Coefficient bounds for new subclasses of analytic and \mathbf{m}-fold symmetric bi-univalent functions

Abbas Kareem Wanas and Ágnes Orsolya Páll-Szabó

Abstract

In the present paper, we introduce and study two new subclasses of analytic and m-fold symmetric bi-univalent functions defined in the open unit disk U. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Also, we indicate certain special cases for our results.

Mathematics Subject Classification (2010): 30C45, 30C50.
Keywords: Analytic function, univalent function, m-fold symmetric bi-univalent function, coefficient bound.

1. Introduction

Denote by \mathcal{A} the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$. Let S be the subclass of \mathcal{A} consisting in functions of the form (1.1) which are also univalent in U. The Koebe one-quarter theorem (see [4]) states that the image of U under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of bi-univalent functions in U given by (1.1). For a brief history and interesting examples in the class Σ see [14], (see also [6, 7, 10, 11, 12]).

For each function $f \in S$, the function $h(z)=\left(f\left(z^{m}\right)\right)^{\frac{1}{m}},(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function
is said to be m-fold symmetric (see [8]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1},(z \in U, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

Let S_{m} stands for the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.3). In fact, the functions in the class S are one-fold symmetric.

In [15] Srivastava et al. defined m-fold symmetric bi-univalent functions analogues to the concept of m-fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$. Furthermore, for the normalized form of f given by (1.3), they obtained the series expansion for f^{-1} as follows:

$$
\begin{gather*}
g(w)=w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
- \tag{1.4}
\end{gather*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (1.4) coincides with the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
Recently, many authors investigated bounds for various subclasses of m-fold bi-univalent functions (see $[1,2,5,13,15,16,17]$).

The purpose of the present investigation is to introduce the new subclasses $\mathcal{A} \mathcal{S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)$ and $\mathcal{A} \mathcal{S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)$ of Σ_{m} and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

We will require the following lemma in proving our main results.
Lemma 1.1. [3] If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all functions h analytic in U for which

$$
\operatorname{Re}(h(z))>0, \quad(z \in U)
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U)
$$

2. Coefficient bounds for the function class $\mathcal{A S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)$

Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{A} \mathcal{S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)$ if it satisfies the following conditions:

$$
\begin{equation*}
\left|\arg \left(\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}\right)\right|<\frac{\alpha \pi}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|\arg \left(\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}\right)\right|<\frac{\alpha \pi}{2} \tag{2.2}\\
& (z, w \in U, 0<\alpha \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})
\end{align*}
$$

where the function $g=f^{-1}$ is given by (1.4).
In particular, for one-fold symmetric bi-univalent functions, we denote the class $\mathcal{A S}_{\Sigma_{1}}(\gamma, \lambda ; \alpha)=\mathcal{A} \mathcal{S}_{\Sigma}(\gamma, \lambda ; \alpha)$.

Remark 2.2. It should be remarked that the classes $\mathcal{A S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)$ and $\mathcal{A} \mathcal{S}_{\Sigma}(\gamma, \lambda ; \alpha)$ are a generalization of well-known classes consider earlier. These classes are:
(1) For $\lambda=0$ and $\gamma=1$, the class $\mathcal{A} \mathcal{S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)$ reduce to the class $S_{\Sigma_{m}}^{\alpha}$ which was considered by Altinkaya and Yalçin [1];
(2) For $\gamma=1$, the class $\mathcal{A} \mathcal{S}_{\Sigma}(\gamma, \lambda ; \alpha)$ reduce to the class $M_{\Sigma}(\alpha, \lambda)$ which was introduced by Liu and Wang [9];
(3) For $\lambda=0$ and $\gamma=1$, the class $\mathcal{A S}_{\Sigma}(\gamma, \lambda ; \alpha)$ reduce to the class $S_{\Sigma}^{*}(\alpha)$ which was given by Brannan and Taha [3].

Theorem 2.3. Let $f \in \mathcal{A S}_{\Sigma_{m}}(\gamma, \lambda ; \alpha)(0<\alpha \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \alpha}{m \sqrt{2 \alpha \gamma(1+\lambda m)+\gamma(\gamma-\alpha)(1+\lambda m)^{2}}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{\alpha}{m \gamma(1+2 \lambda m)} \tag{2.4}
\end{equation*}
$$

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{equation*}
\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{gather*}
m \gamma(1+\lambda m) a_{m+1}=\alpha p_{m} \tag{2.9}\\
m\left[2 \gamma(1+2 \lambda m) a_{2 m+1}-\gamma\left(\lambda m^{2}+2 \lambda m+1\right) a_{m+1}^{2}\right] \\
+\frac{m^{2}}{2} \gamma(1+\lambda m)(\gamma-1)(1+\lambda m) a_{m+1}^{2} \\
=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2}, \tag{2.10}\\
-m \gamma(1+\lambda m) a_{m+1}=\alpha q_{m} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{align*}
& m\left[\gamma\left(3 \lambda m^{2}+2(\lambda+1) m+1\right) a_{m+1}^{2}-2 \gamma(1+2 \lambda m) a_{2 m+1}\right] \\
&+ \frac{m^{2}}{2} \gamma(1+\lambda m)(\gamma-1)(1+\lambda m) a_{m+1}^{2}=\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.12}
\end{align*}
$$

