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Existence of positive solutions for a class of BVPs
in Banach spaces
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Abstract. In this work, we use index fixed point theory for perturbation of expan-
sive mappings by `-set contractions to study the existence of bounded positive
solutions for a class of two-point boundary value problem (BVP) associated to
second-order nonlinear differential equation on the positive half-line. The nonlin-
earity, which may exhibit a singularity at the origin, is written as a sum of two
functions which behave differently. These functions, depend on the solution and
its derivative, take values in a general Banach space and have at most polynomial
growth. An example to illustrate the main results is given.
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1. Introduction

The theory of ordinary differential equations in Banach space is a rapidly growing
area of research, it is developed for example in the books by Guo et al. [12], Guo and
Lakshmikantham [11], Lakshmikantham and Leela [14], Deimling [2], and Zeidler [19]
or in the papers by P. Li et al. [15] and by Y. Liu [16].

In the past decades, the study of BVPs defined on compact intervals has been
considered by many authors with application of a huge variety of methods and tech-
niques. However, BVPs defined on unbounded intervals are scarce, as they require
other types of techniques to overcome the lack of compactness. Historically, these
problems began at the end of nineteenth century with A. Kneser [13]. In this work,
the lack of compactness is overcome with some techniques and specific tools.

Let P be a cone in some Banach space E, that is a closed convex subset such
that αP ⊂ P for all positive real number α and P ∩ (−P) = {0}.

Notice that E is partially ordered by cone P, i.e. x ≤ y if and only if y−x ∈ P.
For details on cone theory see [11].
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Throughout this paper, (E, ‖.‖) denotes a Banach space and P is a cone in
E. Being given a positive real parameter k and f : R+ × P × E → P a continuous
function, we are interested in the study of the existence of bounded positive solutions
to the second-order boundary value problem:{

−x′′(t) + k2x(t) = m(t)f(t, x(t), x′(t)), t ∈ (0,+∞).
x(0) = 0, lim

t→+∞
x(t) = 0, (1.1)

where the coefficient m ∈ C((0,+∞),R+)∩L1((0,+∞),R+) may be singular at t = 0
and it does not vanish identically on any subinterval of (0,+∞).
Also, we consider the problem{

−y′′ + cy′ + λy = m(t)g(t, y(t), y′(t)), t ∈ (0,+∞)
y(0) = lim

t→+∞
y(t) = 0 (1.2)

where c, λ are positive constants and g : R+ × P × E → P is a continuous function.

Letting k =
√
λ+ c2

4 and x(t) = y(t)e−
c
2 t, the problem (1.2) leads to the problem

(1.1) for the new unknown x and modified nonlinear term

f(t, x(t), x′(t)) = e
−c
2 tg

(
t, e

c
2 tx(t), e

c
2 tx′(t) +

c

2
e

c
2 tx(t)

)
.

Notice that the problems (1.1) and (1.2) arise in many applications in physics,
combustion theory and epidemiology (see [4, 8, 9, 17, 18] and the references therein).
We will list some papers which provide a motivation for the introduction of this work.
In [5], using the Krasnosels’kii fixed point theorem in cones for strict set-contractions,
Djebali et al. investigated the existence of single and twin positive solutions to the
following two-point boundary value problem of second-order nonlinear differential
equations posed on the positive half-line:{

−x′′(t) + k2x(t) = m(t)f(t, x(t)), t ∈ (0,+∞),
x(0) = 0, lim

t→+∞
x(t) = 0,

where the nonlinearity f ∈ C (R+ × P,P) satisfies a general polynomial growth con-
dition. Motivated by the results obtained in the scalar case E = R in [7], the main
purpose of this work is to discuss some existence results for the problem as that of
[5], when f depends also on the derivative. For this purpose, we employ the general-
ized fixed point index for the sum of an expansive mapping and a `-set contraction
developed by Djebali and Mebarki in [6].

Now we describe in more details the structure of this work. This paper is de-
vised in three sections. The first one is devoted to the preliminaries, recalling some
basic concepts, and developing a new non compactness result that is needed for our
purposes. The main results are presented in section 2. We conclude with an example
of application in section 3.
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2. Preliminaries

2.1. Measure of noncompactness and set-contraction

In this paper, the concept of set contraction is related to Kuratowski’s measure
of noncompactness (α-MNC for short) [3, 10]. Recall that the Kuratowski measure
of noncompactness α (V ) of a bounded subset V of a Banach space E is the infimum
of positive numbers δ such that there exist finitely many sets of diameter at most δ
which cover V.

Let J ⊂ R+. The Kuratowski measures of noncompactness of a bounded set in
the spaces E, C(J,E), C1(J,E) and X are denoted by αE(.), αC(.), αC1(.) and αX(.)
respectively.

