u ∈ U(R) then 1 − e = (b − u)(1 − a) and so
1−ba = (b−u)(1−a) = b−u−ba+ua gives b = 1+u−ua and e−a = (b−1)a = u(1−a)a.
Here b = 1 + u− ua and c = 1− ua. �

A symmetric result holds for right unit suitable elements:

Proposition 2.2. An element a ∈ R is right unit suitable iff there exist e2 = e ∈ R
and b, c ∈ R such that e = ab ∈ aR, 1− e = (1− a)c ∈ (1− a)R and b− c ∈ U(R).

Here b = 1 + u− au, c = 1− au and again b− c = u.

Corollary 2.3. Left (or right) unit suitable elements have the ”complement property”,
that is, if α is left (or right) unit suitable, so is 1− α.

In [7], another class of rings, intermediate between clean and suitable rings is
introduced, under the name of weakly clean rings (and elements). Recall that weakly
clean elements do not have the ”complement property” (see Remark 4.7 (ii) in [8]),
so these are different elements compared to left (or right) unit suitable elements (by
the previous corollary).

”For any a, b ∈ R, 1 − ab is a unit iff 1 − ba is a unit” is known as Jacobson’s
lemma for units.

Since this lemma fails for clean elements and for suitable elements but holds for
(unit) regular elements, we could ask whether it holds or fails for left (and/or right)
unit suitable elements. Actually it fails: in [4] an example of clean (and so also left
and right unit suitable) matrix CD ∈ M2(Z) is given, for which DC is not suitable
(and so nor left or right unit suitable). It remains to use the previous corollary.

The set of left unit suitable elements in a ring also includes the unit regular
elements. More, we can prove the following characterization (with above notations)

Proposition 2.4. A left unit suitable element a is unit regular iff, with the notations
in the previous proposition, c2 = c and ac = 0.

Proof. Suppose a = aua with u ∈ U(R). Then ua and so c = 1 − ua are both
idempotents and ac = 0. Take b = c + u. Then ba − a = u(1 − a)a and baba = ba

shows that a is left unit suitable (one can also check 1 − ba = c(1 − a)̇). Conversely,
assume c2 = c, ac = 0, 1− ba = c(1− a) and b− c = u ∈ U(R). By left multiplication
with a we get a− aba = ac− aca = 0 so aba = a. Hence aua = a(b− c)a = aba = a,
as desired. �

A symmetric result holds for right unit suitable elements.
In particular, unit regular elements are left and right unit suitable and so ele-

ments which are both left and right suitable need not be clean (see the example after
Theorem 3.3, in the next section).

An elementary trick, more or less always used in the context of exchange rings,
is the following: for a ring R and elements a, e ∈ R, if e ∈ Ra is an idempotent, an
element b ∈ R can be chosen such that e = ba and bab = b. Note that such an element
b is regular.

Recall (see Introduction) that an element a ∈ R was called left suitable (or
exchange) if there is an idempotent e ∈ R such that e ∈ Ra and 1 − e ∈ R(1 − a).
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Using the previous observation, (regular) elements b, c ∈ R can be chosen such that
e = ba, bab = b, 1− e = c(1− a) and c(1− a)c = c.

Coming back to our initial definition, we could consider elements a ∈ R such
that the elements b, c above can be chosen with b− c ∈ U(R).

This restriction is too strong because it is easy to prove the following character-
ization (already noticed in [2])

Proposition 2.5. An element a in a ring R is clean iff there exist b, c ∈ R such that
bab = b, c(1− a)c = c, 1− ba = c(1− a) and b− c ∈ U(R).

Notice that if only one from the conditions bab = b, c(1 − a)c = c holds, the
statement above is no longer valid. An example is given after Theorem 3.3.

Rephrasing, a left unit suitable element a is clean iff for the regular elements
b, c emphasized above with bab = b and c(1− a)c = c, b− c is a unit.

Remark 2.6. Since we already noticed that x = u+ e is a solution of the eu-equation
Pu,e(x) = 0, we could wonder when this degree two polynomial factors into two
degree one polynomials. Denoting by a the second solution it is easy to show that
Pu,e(x) = x2− (1+u)x+eu = (x−u−e)(x−a) iff (u+e−x)a = e(u−x). If ue = eu
then a = e is a clean solution.

3. Unit suitable 2× 2 matrices

Recall that a ring R is Dedekind finite (DF for short) if, for every a, b ∈ R, ab = 1
implies ba = 1. A ring R is stably finite if the matrix ringsMn(R) are Dedekind finite
for all natural numbers n.

