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1. Introduction

The study of PDE problems with variable exponents is a novel and quite inter-
esting topic. It comes from the theory of nonlinear elasticity, elastic mechanics, fluid
dynamics, electrorheological fluids, and image processing, etc. (see [1], [15], [16]).
First, we introduce the notations needed in this article. Let Ω an connected open
bounded domain of RN (N = 3) with Lipschitz boundary Γ. To a given field of dis-
placement u, we associate a nonlinear deformation tensor E defined by

E (∇u(x)) =
1

2

(
∇uT +∇u+∇uT∇u

)
,

whose components are:

Eij (∇u(x)) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+

3∑
m=1

∂um
∂xi

∂um
∂xj

)
, 1 ≤ i, j ≤ 3. (1.1)
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The corresponding nonlinear constraints tensor σ(u) = (σij(u(x)))1≤i,j≤3 is then
given by:

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)), 1 ≤ i, j ≤ 3, (1.2)

which describes a nonlinear relation between the stress tensor (σij)i,j=1,2,3 and the de-

formation tensor (Eij)i,j=1,2,3. The coefficients of elasticity aijkh satisfy the following
symmetry properties:

aijkh = ajikh = aijhk, for all 1 ≤ i, j, k, h ≤ 3. (1.3)

The aim of this paper is to prove the existence and uniqueness of weak solutions
for the following nonlinear elliptic problem, encountered in the theory of nonlinear
elasticity:

−
3∑
j=1

∂

∂xj
σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

Eij (∇u(x)) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑
m=1

∂um

∂xi

∂um

∂xj

)
in Ω, 1 ≤ i, j ≤ 3,

3∑
j=1

σij (u (x)) ηj = 0 on Γ, 1 ≤ i ≤ 3.

(P )

Problem (P ) models the behavior of a heterogeneous material with Neumann’s condi-
tion on the boundary. The consideration of this general material is in no way restric-
tive. Indeed, we can applied this study to the most particular elastic materials, but
this particular case makes it easy, to describe the different stages of this work. The
tensor of the constraints considered here is nonlinear and grouped, as special cases,
some models used in Ciarlet [2], Dautry-Lions [4] and Lions [10]. Let us cite by way
of example (see [2] , [8]):

1. The problem of displacement for a homogeneous or heterogeneous material of St
Vennan-Kirchhoff where:

- the applied volumetric forces f are dead (does not depend on u),
- the tensor of stress is in the form (material of StVennan-Kirchhoff):{

σij(u(x)) = λ(trEij(∇u(x))) + 2µEij(∇u(x)),
1 ≤ i, j ≤ 3, λ > 0, µ > 0,

2. The coefficients of elasticity have the form:

aijpq = λδijδpq + µ(δipδjq + δiqδjp), 1 ≤ i, j, p, q ≤ 3

with, λ and µ depend on x or not,

3. The applied volumetric forces f have the form f(ξ) = |ξ|p(x)−1
ξ ,

4. Some models called ”LES” (Large Eddy Simulations) used in fluid mechanics.
These problems are:

−div(ψ(x)a(∇u(x))) = f(x).
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For ψ ≡ 1 and a(ξ) = |ξ|p(x)−2
ξ, the above equation may be described by:

−div(|∇u|p(x)−2∇u) = f.

The operator ∆p(x) : u −→ ∆p(x)(u) = div(|∇u|p(x)−2∇u) is called the p (x)-
Laplacian.

Several authors studied the system of elasticity with laws of particular behavior and
using various techniques in constant exposants Sobolev spaces for example in [2]
Ciarlet used the implicit function theorem to show the existence and uniqueness of
a solution, in [4] Dautry-Lions studied the linear problem in a regular boundary
domain, in [11], [12], [13] Merouani studied the Lamé (elasticity) system in a polygonal
boundary domain.
The bibliography quoted here does not claim to be exhaustive and the deficiencies it
certainly entails must be attributed to the author’s ignorance and not to the author’s
ill will.

To solve our problem, we will consider an operator: u→ A(u) = −
3∑
j=1

∂

∂xj
σij(u(x)) as

operator of Leray-Lions [9], with Neumann’s condition on Γ, and we prove a theorem of
existence and uniqueness of solution using Galerkin techniques and monotone operator
theory.
This paper is organized as follows:

- Notations and properties of variable exponent Lebesgue-Sobolev spaces,
- Hypotheses and main result,
- Proof of theorem,
- Conclusion and bibliography.

2. Properties of variable exponent Lebesgue-Sobolev spaces

In this section, we recall some definitions and basic properties of the generalized

Lebesgue–Sobolev spaces Lp(x) (Ω), W 1,p(x) (Ω) and W
1,p(x)
0 (Ω), when Ω is a bounded

open set of RN(N ≥ 1) with a smooth boundary.
Let p : Ω→ [1,+∞) be a continuous, real-valued function.
Denote by p− = min

x∈Ω
p(x) and p+ = max

x∈Ω
p(x).