Making use of (2.9) and (2.11), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2} \gamma^{2}(1+\lambda m)^{2} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12) and (2.14), we find that

$$
\begin{aligned}
& m^{2}\left[2 \gamma(1+\lambda m)+\gamma(\gamma-1)(1+\lambda m)^{2}\right] a_{m+1}^{2} \\
= & \alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
= & \alpha\left(p_{2 m}+q_{2 m}\right)+\frac{m^{2} \gamma^{2}(\alpha-1)(1+\lambda m)^{2}}{\alpha} a_{m+1}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{m^{2}\left[2 \alpha \gamma(1+\lambda m)+\gamma(\gamma-\alpha)(1+\lambda m)^{2}\right]} \tag{2.15}
\end{equation*}
$$

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we deduce that

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha}{m \sqrt{2 \alpha \gamma(1+\lambda m)+\gamma(\gamma-\alpha)(1+\lambda m)^{2}}} .
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (2.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{equation*}
2 m \gamma(1+2 \lambda m)\left[2 a_{2 m+1}-(m+1) a_{m+1}^{2}\right]=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{2.16}
\end{equation*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\alpha^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{\alpha\left(p_{2 m}-q_{2 m}\right)}{4 m \gamma(1+2 \lambda m)} \tag{2.17}
\end{equation*}
$$

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{\alpha}{m \gamma(1+2 \lambda m)}
$$

which completes the proof of Theorem 2.3.
For one-fold symmetric bi-univalent functions, Theorem 2.3 reduce to the following corollary:
Corollary 2.4. Let $f \in \mathcal{A S}_{\Sigma}(\gamma, \lambda ; \alpha)(0<\alpha \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \alpha \gamma(1+\lambda)+\gamma(\gamma-\alpha)(1+\lambda)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{\gamma^{2}(1+\lambda)^{2}}+\frac{\alpha}{\gamma(1+2 \lambda)}
$$

3. Coefficient bounds for the function class $\mathcal{A S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)$

Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{A} \mathcal{S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)$ if it satisfies the following conditions:

$$
\begin{equation*}
\operatorname{Re}\left\{\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}\right\}>\beta \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \operatorname{Re}\left\{\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}\right\}>\beta \tag{3.2}\\
& (z, w \in U, 0 \leq \beta<1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})
\end{align*}
$$

where the function $g=f^{-1}$ is given by (1.4).
In particular, for one-fold symmetric bi-univalent functions, we denote the class

$$
\mathcal{A S}_{\Sigma_{1}}^{*}(\gamma, \lambda ; \beta)=\mathcal{A} \mathcal{S}_{\Sigma}^{*}(\gamma, \lambda ; \beta)
$$

Remark 3.2. It should be remarked that the classes $\mathcal{A S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)$ and $\mathcal{A} \mathcal{S}_{\Sigma}^{*}(\gamma, \lambda ; \beta)$ are a generalization of well-known classes consider earlier. These classes are:
(1) For $\lambda=0$ and $\gamma=1$, the class $\mathcal{A} \mathcal{S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)$ reduce to the class $S_{\Sigma_{m}}^{\beta}$ which was considered by Altinkaya and Yalçin [1];
(2) For $\gamma=1$, the class $\mathcal{A} \mathcal{S}_{\Sigma}^{*}(\gamma, \lambda ; \beta)$ reduce to the class $B_{\Sigma}(\beta, \tau)$ which was introduced by Liu and Wang [9];
(3) For $\lambda=0$ and $\gamma=1$, the class $\mathcal{A} \mathcal{S}_{\Sigma}^{*}(\gamma, \lambda ; \beta)$ reduce to the class $S_{\Sigma}^{*}(\beta)$ which was given by Brannan and Taha [3].