The following known results are used in this work.

Lemma 2.1. [10, Theorem 1.2.6]. Let J = [a, b]. If H ⊂ C1(J,E) is bounded, H and
H ′ are equi-continuous, then

αC1(H) = max

(
sup
t∈J

αE(H(t)), sup
t∈J

αE(H ′(t))

)
,

where H(t) = {u(t) | u ∈ H}, t ∈ J.

Lemma 2.2. [10, Theorem 1.2.2] If H ⊂ C(J,E) is bounded and equicontinuous, then
α(H(.)) is continuous on J,

αC(J,E)(H) = sup
t∈J

α(H(t)),

and

α

(∫
J

x(t)dt | x ∈ H
)
≤
∫
J

α(H(t))dt,

Let A : D ⊂ E → E be a continuous operator. The operator A is said to be
bounded if it maps bounded sets into bounded sets, completely continuous if it maps
bounded sets into relatively compact sets, and compact if the set A (D) is relatively
compact. The operator A is said to be a `-set contraction, for some number ` ≥ 0, if
it is bounded and α(A(V )) ≤ `α(V ) for every bounded set V ⊂ D. If ` < 1, we say
that A is a strict set contraction.

We finish this part by giving the definition of an expansive mapping, let (X, d)
is a metric space. A mapping T : D ⊂ X → X is said to be expansive if there exists
a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y) for all x, y ∈ D.

2.2. The Green’s function

The following lemmas are concerned with the linear problem associated to (1.1).
They provide useful estimates of the kernel G and their proofs are omitted.

Lemma 2.3. Let v be a function such that v ∈ C((0,+∞), E) and
∫ +∞
0
‖v(t)‖dt exists.

Then the problem {
−x′′(t) + k2x(t) = v(t), t ∈ (0,+∞),
x(0) = 0, lim

t→+∞
x(t) = 0
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has a unique solution x given by

x(t) =

∫ +∞

0

G(t, s)v(s)ds,

where G is the Green function of the problem, namely

G(t, s) =
1

2k

{
e−ks(ekt − e−kt), if 0 ≤ t ≤ s <∞,
e−kt(eks − e−ks), if 0 ≤ s ≤ t <∞. (2.1)

Throughout this work, 0 < γ < δ will denote some fixed numbers. The interval [γ, δ]
will play a key role in estimating the solutions of the problem (1.1). Let

Λ0 = min(e−kδ, ekγ − e−kγ),

Λ1 = min
(

1−k
1+k e

−kδ, ekγ + k−1
k+1 e

−kγ
)
,

Λ2 = k
k+1 e

−kδ.

(2.2)

Obviously, these constants are less than 1. Some fundamental properties of the kernel
G are given hereafter. The proofs are omitted.

Lemma 2.4. The Green’s function G satisfies the following estimates:

(a) G(t, s) ≥ 0, ∀ t, s ∈ R+.
(b) G(t, s) ≤ G(s, s) ≤ 1

2k , ∀ t, s ∈ R+.
(c) G(t, s)e−µt ≤ G(s, s)e−ks, ∀ t, s ∈ R+, ∀µ ≥ k.
(d) G(t, s) ≥ Λ0G(s, s)e−ks, ∀ t ∈ [γ, δ] , ∀ s ∈ R+.

Remark 2.5. The problem (1.2) is equivalent to the integral equation:

y(x) =

∫ +∞

0

e
c
2 (x−s)m(s)G(x, s)f(s, y(s), y′(s)) ds. (2.3)

The boundary conditions y(0) = y(+∞) = 0 follow from G(0, s) = 0, ∀ s ≥ 0, and
lim

x→+∞
e

c
2xG(x, s) = 0, ∀ s ≥ 0, since k > c

2 , where G is given by (2.1).

To show our existence results we will use the following lemma which contains
some recent results of the fixed point index theory on the cones of Banach spaces for
the sum of two operators (see [6]). Let X be a real Banach space and K ⊂ X a cone.

Lemma 2.6. Let U be a bounded open subset of K and W be a subset of K such that
0 ∈ U ∩W. Assume that T : W → E is an expansive mapping with constant h > 1,
F : U → E be a `-set contraction with 0 ≤ ` < h− 1, and F (U) ⊂ (I − T )(W ). Thus
we have the following: if

‖Fx+ T0‖ ≤ (h− 1)‖x‖ and Tx+ Fx 6= x for all x ∈ ∂U ∩W,

then i (T + F,U ∩W,K) = 1.