We introduce the variable exponent Lebesgue space

Lp(x) (Ω) =

{
u : Ω→ R;u is measurable with

∫
Ω

|u (x)|p(x)
dx <∞

}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

The following inequality will be used later

min
{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
≤
∫

Ω

|u (x)|p(x)
dx ≤ max

{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
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for any u ∈ Lp(x) (Ω) .

Lemma 2.1. [3], [5], [6], [7]

• The space
(
Lp(x) (Ω) , ‖.‖Lp(x)(Ω)

)
is a Banach space.

• If p− > 1, then Lp(x) (Ω) is reflexive and its conjugate space can be identified

with Lp
′(x) (Ω) where, 1

p(x) + 1
p′(x) = 1. Moreover, for any u ∈ Lp(x) (Ω) and

v ∈ Lp′(x) (Ω), we have the Hölder inequality∫
Ω

|uv| dx ≤
(

1

p−
+

1

p′−

)
‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) ≤ 2 ‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) .

• If p+ < +∞, then Lp(x) (Ω) is separable.
• Some embedding stay true, for example, if 0 < |Ω| < ∞ and p1, p2 are vari-

able exponent so that p1 (x) ≤ p2 (x) almost everywhere in Ω, then we have
Lp2(x) (Ω) ↪→ Lp1(x) (Ω).

Now, we define also the variable Sobolev space by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

endowed with the following norm

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) .

Definition 2.2. The variable exponent p : Ω→ [1,+∞) is said to satisfy the log-Hölder
continuous condition if

∀x, y ∈ Ω, |x− y| < 1, |p (x)− p (y)| < w (|x− y|) ,

where w : (0,∞)→ R is a nondecreasing function with lim
α→0

supw (α) ln
(

1
α

)
<∞.

Lemma 2.3. [3], [5], [6], [7]

• If 1 < p− ≤ p+ < ∞, then the space
(
W 1,p(x) (Ω) , ‖.‖W 1,p(x)(Ω)

)
is a separable

and reflexive Banach space.
• If p(x) satisfies the log-Hölder continuous condition, then C∞ (Ω) is dense

in W 1,p(x) (Ω). Moreover, we can define the Sobolev space with zero bound-

ary values, W
1,p(x)
0 (Ω) as the completion of C∞0 (Ω) with respect to the norm

‖.‖W 1,p(x)(Ω) .

• For all u ∈W 1,p(x)
0 (Ω), the Poincaré inequality

‖u‖Lp(x)(Ω) ≤ C ‖∇u‖Lp(x)(Ω) ,

holds. Moreover, ‖u‖
W

1,p(x)
0 (Ω)

= ‖∇u‖Lp(x)(Ω) is a norm in W
1,p(x)
0 (Ω).

Throughout this paper, we shall assume that the variable exponent p(x) sat-
isfy the log-Hölder condition, and N < p− ≤ p+ < ∞ because if p (x) > N then
W 1,p(x) (Ω) ⊂ C (Ω) for every x ∈ Ω.



On a pure traction problem 171

3. Hypotheses and main result

We consider the following problem:

−
3∑
j=1

∂

∂xj
σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

Eij (∇u(x)) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑
m=1

∂um

∂xi

∂um

∂xj

)
in Ω, 1 ≤ i, j ≤ 3,

3∑
j=1

σij (u (x)) ηj = 0 on Γ, 1 ≤ i ≤ 3.

(3.1)

This problem being that of Neumann, we must impose the necessary conditions of
existence namely the condition of compatibility:∫

Ω

fdx = 0.

This is the hypotheses which concern Ekh and f :

∀i, j, k, h = 1 to 3 :
1) Ekh is a continuous function,

2) (Coercivity) ∃α > 0; such that Ekh (ξ) ξij ≥ α |ξ|p(x)
,

∀ξ ∈ R3×3 and, ξij ∈ R,
3) (Increase) ∃C ∈ R; |Ekh (ξ)| ≤ C

(
1 + |ξ|p(x)−1

)
,

4) (Ekh (ξ)− Ekh (η)) (ξij − ηij) ≥ 0,∀ξ, η ∈ R3×3, and
ξij , ηij ∈ R,

5) aijkh ∈ L∞ (Ω) ; ∃α0 > 0; aijkh ≥ α0 a.e. in Ω,
6) f = (f1, f2, f3) is a Caratheodory function and,

f ∈
(
L

p(x)
p(x)−1 (Ω)

)3

.

(3.2)

Let us look for an adequate weak form of (3.1). Note that if w ∈
(
Lp(x)(Ω)

)9
, then

the growth condition on Ekh gives

|Ekh (w)| ≤ C
(

1 + |w|p(x)−1
)

≤
(
C + C |w|p(x)−1

)
∈ L

p(x)
p(x)−1 (Ω) , 1 ≤ k, h ≤ 3.

So, if u ∈ H, we have Ekh (∇u) ∈ Lp′(x) (Ω) . Or

H =

{
u ∈

(
W 1,p(x) (Ω)

)3

,
1

mes (Ω)

∫
Ω

u (x) dx = 0

}
,

is a closed vector subspace of
(
W 1,p(x) (Ω)

)3
, provided with the norm

‖u‖H = ‖∇u‖Lp(x)(Ω) ,
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which is equivalent to the norm of
(
W 1,p(x) (Ω)

)3
. We note that:(

W 1,p(x) (Ω)
)3

= H ⊕ F,

where F is the space of constants. Let’s take then v ∈ H, we have ∇v ∈
(
Lp(x) (Ω)

)9
.