We first point out some simple but general results.

Proposition 3.1. (a) In any DF ring, the 0-left unit suitable elements are clean.
(b) In any DF ring, the 0-left unit suitable elements are also right unit suitable.
(c) For any positive integer n, and any stably finite ring k, 0n-left unit suitable

matrices in Mn(k) are clean.
(d) In any DF ring, the 1-left unit suitable elements are units and so clean.
(e) In any DF ring, the 1-left unit suitable elements are also right unit suitable.
(f) For any positive integer n, and any stably finite ring k, In-left unit suitable

matrices in Mn(k) are clean.

Proof. (a) First notice that e− a = u(a− a2)̇ is equivalent to 1− e = (1− ua)(1− a).
Taking e = 0 yields 1 = (1− ua)(1− a) and if the ring is DF, 1− a is a unit. Hence
a is clean.

(b), (c) follow from (a).
(d) We just notice that 1 = a+u(a−a2) is now equivalent to 1 = [1+u(1−a)]a,

so a is a unit.
(e), (f) follow from (d). �

If k is a commutative domain, then E ∈ M2(k) is an idempotent iff E = 02, E = I2
or det(E) = 0 and Tr(A) = 1.



Unit exchange elements in rings 337

Theorem 3.2. Left unit suitable 2× 2 matrices over a commutative domain k are also
right unit suitable.

Proof. Suppose A ∈ M2(k) is left unit suitable, i.e. E = A+ U(A− A2) with a unit
U and an idempotent E.

If E = 02 or E = I2 the result follows from Proposition 3.1 (b) and (e), respec-
tively.

In the remaining case, assume det(E) = 0 and Tr(E) = 1. Letting

F = A+ (A−A2)U,

we have

Tr(F ) = Tr(A) + Tr((A−A2)U) = Tr(A) + Tr(U(A−A2)) = Tr(E) = 1.

Moreover, det(E) = 0 gives det(I2 + U(I2 −A)) det(A) = 0, hence

det(I2 + U(I2 −A)) = 0 or det(A) = 0.

Notice that for any 2× 2 matrix M over a commutative ring,

det(I2 +M) = det(M) + Tr(M) + 1.

Therefore,

det[I2 + U(I2 −A)] = det[U(I2 −A)] + Tr[U(I2 −A)] + 1

= det[(I2 −A)U ] + Tr[(I2 −A)U ] + 1

= det[I2 + (I2 −A)U ]

and so det[I2 + U(I2 −A)] = 0 iff det[I2 + (I2 −A)U ] = 0. It follows that

det(I2 + (I2 −A)U) = 0 or det(A) = 0,

hence det(F ) = det(I2 + (I2 − A)U) det(A) = 0. This shows that Tr(F ) = 1 and
det(F ) = 0, proving that F is an idempotent. Hence A is right unit suitable (in this
case, with respect to the same unit). �

In contrast with suitable elements, it is unlikely that the set of left unit suitable
rings and the set of right unit suitable coincide. As seen above, the always good source
of examples, M2(Z), cannot be used when searching for a left unit suitable element
which is not right unit suitable.

Since Z is not exchange (and so nor clean), in searching for unit suitable elements
which are not clean, it is worth trying withM2(Z). In searching for left unit suitable
elements which are not clean, or suitable elements which are not left unit suitable we
first prove the following

Theorem 3.3. For a matrix A =

[
a b
0 0

]
∈M2(Z), the following are equivalent:

1. A is unit-regular or clean in M2(Z).
2. A is left unit suitable in M2(Z).
3. A is suitable in M2(Z).
4. (a, b) is a unimodular row or a ∈ {0, 2}.
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Proof. 1 ⇒ 2 ⇒ 3 follow from earlier results in the paper (and hold for any ring
element).

3 ⇒ 4: Suppose that A is suitable and gcd(a, b) = n > 1 (i.e. (a, b) is not
unimodular). By the suitable property, E = RA and I2 − E = S(I2 − A) for some
R,S,E ∈ M2(Z) with E2 = E. Since A ∈ nM2(Z), it follows that E ∈ nM2(Z),
hence E = 0 as E = E2.

Hence I2 = S(I2 − A) so that I2 − A is a unit. The determinant of this matrix
is 1− a. Hence 1− a ∈ {±1}, i.e. a ∈ {0, 2}.