Existence of positive solutions for a class of BVPs 727

3. Main results

We begin by a new representation formula for the measure of noncompact- ness
in the space X.

Let p : R+ → (0,+∞) be a continuous function. Denote by X the space consist-
ing of all weighted functions y, continuously differentiable on R+ which satisfy

sup
x∈R+

([‖y(x)‖+ ‖y′(x)‖]p(x)) <∞.

Equipped with a Bielecki’s type norm ‖y‖p = sup
x∈R+

([‖y(x)‖ + ‖y′(x)‖]p(x)), it is a

Banach space.
In the following, we develop a new non-compactness result in order to use it to

show that an operator is `-set contraction in the space X.

Lemma 3.1. Let B ⊂ X be such that the functions belonging in the sets

pB = {z | z(t) = y(t) p(t), y ∈ B},
pB′ = {z | z(t) = y′(t) p(t), y ∈ B},

are almost equicontinuous on R+ and B is a bounded set in the sense of the norm

‖y‖q = sup
x∈R+

([‖y(t)‖+ ‖y′(t)‖]q(t)),

where the function q is positive, continuous on R+ and satisfies

lim
t→+∞

p(t)

q(t)
= 0.

Then

αX(B) = max

(
sup
t∈R+

αE (B(t)p(t)) , sup
t∈R+

αE ((B)′(t)p(t))

)
, (3.1)

where B(t) = {u(t) | u ∈ B} for t ∈ R+.

Proof. Let B ⊂ X be bounded in the sense of the norm

‖y‖q = sup
t∈R+

([‖y(t)‖+ ‖y′(t)‖]q(t)).

Thus there exists r > 0 such that ‖y‖q ≤ r for all y ∈ B. Since the function q is

positive on R+ and satisfies lim
t→+∞

p(t)
q(t) = 0, for any ε > 0, there exists T > 0 such

that

‖y(t1) p(t1)− y(t2) p(t2)‖
≤ p(t1)

q(t1)
‖y(t1)‖ q(t1) + p(t2)

q(t2)
‖y(t2)‖ q(t2)

≤ p(t1)
q(t1)

(‖y(t1)‖+ ‖y′(t1)‖) q(t1) + p(t2)
q(t2)

(‖y(t2)‖+ ‖y′(t2)‖) q(t2) < ε,

(3.2)

and

‖y′(t1) p(t1)− y′(t2) p(t2)‖
≤ p(t1)

q(t1)
‖y′(t1)‖ q(t1) + p(t2)

q(t2)
‖y′(t2)‖ q(t2)

≤ p(t1)
q(t1)

(‖y(t1)‖+ ‖y′(t1)‖) q(t1) + p(t2)
q(t2)

(‖y(t2)‖+ ‖y′(t2)‖) q(t2) < ε,

(3.3)

uniformly with respect to y ∈ B as t1, t2 ≥ T.
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We first claim that

αX(B) ≤ max

(
sup
t∈R+

αE (B(t)p(t)) , sup
t∈R+

αE (B′(t)p(t))

)
.

Denote by B|[0,T ] and B′|[0,T ] the restriction of B and B′ on [0, T ]. Since the sets
B(t)p(t) and B′(t)p(t) are equi-continuous on [0, T ], Lemma 2.1 ensures that

αC1(Bp|[0,T ]) = max

(
sup
t∈[0,T ]

αE(B(t)p(t)), sup
t∈[0,T ]

αE (B′(t)p(t))

)
≤ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
,

where Bp|[0,T ] = {y(t)p(t) : y ∈ B, t ∈ [0, T ]}.

By the definition of the MNC αC1 , there exists {Bi}ni=1 such that B =
n⋃
i=1

Bi and for

i = 1, ..., n,

diamC1(Bip|[0,T ]) ≤ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
+ ε, (3.4)

where diamC1(.) denotes the diameter of the bounded subsets of C1([0, T ], E).
Furthermore, for i = 1, ..., n, fixed, for all y1, y2 ∈ Bi and t ≥ T, we deduce from
(3.2)-(3.4), for i = 1, . . . , n the following estimates:

‖(y1(t)− y2(t))‖ p(t)
≤ (‖(y1(t) + y′1(t))‖+ ‖(y′1(t)− y′2(t))‖+ ‖(y2(t) + y′2(t))‖) p(t)
≤ (‖(y1(t) + y′1(t))‖q(t) + ‖(y2(t) + y′2(t))‖q(t)) p(t)q(t) + ‖(y′1(t)− y′2(t))‖p(t)
≤ ε+ ‖y′1(t)p(t)− y′1(T )p(T )‖+ ‖y′1(T )p(T )− y′2(T )p(T )‖

