On a subclass of analytic functions for operator on a Hilbert space

Sayali Joshi, Santosh B. Joshi and Ram Mohapatra

Abstract. In this paper we introduce and study a subclass of analytic functions for operators on a Hilbert space in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. We have established coefficient estimates, distortion theorem for this subclass, and also an application to operators based on fractional calculus for this class is investigated.

Mathematics Subject Classification (2010): 30C45.

Keywords: Univalent function, coefficient estimates, distortion theorem.

1. Introduction

Let A denote the class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n \ z^n$$
 (1.1)

in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. Let S denote the subclass of A, consisting of functions of the form (1.1) which are normalised and univalent in U.

A function $f \in A$ is said to be starlike of order δ $(0 \le \delta < 1)$ if and only if

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > \delta, \ z \in \operatorname{U}.$$
(1.2)

Also, a function $f \in A$ is said to be convex of order δ $(0 \le \delta < 1)$ if and only if

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] > \delta, \ z \in \operatorname{U}.$$
(1.3)

We denote by $S^*(\delta)$ and $K(\delta)$ respectively the classes of functions in S, which are starlike and convex of order δ in U. The subclass $S^*(\delta)$ was introduced by Robertson [7] and studied further by Schild [8], MacGregor [4], and others.

Let T denote the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n \ z^n, \ a_n \ge 0.$$
 (1.4)

We begin by setting

$$F_{\lambda}(z) = (1-\lambda)f(z) + \lambda z f'(z), \quad 0 \le \lambda \le 1, \quad f \in T,$$
(1.5)

so that

$$F_{\lambda}(z) = z - \sum_{n=2}^{\infty} [1 + \lambda(n-1)] a_n \ z^n.$$
(1.6)

A function $f \in S$ is said to be in the class $S_{\lambda}(\alpha, \beta, \mu)$ if it satisfies

$$\left| \frac{\frac{zF_{\lambda}'(z)}{F_{\lambda}(z)} - 1}{\mu \frac{zF_{\lambda}'(z)}{F_{\lambda}(z)} + 1 - (1+\mu)\alpha} \right| < \beta , \ z \in \mathbf{U},$$
(1.7)

where $0 \leq \alpha < 1, \, 0 < \beta \leq 1$ and $0 \leq \mu \leq 1$.

Let us define

$$S_{\lambda}^{*}(\alpha,\beta,\mu) = S_{\lambda}(\alpha,\beta,\mu) \cap T.$$
(1.8)

The study of various subclasses of S and other related work has been done by Silverman [9], Gupta and Jain [3], Owa and Aouf [6].

Let H be a complex Hilbert space and A be an operator on H. For an analytic function f defined on U, we denote by f(A) the operator on H defined by the well known Riesz-Dunford integral

$$f(A) = \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(zI - A)^{-1} dz \quad , \tag{1.9}$$

where I is the identity operator on H, C is a positively oriented simple closed contour lying in U and containing the spectrum of A on the interior of the domain. The conjugate operator of A is denoted by A^* .

A function given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$ if it satisfies the condition

$$||AF_{\lambda}'(A) - F_{\lambda}(A)|| < \beta ||\mu A F_{\lambda}'(A) + F_{\lambda}(A) - (1+\mu)\alpha F_{\lambda}(A)||$$

$$(1.10)$$

with the same constraints as α, β and μ , given in (1.7) and for all A with ||A|| < 1, $A \neq \theta$, where θ is the zero operator on H. Such type of work was earlier done by Fan [2], Xiaopei [10], etc.

In the present paper we have established coefficient estimates, distortion theorem for $S^*_{\lambda}(\alpha, \beta, \mu; A)$ and further we consider application to a class of operators defined through fractional calculus.

2. Main Results

Theorem 2.1. A function f be given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$ for all proper contraction A with $A \neq \theta$ if and only if

$$\sum_{n=2}^{\infty} \{ (n-1) + \beta [1 + \mu n - (1+\mu)\alpha] \} a_n \le \beta (1+\mu)(1-\alpha),$$
 (2.1)

for $0 \le \alpha < 1$, $0 < \beta \le 1$, $0 \le \mu \le 1$.