4 ⇒ 1: If (a, b) is unimodular then A is clearly unit-regular, and if a ∈ {0, 2}
then I2 −A is a unit so that A is clean. �

Recall from [3] (Theorem 4.7) that if (a, b) is a reduced unimodular row (i.e.

|a| ≥ 2 |b| and a, b generate the unit ideal),

[
a b
0 0

]
is clean iff a ≡ ±1(modb).

Therefore, again according to [3], the reduced unimodular rows (12, 5), (13, 5),

(12, 7), (13, 8), (17, 5), (16, 7), (18, 5), (17, 7) yield not clean unit-regular matrices
which are left unit suitable.

Example 3.4. For A =

[
12 5
0 0

]
, U =

[
19 8
7 3

]
and E =

[
8 −8
7 −7

]
one checks

the eu-equation
X2 − (I2 + U)X + EU = 02.

This example also suits as a left unit suitable element with

C(I2 −A)C = C =

[
−35 −15
84 36

]
(that is, regular C) but

BAB =

[
−32 32
77 −77

]
6=

[
−32 −23
77 55

]
= B

(so not regular B). Here

B − C =

[
3 −8
−7 19

]
is a unit, AU−1A = A and both

BA = F =

[
−384 −160
924 385

]
(here F −A = U−1(A−A2)), AB =

[
1 −1
0 0

]
are idempotents.

Remark 3.5. The nice idempotent obtained in the previous example,

AB =

[
1 −1
0 0

]
is not specific. It is the result for any matrix

A =

[
a b
0 0

]
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with coprime a, b. As seen in the previous proof,

U = A+

[
z u22
z u22

]
with au22 − bz = 1. Then

U−1 =

[
u22 −u22
−z z

]
+

[
0 −b
0 a

]
= S + T

and indeed

AS =

[
1 −1
0 0

]
and AT = 02.

Hence

AB = A+AU−1(I2 −A) = AU−1 = AS =

[
1 −1
0 0

]
.

Obviously AB is idempotent and in general

BAB =

[
r s
m n

]
AB =

[
r s
m n

] [
1 −1
0 0

]
=

[
r −s
m −n

]
6=

[
r s
m n

]
= B

unless n = s = 0.

Since unipotent elements (i.e. sums 1 + t with nilpotent t) are special units in
rings, we could ask whether (left) unipotent suitable elements are not clean. First
notice (e.g. from the proof of the previous theorem), that in general there is no
uniqueness for the unit in the definition of the (left) unit suitable elements. So a
better rephrased question would be: if for a (left) unit suitable element, the unit can
be chosen as an unipotent, is the element clean? The answer is no as shows the next
example.

Example 3.6. Take the second unimodular row in the list above (from [3]). For the

matrix A =

[
13 5
0 0

]
, U =

[
5 2
−8 −3

]
and E =

[
−7 7
−8 8

]
one checks the eu-

equation

X2 − (I2 + U)X + EU = 02.

Therefore A is left unipotent suitable but not clean (it is readily checked that unipo-
tents in M2(Z) are the matrices of trace = 2 and determinant = 1).

As mentioned above, the same matrix satisfies the eu-equation with U =

[
18 7
5 2

]
and E =

[
6 −6
5 −5

]
where U is no more unipotent.

Similar results (on zero upper row, or columns) may be obtained using conjuga-

tion by

[
0 1
1 0

]
or transposes.

The ringM2(Z) contains many suitable elements that are not left unit suitable.
Matrices with trace 1 are definitely one example, but there are also other classes that
are easier to characterize. One of those classes are the diagonal matrices. Below is
given a characterization of suitable and left unit suitable diagonal matrices.
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Lemma 3.7. Let A =

[
a 0
0 b

]
be a 2×2 diagonal matrix over a commutative domain

k and let d ∈ k. The following are equivalent:

1. There exists X ∈M2(k) with det(X) = d such that E = A+X(A−A2) is a
nontrivial idempotent (i.e. E 6= 02, I2).

2. There exists t ∈ k such that t(a− b)− d(a− a2) = 1.

Proof. 1 ⇒ 2: Suppose that E = A + X(A − A2) is a nontrivial idempotent and

det(X) = d. Write α = a− a2, β = b− b2 and X =

[
x y
z w

]
. Then

E =

[
a+ xα yβ
zα b+ wβ

]
and since E is nontrivial Tr(E) = 1, hence

a+ b+ xα+ wβ = 1. (3.1)

If b = 0 then this equation gives a + xα = 1, whence a ∈ U(k). Hence, taking
t = (1 + dα)a−1 we get

t(a− b)− dα = ta− dα = (1 + dα)− dα = 1,

which proves the claim. Similarly if b = 1 then (3.1) gives a+ xα = 0.
Hence 1+x(1−a)a = 0 which implies 1−a ∈ U(k). Hence taking t = (1+dα)(a−1)−1

we get t(a − b) − dα = t(a − 1) − dα = (1 + dα) − dα = 1, as desired. Thus we may
assume b 6= 0, 1 and so β 6= 0.