+ ‖y′2(T )p(T )− y′2(t)p(t)‖

≤ 2ε+ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
+ ε+ ε,

(3.5)
and

‖(y′1(t)− y′2(t))‖ p(t)
≤ (‖(y1(t) + y′1(t))‖+ ‖(y1(t)− y2(t))‖+ ‖(y2(t) + y′2(t))‖) p(t)
≤ (‖(y1(t) + y′1(t))‖q(t) + ‖(y2(t) + y′2(t))‖q(t)) p(t)q(t) + ‖(y1(t)− y2(t))‖p(t)
≤ ε+ ‖y1(t)p(t)− y1(T )p(T )‖+ ‖y1(T )p(T )− y2(T )p(T )‖

+ ‖y2(T )p(T )− y2(t)p(t)‖

≤ 2ε+ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
+ ε+ ε.

(3.6)
Therefore (3.4), (3.5) and (3.6) guarantee that

diamX(Bi) ≤ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
+ 4ε
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Noting that B =
n⋃
i=1

Bi, we infer

αX(B) ≤ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
+ 4ε,

and ε being arbitrary, we deduce that

αX(B) ≤ max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
.

Conversely, we prove that max

(
sup
t∈R+

αE(B(t)p(t)), sup
t∈R+

αE(B′(t)p(t))

)
≤ αX(B).

Given ε > 0, there exists {Bi}ni=1 such that B =
n⋃
i=1

Bi and diamX(Bi) ≤ αX(B) + ε.

Thus, for fixed i, for every t ∈ R+ and all y1, y2 ∈ Bi, we have

‖(y1(t)− y2(t))‖ p(t)‖ ≤ ‖y1 − y2‖ω < αX(B) + ε,

and
‖(y′1(t)− y′2(t))‖ p(t)‖ ≤ ‖y1 − y2‖ω < αX(B) + ε.

Since B(t) =
n⋃
i=1

Bi(t), we have αE(B(t)p(t)) ≤ αX(B) + ε.

Now ε being arbitrary, we deduce that sup
t∈R+

αE(B(t)p(t)) ≤ αX(B).

In accordance with B′(t) =
n⋃
i=1

B′i(t), we get sup
t∈R+

αE(B′(t)p(t)) ≤ αX(B), where

H ′(t) = {y′(t)| y ∈ H}, t ∈ R+, whence the reversed inequality and then the desired
result. �

Let ω > 0 be a given real parameter. Consider the Banach space with weight
function e−ωt

X =

{
x ∈ C1(R+, E) : sup

t∈R+

(
(‖x(t)‖+ ‖x′(t)‖) e−ωt

)
<∞

}
,

endowed with the norm

‖x‖ω = sup
t∈R+

(
(‖x(t)‖+ ‖x′(t)‖) e−ωt

)
.

Define the cone
K̃ = {x ∈ X : x ≥ 0 on R+}.

With K we denote the set of all equi-continuous families in K̃.
Take ε ∈ (0, 1) and p, q > 0 arbitrarily. Let A,B1, B2, B3, R, τ be positive constants
such that

G(t, s) + |Gt(t, s)| ≤ A, t, s ∈ [0,∞),

and

0 < τ <
1

4
, A (B1 +B2R

p +B3R
q) < min{τ,R}.

Define the conical shell
KR = {x ∈ K : ‖x‖ω < R}.
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Assume that

(H1). f ∈ C(R+ × P × E,P) be such that

‖f(t, x, y)‖ ≤ a0(t) + a1(t)‖x‖p + a2(t)‖y‖q

for any (t, x, y) ∈ R+ × P × E, where ai ∈ C(R+,R+), i ∈ {0, 1, 2},∫ ∞
0

m(s)a0(s)ds ≤ B1,

∫ ∞
0

m(s)a1(s)ewspds ≤ B2,

∫ ∞
0

m(s)a2(s)eωsqds ≤ B3.

Theorem 3.2. Assume (H1). Then the problem (1.1) has at least one positive solution
x in K such that

sup
t∈R+

(
(‖x(t)‖+ ‖x′(t)‖) e−ωt

)
≤ R.

Proof. For x ∈ X define the operators

Tx(t) = (1 + ε)x(t),

Fx(t) = −ε
∫ ∞
0

G(t, s)m(s)f(s, x(s), x′(s))ds, t ∈ (0,∞).

1. Note that T : KR → X is an (1 + ε)-expansive operator.

2. Now we will prove that the operator F : KR → X is continuous. From the
assumption (H1), we can show that

sup
t∈R+

e−ωt (‖Fx(t)‖+ ‖(Fx)′(t)‖) <∞,

which imply that

F (KR) ⊂ X.