The result is best possible for

$$f(z) = z - \frac{\beta(1+\mu)(1-\alpha)}{(n-1) + \beta[1+\mu \ n - (1+\mu)\alpha]} \ z^n, \quad n \in \mathbb{N} \setminus \{1\}$$
(2.2)

Proof. Assuming that (2.1) holds, we deduce that

$$\begin{split} ||AF_{\lambda}'(A) - F_{\lambda}(A)|| &-\beta ||\mu A F_{\lambda}'(A) + F_{\lambda}(A) - (1+\mu)\alpha F_{\lambda}(A)|| \\ &= \|\sum_{n=2}^{\infty} (n-1)a_n A^n\| - \beta \|(1+\mu)(1-\alpha)A^n - \sum_{n=2}^{\infty} \{1+\mu n - (1+\mu)\alpha\}a_n A^n\| \\ &\leq \sum_{n=2}^{\infty} \{(n-1) + \beta [1+\mu n - (1+\mu)\alpha]\}a_n - \beta (1+\mu)(1-\alpha) \leq 0 , \end{split}$$

hence, f is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$.

Conversely, if we suppose that f belongs to $S^*_{\lambda}(\alpha, \beta, \mu; A)$, then

$$||AF'_{\lambda}(A) - F_{\lambda}(A)|| < \beta ||\mu A F'_{\lambda}(A) + F_{\lambda}(A) - (1+\mu)\alpha F_{\lambda}(A)||,$$

therefore

$$\left|\left|\sum_{n=2}^{\infty} (n-1)a_n A^n\right|\right| \le \beta \left|\left|(1+\mu)(1-\alpha) - \sum_{n=2}^{\infty} \{\mu \ n+1 - (1+\mu)\alpha\}a_n \ A^n\right|\right|.$$

Selecting A = eI (0 < e < 1) in the above inequality, we get

$$\frac{\sum_{n=2}^{\infty} (n-1)a_n e^n}{(1+\mu)(1-\alpha) - \sum_{n=2}^{\infty} \{\mu \ n+1 - (1+\mu)\alpha\}} < \beta.$$
(2.3)

Upon clearing denominator in (2.3) and letting $e \to 1$ (0 < e < 1), we get

$$\sum_{n=2}^{\infty} (n-1)a_n \le \beta(1+\mu)(1-\alpha) - \beta \sum_{n=2}^{\infty} \{\mu \ n+1 - (1+\mu)\alpha\}a_n,$$

which implies that

$$\sum_{n=2}^{\infty} \{ (n-1) + \beta [1 + \mu n - (1+\mu)\alpha] \} a_n \le \beta (1+\mu)(1-\alpha),$$

and this completes the proof of our theorem.

149

Corollary 1.1. If a function f given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$, then

$$a_n \le \frac{\beta(1+\mu)(1-\alpha)}{(n-1)+\beta[1+\mu \ n-(1+\mu)\alpha]}, \quad n=2,3,4,\dots$$
 (2.4)

Theorem 2.2. If the function f given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$ for $0 \le \alpha < 1, \ 0 < \beta \le 1, \ 0 \le \mu \le 1, \ ||A|| < 1$ and $A \ne \theta$, then

$$||A|| - \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} \quad ||A||^2 \le ||f(A)||$$

$$\le ||A|| + \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} \quad ||A||^2.$$
(2.5)

The result is sharp for the function

$$f(z) = z - \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} z^{n}.$$
 (2.6)

Proof. In view of Theorem 2.1, we have

$$1 + \beta [(1+2\mu) - (1+2\mu)\alpha] \sum_{n=2}^{\infty} a_n$$

$$\leq \sum_{n=2}^{\infty} \{(n-1) + \beta [1+\mu n - (1+2\mu)\alpha] \} a_n \leq \beta (1+2\mu)(1-\alpha),$$

which gives us

$$\sum_{n=2}^{\infty} a_n \le \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu) - (1+2\mu)\alpha]} .$$
(2.7)

Hence, we have

$$||f(A)|| \ge ||A|| - ||A||^2 \sum_{n=2}^{\infty} a_n$$

$$\ge ||A|| - \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu) - (1+2\mu)\alpha]} ||A||^2,$$

and

$$\begin{split} ||f(A)|| &\leq ||A|| + ||A||^2 \sum_{n=2}^{\infty} a_n \\ &\leq ||A|| + \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} ||A||^2, \end{split}$$

which completes our proof.