The determinant condition det(E) = 0 gives

ab+ awβ + bxα+ αβd = 0. (3.2)

Now (3.1) and (3.2) together give

b = b(a+ b+ xα+ wβ)− (ab+ awβ + bxα+ αβd) = b2 + (b− a)wβ − αβd,

hence β = (b− a)wβ−αβd. Cancelling β we obtain 1 = (b− a)w−αd and so t = −w
fulfills the desired condition.

2 ⇒ 1: Take t with t(a− b)− d(a− a2) = 1. Letting

X =

[
t+ d(a+ b− 1) −1
t(t+ d(a+ b− a)) −t

]
it is easy to see that det(X) = d and E = A + X(A − A2) satisfies Tr(E) = 1 and
det(E) = 0, which proves the claim. �

Theorem 3.8. For a 2 × 2 matrix A =

[
a 0
0 b

]
over a commutative domain k, the

following are equivalent:

1. A is suitable.

2. Either A is a unit or I2 − A is a unit or t(a − b) + s(a − a2) = 1 for some
t, s ∈ k.
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Proof. 1⇒ 2: Let E = A+X(A−A2) with idempotent E and X ∈M2(k). If E = I2
then A is a unit, and if E = 02 then I2−A = XA(I2−A)+I2, so that I2−A is a unit.
Therefore we may assume that E is a nontrivial idempotent. By the previous lemma
we obtain t ∈ k such that t(a − b) − det(X)(a − a2) = 1. Hence t and s = −det(X)
satisfy the required condition.

2 ⇒ 1: If A or I2 − A is invertible then there is nothing to prove. Thus let
t(a− b) + s(a−a2) = 1 with t, s ∈ k. Using again the previous lemma we get a matrix
X with det(X) = −s such that E = A + X(A − A2) is a nontrivial idempotent, as
desired. �

Theorem 3.9. For a 2 × 2 matrix A =

[
a 0
0 b

]
over a commutative domain k, the

following are equivalent:
1. A is left unit suitable.
2. A is clean.
3. Either A is a unit or I2 − A is a unit or t(a − b) + s(a − a2) = 1 for some

t ∈ k and s ∈ U(k).

Proof. 2 ⇒ 1 is clear
1 ⇒ 3: Suppose A is left unit suitable, i.e. E = A+U(A−A2) with idempotent

E and unit U . As before, if E = I2 then A is a unit, and if E = 02 then I2 − A is
a unit. Therefore we may assume E is nontrivial. Hence by Lemma 3.7 there exists
t ∈ k with t(a−b)−det(U)(a−a2) = 1, so that t and s = −det(U) satisfy the desired
condition.

3 ⇒ 2: If A or I2 −A is invertible there is nothing to prove. Thus let

t(a− b) + s(a− a2) = 1

for some t ∈ k and s ∈ U(k). We can check directly that

E =

[
a− s−1t 1 + t(a+ b− 1− s−1t)
s−1 1− a+ s−1t

]
is an idempotent (with Tr(E) = 1 and det(E) = 0) and U = A − E is a unit (with
det(U) = s−1). �

Example 3.10. Let a = 2 and b = −3. Then, taking t = 1 and s = 2 we get

t(a− b) + s(a− a2) = 1 · 5 + 2 · (−2) = 1,

so that A =

[
2 0
0 −3

]
is suitable inM2(Z) by Theorem 3.8. However, the equation

t · 5 + s · (−2) = 1 clearly has no solution in Z if s ∈ U(Z), hence A is not left unit
suitable in M2(Z) by Theorem 3.9.

Next we prove another result which connects unit-suitable 2 × 2 matrices with
unit-regular ones.

Theorem 3.11. For a 2× 2 matrix A over a commutative domain k, the following are
equivalent:

1. A is unit-suitable.
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2. Either A is unit-regular or I2−A is unit-regular or there exists a unit U such
that the pairs (Tr(U),det(UA)) and (Tr(UA)− 1,det(U)(Tr(A)− 1)) have the same
sum and the same product.

Proof. For any 2× 2 matrix, Cayley-Hamilton’s theorem gives

A−A2 = det(A)I2 − (Tr(A)− 1)A.