Let {xn}n∈N, {x} ⊂ KR with ‖xn−x‖w → 0, as n→∞. Hence, {xn}n∈N is bounded in
KR. Then there exists a positive constant r such that max{‖xn‖ω, n ∈ N, ‖x‖ω} ≤ r.
We have∫ ∞

0

e−ωtG(t, s)m(s)‖f(s, xn(s), x′n(s))− f(s, x(s), x′(s))‖ds

≤
∫ ∞
0

e−ωtG(t, s)m(s) (‖f(s, xn(s), x′n(s))‖+ ‖f(s, x(s), x′(s))‖) ds

≤
∫ ∞
0

e−ωtG(t, s)m(s)

(
2a0(s) + a1(s) (‖xn(s)‖p + ‖x(s)‖p)

+a2(s) (‖x′n(s)‖q + ‖x′(s)‖q)
)
ds

≤ 2B1A+AB2 (‖xn‖pω + ‖x‖pω) +AB3 (‖xn‖qω + ‖x‖qω)

≤ 2A (B1 +B2r
p +B3r

q) , t ∈ (0,∞),
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and ∫ ∞
0

e−ωt|Gt(t, s)|m(s)‖f(s, xn(s), x′n(s))− f(s, x(s), x′(s))‖ds

≤
∫ ∞
0

e−ωt|Gt(t, s)|m(s) (‖f(s, xn(s), x′n(s))‖+ ‖f(s, x(s), x′(s))‖) ds

≤
∫ ∞
0

e−ωt|Gt(t, s)|m(s)

(
2a0(s) + a1(s) (‖xn(s)‖p + ‖x(s)‖p)

+a2(s) (‖x′n(s)‖q + ‖x′(s)‖q)
)
ds

≤ 2B1A+AB2 (‖xn‖pω + ‖x‖pω) +AB3 (‖xn‖qω + ‖x‖qω)

≤ 2A (B1 +B2r
p +B3r

q) , t ∈ (0,∞).

Thus, the Lebesgue dominated convergence theorem both with the continuity of f
imply

sup
t∈R+

(
e−ωt‖(Fxn)(t)− (Fx)(t)‖

)
→ 0, as n→∞,

and

sup
t∈R+

(
e−ωt‖(Fxn)′(t)− (Fx)′(t)‖

)
→ 0, as n→∞.

As a result,

‖Fxn − Fx‖ω → 0, as n→∞,

i.e., the operator F is continuous.

3. We have F : KR → X and for x ∈ KR we get

(‖Fx(t)‖+ ‖(Fx)′(t)‖) e−ωt

≤ εe−ωt
∫ ∞
0

(G(t, s) + |Gt(t, s)|)m(s)‖f(s, x(s), x′(s))‖ds

≤ εe−ωtA

∫ ∞
0

m(s) (a0(s) + a1(s)‖x(s)‖p + a2(s)‖x′(s)‖q) ds

≤ εe−ωtA

∫ ∞
0

m(s) (a0(s) + a1(s)eωpsRp + a2(s)eωqsRq) ds

≤ εe−ωtA (B1 +B2R
p +B3R

q)

≤ εA (B1 +B2R
p +B3R

q)

≤ τε

<
ε

4
, t ∈ (0,∞).

Hence,

‖Fx‖ω ≤
ε

4
.

Therefore F (KR) is uniformly bounded. Since F : KR → X is continuous, we have
that F (KR) is equi-continuous. Consequently F : KR → X is a 0-set contraction.
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4. Let y ∈ KR be arbitrarily chosen. Set

z(t) =

∫ ∞
0

G(t, s)m(s)f(s, y(s), y′(s))ds, t ∈ (0,∞).

We have that z ∈ K and using the above computations, we have

(‖z(t)‖+ ‖z′(t)‖) e−ωt ≤ e−ωt
∫ ∞
0

(G(t, s) + |Gt(t, s)|)m(s)‖f(s, y(s), y′(s))‖ds

≤ A (B1 +B2R
p +B3R

q)

≤ A (B1 +B2R
p +B3R

q)

≤ R,

so, ‖z‖ω ≤ R. Therefore z ∈ KR. Also,

(I − T )z(t) = −εz(t)

= −ε
∫ ∞
0

G(t, s)m(s)f(s, y(s), y′(s))ds

= Fy(t), t ∈ (0,∞).

Thus
F
(
KR
)
⊂ (I − T )(K).

5. Note that 0 ∈ KR and for any x ∈ ∂KR we have

‖Fx+ T0‖ω = ‖Fx‖ω
≤ εA (B1 +B2R

p +B3R
q)

≤ εR

= ε‖x‖ω.
Assume that there exists an x ∈ ∂KR such that

Fx+ Tx = x.