Theorem 2.3. Let $f_1(z) = z$, and

$$f_n(z) = z - \frac{\beta(1+\mu)(1-\alpha)}{(n-1) + \beta[(1+\mu \ n) \ -(1+\mu)\alpha]} \ z^n, \quad n \ge 2.$$
 (2.8)

Then, any function f of the form (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$ if and only if it can be expressed as,

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) , \quad with \quad \lambda_n \ge 0 , \quad \sum_{n=1}^{\infty} \lambda_n = 1.$$
 (2.9)

Proof. First, let us assume that

$$f(z) = \sum_{n=1}^{\infty} \lambda_n \ f_n(z) = z - \sum_{n=2}^{\infty} \frac{\beta(1+\mu)(1-\alpha)}{(n-1) + \beta[(1+\mu \ n) \ -(1+\mu)\alpha]} \ \lambda_n \ z^n.$$

Then, we have

$$\sum_{n=2}^{\infty} \frac{(n-1) + \beta[(1+\mu n) - (1+\mu)\alpha]}{\beta(1+\mu)(1-\alpha)} \lambda_n \frac{\beta(1+\mu)(1-\alpha)}{(n-1) + \beta[(1+\mu n) - (1+\mu)\alpha]}$$
$$= \sum_{n=2}^{\infty} \lambda_n = 1 - \lambda_1 \le 1 ,$$

hence $f \in S^*_{\lambda}(\alpha, \beta, \mu; A)$.

Conversely, let us assume that the function f given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$. Then, from Corollary 1.1 we get

$$a_n \le \frac{\beta(1+\mu)(1-\alpha)}{(n-1)+\beta[1+\mu \ n-(1+\mu)\alpha]}$$

We may set

$$\lambda_n = \frac{(n-1) + \beta [1 + \mu \, n - (1 + \mu)\alpha]}{\beta (1 + \mu)(1 - \alpha)} \, a_n \; ,$$

and

$$\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n \; ,$$

hence it is easy to check that f can be expressed by (2.9), and this completes the proof of Theorem 2.3.

3. Distortion Theorem involving Fractional Calculus

In this section we shall prove distortion theorem for function belonging to the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$, and each of these results would involve operators of fractional calculus which are defined as follows (for details, see [5]).

Definition 3.1. The fractional integral operator of order k associated with a function f is defined by

$$D_A^{-k}f(A) = \frac{1}{\Gamma(k)} \int_0^1 A^k f(tA) (1-t)^{k-1} dt ,$$

where k > 0 and f is an analytic function in a simply connected region of the complex plane containing the origin.

Definition 3.2. The fractional derivative operator of order k associated with a function f is defined by

$$D_A^k f(A) = \frac{1}{\Gamma(1-k)} g'(A),$$

where

$$g(A) = \int_0^1 A^{(1-k)} f(tA) (1-t)^{-k} dt , \quad 0 < k < 1$$

and f is an analytic function in a simply connected region of the complex plane containing the origin.

Theorem 3.3. If the function f given by (1.4) is in the class $S^*_{\lambda}(\alpha, \beta, \mu; A)$ for $0 \le \alpha < 1, \ 0 < \beta \le 1, \ 0 \le \mu \le 1$, then

$$||D_A^{-k}f(A)|| \ge \frac{||A||^k}{\Gamma(k+2)} - \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} \frac{||A||^{k+2}}{\Gamma(k+2)} ,$$

and

$$||D_A^{-k}f(A)|| \le \frac{||A||^k}{\Gamma(k+2)} + \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu) - (1+2\mu)\alpha]} \frac{||A||^{k+2}}{\Gamma(k+2)}$$