Hence, a matrix A is (left) unit-suitable iff there is a unit U such that

E = (I2 + U(I2 −A))A = A+ det(A)U − (Tr(A)− 1)UA (3.3)

is an idempotent.
As mentioned in the proof of Theorem 3.2, if E = 02 then I2 − A is a unit and

if E = I2 then A is a unit (and units are unit-regular). In the remaining case, assume
Tr(E) = 1 and det(E) = 0.

Notice that equivalently det(E) = 0 gives det(I2 +U(I2−A)) det(A) = 0, hence

det(I2 + U(I2 −A)) = 0 or det(A) = 0.

By (3.3), Tr(E) = 1 is equivalent to det(A)Tr(U) = (Tr(A)− 1)(Tr(UA)− 1).
Case 1. If det(A) = 0 then Tr(A) = 1 or Tr(UA) = 1 and since

det(UA) = det(U) det(A) = 0,

A or UA is a (nontrivial) idempotent. As well-known, in both cases A is unit-regular.
Case 2. If det(A) 6= 0 then det(I2 +U(I2 −A)) = 0. Notice that for any 2× 2 matrix
B,

det(I2 +B) = 1 + Tr(B) + det(B),

so the previous condition amounts to 1 + Tr(U(I2 −A)) + det(U(I2 −A)) = 0.
Equivalently,

1 + Tr(U)− Tr(UA) + det(U)[1− Tr(A) + det(A)] = 0

or

1 + Tr(U) + det(UA) = Tr(UA) + det(U)(Tr(A)− 1).

Multiplying det(A)Tr(U) = (Tr(A)− 1)(Tr(UA)− 1) by det(U) shows that the pairs
(Tr(U),det(UA)) and (Tr(UA) − 1,det(U)(Tr(A) − 1)) have the same sum and the
same product. �

Corollary 3.12. Let A be a 2×2 matrix over a commutative domain k, and det(A) = 0.
Then A is unit-suitable iff either A is unit-regular or I2 −A is unit-regular.

Proof. One way follows from the previous proof, and the converse follows from Corol-
lary 2.3, since unit-regular elements are unit-suitable. �

For integral matrices we can say more.

Corollary 3.13. Let A be an integral 2 × 2 matrix. Then A is unit-suitable iff either
A is unit-regular or I2 −A is unit-regular or there exists a unit U such that

Tr(UA) = 1 + det(UA), Tr(U) = det(U)(Tr(A)− 1).
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Proof. Indeed, since the pairs in the previous theorem are roots of the same degree
two (solvable) equation we have

{Tr(U),det(UA)} = {Tr(UA)− 1,det(U)(Tr(A)− 1)}.

Therefore

Tr(UA) = 1 + det(UA), Tr(U) = det(U)(Tr(A)− 1),

or

Tr(UA) = 1 + Tr(U), det(UA) = det(U)(Tr(A)− 1).

In the second case, we can show that I2 −A is a unit-regular element.

Recall that we are working in the hypothesis of Case 2 (the proof of the previous
theorem), that is,

det(I2 + U(I2 −A)) = 0.

Since

Tr(I2 + U(I2 −A)) = 2 + Tr(U)− Tr(UA) = 1

it follows that E := I2 + U(I2 −A) is an idempotent. Hence

I2 −A = −U−1(I2 − E)

is unit-regular (indeed, an element b ∈ R is unit-regular iff there are a unit u and an
idempotent e such that b = ue). �

Trace 1 left (or right) unit suitable integral matrices can be characterized via
Diophantine equations. We just mention the following

Proposition 3.14. (i) A trace 1, 2× 2 integral matrix A =

[
a+ 1 b
c −a

]
with b 6= 0

is (left or right) unit suitable iff

bx2 − (2a+ 1)xy − cy2 + (1 + det(A))y + b = 0 (1)

and

b divides 1 + det(A)− (2a+ 1)x− cy (2)

or else

bx2 − (2a+ 1)xy − cy2 + (1− det(A))y − b = 0 (3)

and

b divides 1− det(A)− (2a+ 1)x− cy (4)

(ii) The matrix C =

[
3 9
−7 −2

]
is a 2× 2 suitable (exchange) matrix which is

not left nor right unit suitable in M2(Z).

Remark 3.15. This shows that C, our example in [1], can be used to improve its initial
purpose: this is a nil-clean matrix which is not unit suitable (not only not clean). As
for now, the problem of finding an example of nil-clean element which is not suitable
(exchange) remains open.



344 Grigore Călugăreanu
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