Then

(‖x(t)‖+ ‖x′(t)‖) e−ωt

≥ (1 + ε)e−ωt (‖x(t)‖+ ‖x′(t)‖)

−εe−ωt
∫ ∞
0

(G(t, s) + |Gt(t, s)|)m(s)‖f(s, x(s), x′(s))‖ds

≥ (1 + ε)e−ωt (‖x(t)‖+ ‖x′(t)‖)
−εA (B1 +B2R

p +B3R
q) , t ∈ (0,∞),

or
εA (B1 +B2R

p +B3R
q) ≥ εe−ωt (‖x(t)‖+ ‖x′(t)‖) , t ∈ (0,∞),

whereupon
A (B1 +B2R

p +B3R
q) ≥ R.

This is a contradiction.
By 1, 2, 3, 4, 5 and Lemma 2.6, we conclude that the operator T +F has a fixed

point x ∈ KR, which is a solution of the problem (1.1). This completes the proof. �



Existence of positive solutions for a class of BVPs 733

Remark 3.3. A discussion on the existence of a positive real R that verifies an
inequality of the type A (B1 +B2R

p +B3R
q) < R, with respect to p and q,

is given in [7, Remark 3.2]. So that the same constant R checks the inequality
A (B1 +B2R

p +B3R
q) < τ < 1

4 it is necessary that AB1 < τ.
In the case when the last inequality does not hold, or in a general way the

inequality A (B1 +B2R
p +B3R

q) < τ < 1
4 is not satisfied, additional conditions on

the nonlinearity f are needed to show that the operator F is a `-set contraction.

To overcome the problem pointed out in the remark we consider the conditions
(H2) and (H3).

(H2). For every r > 0 and all subinterval [a, b] ⊂ R+, the nonlinearity f is uniformly
continuous on [a, b]×BE(0, r)×BE(0, r), where BE(0, r) = {x ∈ E : ‖x‖ ≤ r}.

(H3). There exist a positive functions l1, l2 ∈ L1(R+) such that

α(f(t, B1, B2)) ≤ l1(t)α(B1) + l2(t)α(B2), t ∈ R+,

for every bounded subsets B1, B2 ⊂ E, where

A

∫ +∞

0

m(t)(l1(t) + l2(t))dt < 1.

And we present the following theorem.

Theorem 3.4. Assume (H1)− (H3). Then the problem (1.1) has at least one positive
solution x in K such that

sup
t∈R+

(
(‖x(t)‖+ ‖x′(t)‖) e−ωt

)
≤ R.

Proof. The proof of this theorem is similar to that of Theorem 3.2, we will only show
how the operator F is a `-set contraction with ` < ε under conditions (H2) and (H3).
Firstly, using Lemma 3.1 for p(t) = e−ωt and q(t) = e−µt with µ < ω, we get the
following result.

Lemma 3.5. Assume that (H1) holds. If V be a bounded subset of KR, then

αX(FV ) = max

(
sup
t∈R+

αE
(
e−ωtFV (t)

)
, sup
t∈R+

αE
(
e−ωt(FV )′(t)

))
.

Proof. Let V ⊂ KR be arbitrary.
(a) F (V ) ⊂ X is a uniformly bounded set with respect to the norm ‖.‖µ. Indeed,

as in Theorem 3.2, we obtain

‖x‖µ ≤ εA(B1 +B2‖x‖pµ +B3‖x‖qµ), ∀x ∈ V.

(b) The families {e−ωt(FV (t))}t∈R+ and {e−ωt(FV )′(t))}t∈R+ are almost equi-
continuous on R+. The proof is similar to the one in [5, Lemma 1.3.3]. �

Now, Suppose that V ⊂ KR; we prove that there exists a constant 0 ≤ ` < ε such
that αX(FV ) ≤ `αX(V ). Lemma 3.5 tells us that it is enough to verify that

max

(
sup
t∈R+

αE
(
e−ωtFV (t)

)
, sup
t∈R+

αE
(
e−ωt(FV )′(t)

))
≤ `αX(V ). (3.7)
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Let x ∈ V . we introduce, for each n ≥ 1, the approximating operator Fn by

Fnx(t) = −ε
∫ n

0

G(t, s)m(s)f(s, x(s), x′(s))ds.

Step 1. From (H1)and (H3), for every t ∈ (0,∞), we have that

e−ωt‖Fx(t)− Fnx(t)‖
≤

∫ +∞
n

e−ωtG(t, s)m(s)‖f(s, x(s), x′(s))‖ds
≤ εA(

∫ +∞
n

m(s)a0(s)ds+ ‖x‖pω
∫ +∞
n

epωsm(s)a1(s)ds

+ ‖x‖qω
∫ +∞
n

eqωsm(s)a2(s)ds).