Proof. If we consider

$$F(A) = \Gamma(k+2)A^{-k}D_A^{-k}f(A)$$

$$= A - \sum_{n=1}^{\infty} \frac{\Gamma(n+2) \ \Gamma(k+2)}{\Gamma(n+k+2)} a_{n+1} A^{n+1} = A - \sum_{n=2}^{\infty} B_n A^n ,$$

where $B_n = \frac{\Gamma(n+1) \Gamma(k+2)}{\Gamma(n+k+1)} a_n$, then we obtain that

$$\sum_{n=2}^{\infty} \{ (n-1) + \beta [1 + \mu \ n - (1+\mu)\alpha] \} B_n$$

$$\leq \sum_{n=2}^{\infty} \{ (n-1) + \beta [1 + \mu \ n - (1+\mu)\alpha] \} a_n \leq \beta (1+\mu)(1-\alpha)$$

as $0 < \frac{\Gamma(n+1) \ \Gamma(k+2)}{\Gamma(n+k+1)} < 1$, hence F belongs to $S^*_{\lambda}(\alpha, \beta, \mu; A)$. Therefore, by Theorem 2.2 we deduce that

$$||D_A^{-k}f(A)|| \le \frac{||A^{k+1}||}{\Gamma(k+2)} + \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu)-(1+2\mu)\alpha]} \frac{||A^{k+2}||}{\Gamma(k+2)}$$

and

$$|D_A^{-k}f(A)|| \ge \frac{||A^{k+1}||}{\Gamma(k+2)} - \frac{\beta(1+2\mu)(1-\alpha)}{1+\beta[(1+2\mu) - (1+2\mu)\alpha]} \frac{||A^{k+2}||}{\Gamma(k+2)}.$$

Note that $(A^{\frac{1}{q}}) * A^{\frac{1}{q}} = A^{\frac{1}{q}}(A^{\frac{1}{q*}}); q \in N$ and by Corollary 3.8 [11] we have $||A^m|| = ||A||^m$, where *m* is rational number and '*' is the *Hadamard product* or convolution product of two analytic functions. When *s* is any irrational number, we choose a single-valued branch of z^s and a single valued branch of $z^{k_n}(k_n)$ is a sequence

of rational numbers) such that $k_n \to s$, as $||A^{k_n}|| = ||A||^{k_n}$, and Lemma 13 [1] allows us to have $||A^{k_n}|| \to ||A^s||$, $||A^{k_n}|| = ||A||^{k_n} \to ||A^s||$, $k_n \to s$. That is $||A^s|| = ||A||^s$, hence $||A^k|| = ||A||^k$, k > 0.

Acknowledgments. The authors wish to express their sincere thanks to the referee of this paper for several useful comments and suggestions.

References

- Dunford, N., Schwartz, J.T., Linear operators part I. General Theory, New York-London, 1958.
- [2] Fan, K., Analytic functions of a proper contraction, Math. Zeitschr., 160(1978), 275-290.
- [3] Gupta, V.P., Jain, P.K., A certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14(1976), 409-416.
- [4] MacGregor, T.H., The radius of convexity for starlike functions of order ¹/₂, Proc. Amer. Math. Soc., 14(1963), 71-76.
- [5] Owa, S., On the distortion theorem, Kyungpook Math. J., 18(1978), 53-59.
- [6] Owa, S., Aouf, M.K., Some applications of fractional calculus operators to classes of univalent functions negative coefficients, Integral Trans. and Special Functions, 3(1995), no. 3, 211-220.
- [7] Robertson, M.S., A characterization of the class of starlike univalent functions, Michigan Math. J., 26(1979), 65-69.
- [8] Schild, A., On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc., 5(1954), 115-120.
- [9] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
- [10] Xiaopei, Y., A subclass of analytic p-valent functions for operator on Hilbert space, Math. Japon., 40(1994), no. 2, 303-308.
- Xia, D., Spectral theory of hyponormal operators, Sci. Tech. Press, Shanghai, 1981, Birkhauser Verlag, Basel-Boston-Stuttgart, 1983, 1-241.

Sayali Joshi Department of Mathematics, Sanjay Bhokare Group of Institutes, Miraj Miraj 416410, India e-mail: joshiss@sbgimiraj.org

Santosh B. Joshi Department of Mathematics, Walchand College of Engineering Sangli 416415, India e-mail: joshisb@hotmail.com

Ram Mohapatra Department of Mathematics, University of Central Florida Orlando, F.L. U.S.A. e-mail: ramm1627@gmail.com