Theorem 3.3. Let $f \in \mathcal{A} \mathcal{S}_{\Sigma_{m}}^{*}(\gamma, \lambda ; \beta)(0 \leq \beta<1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2}{m} \sqrt{\frac{1-\beta}{2 \gamma(1+\lambda m)+\gamma(\gamma-1)(1+\lambda m)^{2}}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{1-\beta}{m \gamma(1+2 \lambda m)} \tag{3.4}
\end{equation*}
$$

Proof. It follows from conditions (3.1) and (3.2) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{gather*}
m \gamma(1+\lambda m) a_{m+1}=(1-\beta) p_{m} \tag{3.7}\\
m\left[2 \gamma(1+2 \lambda m) a_{2 m+1}-\gamma\left(\lambda m^{2}+2 \lambda m+1\right) a_{m+1}^{2}\right] \\
+\frac{m^{2} \gamma}{2}(1+\lambda m)(\gamma-1)(1+\lambda m) a_{m+1}^{2}=(1-\beta) p_{2 m} \tag{3.8}\\
-m \gamma(1+\lambda m) a_{m+1}=(1-\beta) q_{m} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{align*}
& m\left[\gamma\left(3 \lambda m^{2}+2(\lambda+1) m+1\right) a_{m+1}^{2}-2 \gamma(1+2 \lambda m) a_{2 m+1}\right] \\
& +\frac{m^{2} \gamma}{2}(1+\lambda m)(\gamma-1)(1+\lambda m) a_{m+1}^{2}=(1-\beta) q_{2 m} \tag{3.10}
\end{align*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2} \gamma^{2}(1+\lambda m)^{2} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.12}
\end{equation*}
$$

Adding (3.8) and (3.10), we obtain

$$
\begin{equation*}
m^{2}\left[2 \gamma(1+\lambda m)+\gamma(\gamma-1)(1+\lambda m)^{2}\right] a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right) \tag{3.13}
\end{equation*}
$$

Therefore, we have

$$
a_{m+1}^{2}=\frac{(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{m^{2}\left[2 \gamma(1+\lambda m)+\gamma(\gamma-1)(1+\lambda m)^{2}\right]}
$$

Applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2}{m} \sqrt{\frac{1-\beta}{2 \gamma(1+\lambda m)+\gamma(\gamma-1)(1+\lambda m)^{2}}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (3.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
2 m \gamma(1+2 \lambda m)\left[2 a_{2 m+1}-(m+1) a_{m+1}^{2}\right]=(1-\beta)\left(p_{2 m}-q_{2 m}\right)
$$

or equivalently

$$
a_{2 m+1}=\frac{m+1}{2} a_{m+1}^{2}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m \gamma(1+2 \lambda m)} .
$$

Upon substituting the value of a_{m+1}^{2} from (3.12), it follows that

$$
a_{2 m+1}=\frac{(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m \gamma(1+2 \lambda m)}
$$

Applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2} \gamma^{2}(1+\lambda m)^{2}}+\frac{1-\beta}{m \gamma(1+2 \lambda m)}
$$

which completes the proof of Theorem 3.3.
For one-fold symmetric bi-univalent functions, Theorem 3.3 reduce to the following corollary:
Corollary 3.4. Let $f \in \mathcal{A S}_{\Sigma}^{*}(\gamma, \lambda ; \beta)(0 \leq \beta<1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq 2 \sqrt{\frac{1-\beta}{2 \gamma(1+\lambda)+\gamma(\gamma-1)(1+\lambda)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{\gamma^{2}(1+\lambda)^{2}}+\frac{1-\beta}{\gamma(1+2 \lambda)}
$$

Acknowledgement. The present work has received financial support through the project: Entrepreneurship for innovation through doctoral and postdoctoral research, POCU/360/6/13/123886 co-financed by the European Social Fund, through the Operational Program for Human Capital 2014-2020 (for the author Páll-Szabó Ágnes Orsolya).

References

[1] Altinkaya, Ş., Yalçin, S., Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683(2015), 1-5.
[2] Altinkaya, Ş., Yalçin, S., On some subclasses of m-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (2018), no. 1, 29-36.
[3] Brannan, D.A., Taha, T.S., On Some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31(1986), no. 2, 70-77.
[4] Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[5] Eker, S.S., Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40(2016), 641-646.
[6] Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[7] Goyal, S.P., Goswami, P., Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), 179-182.
[8] Koepf, W., Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105(1989), 324-329.
[9] Li, X.F., Wang, A.P., Two new subclasses of bi-univalent functions, Int. Math. Forum, 7(2012), 1495-1504.
[10] Srivastava, H.M., Bansal, D., Coefficient estimates for a subclass of analytic and biunivalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[11] Srivastava, H.M., Bulut, S., Caglar, M., Yagmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), no. 5, 831-842.
[12] Srivastava, H.M., Eker, S.S., Ali, R.M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[13] Srivastava, H.M., Gaboury, S., Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36B(2016), no. 3, 863-871.
[14] Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[15] Srivastava, H.M., Sivasubramanian, S., Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2014), no. 2, 1-10.
[16] Srivastava, H.M., Wanas, A.K., Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Mathematical Journal, 59(2019), no. 3, 493-503.
[17] Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P., The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), 1063-1092.

Abbas Kareem Wanas

Department of Mathematics, College of Science,
University of Al-Qadisiyah, Iraq
e-mail: abbas.kareem.w@qu.edu.iq
Ágnes Orsolya Páll-Szabó
Department of Mathematics,
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
e-mail: pallszaboagnes@math.ubbcluj.ro