Similarly, we also have

e−ωt‖(Fnx)′(t)− (Fx)′(t)‖
≤ εA(

∫ +∞
n

m(s)a0(s)ds+ ‖x‖pω
∫ +∞
n

epωsm(s)a1(s)ds

+ ‖x‖qω
∫ +∞
n

eqωsm(s)a2(s)ds).

As a consequence, we get

‖Fx− Fnx‖ω
= sup

t∈R+

{e−ωt (‖Fx(t)− Fnx(t)‖+ ‖(Fnx)′(t)− (Fx)′(t)‖)}

≤ 2εA(
∫ +∞
n

m(s)a0(s)ds+ ‖x‖pω
∫ +∞
n

epωsm(s)a1(s)ds

+ ‖x‖qω
∫ +∞
n

eqωsm(s)a2(s)ds).

The convergence of the integrals guarantee that

lim
n→+∞

∫ +∞
n

m(s)a0(s)ds = 0,

lim
n→+∞

∫ +∞
n

epωsm(s)a1(s)ds = 0,

lim
n→+∞

∫ +∞
n

eqωsm(s)a2(s)ds = 0.

Then, for all x ∈ V and t ∈ (0,∞), we have

d(e−ωt(Fnx)(t), e−ωt(FV )(t))

= inf
y∈B
{e−ωt (‖Fnx(t)− Fy(t)‖+ ‖(Fnx)′(t)− (Fx)′(t)‖)}

≤ e−ωt (‖Fnx(t)− Fx(t)‖+ ‖(Fnx)′(t)− (Fx)′(t)‖)
→ 0, as n→∞,

hence for every t ∈ (0,∞)

sup
x∈V

d(e−ωt(Fnx)(t), e−ωt(FV )(t))→ 0, as n→∞.

Similarly, for every t ∈ (0,∞)

sup
x∈V

d(e−ωt(FnV )(t), e−ωt(Fx)(t))→ 0, as n→∞.

Then the Hausdorff distance

Hd(e
−ωtFV (t), e−ωtFnV (t))
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tends to 0, as n tends to +∞ for all t in (0,∞). The Lipschitz property of the MNC
α guarantees

lim
n→+∞

α
(
e−ωtFnV (t)

)
= α

(
e−ωtFV (t)

)
, ∀ t ∈ (0,+∞), (3.8)

and
lim

n→+∞
α
(
e−ωt(FnV )′(t)

)
= α

(
e−ωt(FV )′(t)

)
, ∀ t ∈ (0,+∞), (3.9)

Step 2. In what follows, we estimate α (e−ωtFnV (t)). Using Assumption (H3), Lemma
3.1 and the properties of the Green function lead to estimations:

α (e−ωtFV (t)) = lim
n→+∞

α (e−ωt(FnV )(t))

= ε lim
n→+∞

α
(
{e−ωt

∫ n
0
G(t, s)m(s)f(s, x(s), x′(s))ds}, x ∈ V

)
≤ εA lim

n→+∞

∫ n
0
m(s)α (f(s, x(s), x′(s)), x ∈ V ) ds

≤ εA lim
n→+∞

∫ n
0
m(s) (l1(s)α (e−ωsV (s)) + l2(s)α (e−ωsV ′(s))) ds

≤ αX(V )εA lim
n→+∞

∫ n
0
m(s)(l1(s) + l2(s))ds

≤ αX(V )εA
∫ +∞
0

m(s)(l1(s) + l2(s))ds.

Since t is arbitrary
sup
t∈R+

α
(
e−ωt(FV )(t)

)
≤ `αX(V ),

Similarly, we find that

sup
t∈R+

α
(
e−ωt(FV )′(t)

)
≤ `αX(V ),

where, ` = εA
∫ +∞
0

m(s)(l1(s) + l2(s))ds.
From Lemma 3.5, we immediately deduce that

αX(FV ) ≤ ` αX(V ),

meaning that F : KR → X is a `-set contraction with ` < ε. �

4. An example

Consider the following nonlinear boundary value problem for system of n scalar
differential equations in the Banach space E = Rn with the Euclidean norm

‖x‖ =

(
n∑
i=1

x2i

) 1
2

with x = (x1, . . . , xn) | xi ∈ R, i = 1, . . . , n and let 0 < p, q < 1:{
−x′′i (t) + k2xi(t) = e−pωt

t2
√
t

1−cos t
t+1 (1 + (xi(t))

p + (x′i(t))
q), t > 0

xi(0) = 0, lim
t→+∞

xi(t) = 0, i = 1, 2, . . . , n.
(4.1)

Let P = {x = (x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n}. Then P is a cone in Rn
and clearly System (4.1) can be rewritten in the form (1.1) in E. In this case,

x = (x1, . . . , xn), y = (y1, . . . , yn), f = (f (1), . . . , f (n))
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where for any i ∈ {1, . . . , n}, f (i) is defined by

f (i)(t, x1, . . . , xn, y1, . . . , yn) = 1−cos t
t+1 (1 + xpi + yqi ), for t ≥ 0.

Then, we have f (i) is uniformly continuous on [a, b] × BE(0, r), for all [a, b] ⊂ I and

r > 0. The singular coefficient is given by m(t) = e−pωt

t2
√
t

for t > 0. Then

‖f(t, x, y)‖2 =
n∑
i=1

(f (i)(t, x, y))2

≤ 4 (1−cos t)2
(t+1)2

(
n+

n∑
i=1

x2pi +
n∑
i=1

y2qi

)
≤ 4 (1−cos t)2

(t+1)2

(
n+ (

n∑
i=1

x2i )
p + (

n∑
i=1

y2i )q
)

≤ 4 (1−cos t)2
(t+1)2

(
n+ ‖x‖2p + ‖y‖2q

)
.

Hence,

‖f(t, x, y)‖ ≤ a1(t)‖x‖p + a2(t)‖y‖q + a0(t),

where a1(t) = a2(t) = 2 1−cos t
t+1 and a2(t) = 2

√
n 1−cos t

t+1 .

Moreover, since in the vicinity the origin, 1−cos s
s2
√
s
∼ 1

2
√
s

and for any α > 0,∫ +∞

0

e−αs

(s+ 1)
√
s
dx <∞,

we deduce the convergence of the integrals∫ +∞

0

epωsm(s)a1(s)ds = 2

∫ +∞

0

1− cos s

s2
√
s(s+ 1)

ds,

∫ +∞

0

m(s)a0(s)ds = 2
√
n

∫ +∞

0

(1− cos s)e−pωs

s2
√
s(s+ 1)

ds.

Also, the integral∫ +∞

0

eqωsm(s)a2(s)ds = 2

∫ +∞

0

(1− cos s)e(q−p)ωs

s2
√
s(s+ 1)

ds,

is converge provided p > q.
Here the real numbers p, q satisfy 0 < p, q < 1, then there exists R > 0 such that
A (B1 +B2R

p +B3R
q) < R (see [7, Remark 3.2]).

Finally, for every bounded subsets D1, D2 ⊂ E and for all t ∈ R+, x ∈ D1, y ∈ D2,
we have

‖f(t, x, y)‖ ≤ 2
1− cos t

t+ 1

(
n+ ‖x‖2p + ‖y‖2q

)
≤ 4

(
n+ ‖x‖2p + ‖y‖2q

)
.

Moreover, for all 0 < t1 < t2 < +∞, x ∈ D1, and y ∈ D2, we have

lim
t1→t2

|f (i)(t1, x, y)− f (i)(t2, x, y)|

≤ lim
t1→t2

∣∣∣ 1−cos t1t1+1 (1 + xpi + yqi )−
1−cos t2
t2+1 (1 + xpi + yqi )

∣∣∣
≤ lim

t1→t2
(1 + ‖x‖p∞ + ‖x‖q∞)

∣∣∣ 1−cos t1t1+1 − 1−cos t2
t2+1 )

∣∣∣ = 0, ∀ i = 1, . . . , n.
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Then lim
t1→t2

‖f(t1, x, y)− f(t2, x, y)‖ = 0 and

lim
t→+∞

|f (i)(t, x, y)− lim
s→+∞

f (i)(s, x, y)|

≤ lim
t→+∞

∣∣∣ 1−cos tt+1 (1 + xpi + yqi )− 0
∣∣∣ = 0, ∀ i = 1, . . . , n.

Hence, lim
t→+∞

‖f (i)(t, x, y)− lim
s→+∞

f (i)(s, x, y)‖ = 0.

As a consequence, Corduneanu’s compactness criterion ([1], p. 62) ensures that
f(t,D1, D2) is relatively compact in Rn. So, α(f(t,D1, D2)) = 0, for all t ∈ R+

and all bounded subset D1, D2 ⊂ E.
Theorem 3.4 ensures the sub-linear singular problem (4.1) has a bounded positive

solution for every constants k and all 0 < p, q < 1.
Acknowledgments. We would like to thank the anonymous referees for their careful
reading and helpful suggestions which led to a substantial improvement of the original
manuscript.
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