So we obtain from the inequality of Hölder:

Ekh (∇u)
∂vi
∂xj
∈ L1 (Ω) ,∀ i, j, k, h = 1 to 3.

It is therefore natural to look u ∈ H and take the test functions in H. We also

recall that if f(., s) ∈
(
Lp
′(x) (Ω)

)3

, the mapping v →
∫

Ω

f(x, u(x))v (x) dx acting

from H to R, is an element of H ′. We denote by f this element, that is to say for

f ∈
(
Lp
′(x) (Ω)

)3

, we have

〈f, v〉H′,H =

∫
Ω

f (x, u(x)) v (x) dx, ∀v ∈ H.

The weak form of (3.1) is thus:
u ∈ H,∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ H. (3.3)

Theorem 3.1. Under the hypotheses (3.2), there exist u ∈ H solution of (3.3). If,
moreover, (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, for all ξ, η ∈ R3×3, ξij , ηij ∈ R, ξij 6= ηij
then there exist a unique solution u of (3.3).

For the proof of this theorem, we will need the following (classical) integration lemmas:

Lemma 3.2. Let p : Ω → ]1,+∞[ . If fn → f in Lp(x) (Ω) and gn → g weakly in

Lp
′(x) (Ω) . So ∫

Ω

fngndx→
∫

Ω

fgdx when n→∞.

Demonstration of lemma (3.2). We have:∣∣∣∣∫
Ω

(fn gn − f g) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(fn gn − f g − f gn + f gn) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

[(fn − f) gn + f (gn − g)] dx

∣∣∣∣
≤
∫

Ω

|fn − f | |gn| dx+

∣∣∣∣∫
Ω

f (gn − g)dx

∣∣∣∣
≤ 2. ‖fn − f‖Lp(x)(Ω) ‖gn‖Lp′(x)(Ω) + |〈gn − g, f〉| → 0.

Lemma 3.3. If Ekh ∈ C
(
R3×3,R

)
, |Ekh (ξ)| ≤ C

(
1 + |ξ|p(x)−1

)
, k, h = 1 to 3, for

all ξ ∈ R3×3 and if un → u in
(
W 1,p(x) (Ω)

)3
then Ekh (∇un)→ Ekh (∇u) , k, h = 1

to 3, in Lp
′(x) (Ω) .
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The lemma (3.3) is proved by Lebesgue’s dominated convergence theorem.

Remark 3.4. [14] Let p ∈ L∞+ (Ω) = {p ∈ L∞ (Ω) , p− ≥ 1}, (un) ⊂ Lp(x) (Ω) and u ∈
Lp(x) (Ω). If lim

n→∞
‖un − u‖Lp(x)(Ω) = 0. Then there exist a subsequence (unj) ⊂ (un)

and a function g ∈ Lp(x) (Ω) such that:
(i) unj → u a.e. in Ω,
(ii) |unj | ≤ g(x) a.e. in Ω.

Demonstration of lemma (3.3). un → u in
(
W 1,p(x) (Ω)

)3
involves: un → u in(

Lp(x) (Ω)
)3

and ∇un → ∇u in
(
Lp(x) (Ω)

)9
.

∇un → ∇u in
(
Lp(x) (Ω)

)9
involves ∇un → ∇u a.e. in Ω, and as Ekh is continuous

then:

Ekh (∇un)→ Ekh (∇u) a.e., k, h = 1 to 3

we have also

|Ekh (∇un)| ≤ (C + C |∇un|p(x)−1
) ∈ L

p(x)
p(x)−1 (Ω) , k, h = 1 to 3.

So we deduce that

Ekh (∇un)→ Ekh (∇u) in L
p(x)

p(x)−1 (Ω) .

We will also need for the proof the following lemma:

Lemma 3.5. (Finite-dimensional coercive operator) Let V be a finite-dimensional
space, and T : V → V ′ continuous. We suppose that T is coercive, namely:

〈T (v) .v〉V ′,V
‖v‖V

→ +∞ when ‖v‖V → +∞.

Then, for every b ∈ V ′ there exist v ∈ V such that T (v) = b.

4. Proof of theorem

Study of finite dimension problem

Since H is separable, (because H is a closed vector subspace of
(
W 1,p(x) (Ω)

)3
,

and
(
W 1,p(x) (Ω)

)3
is a Banach space separable) then there exist a countable family

(fn)n∈N∗ dense in H. Let Vn = V ect {fi, i = 1, ..., n} be the vector space generated
by the first n functions of this family. So we have dimVn ≤ n, Vn ⊂ Vn+1 for all
n ∈ N∗ and we have ∪

n∈N
Vn = H. We deduce that for all v ∈ H there exist a sequence

vn ∈ Vn, such that vn → v in H when n→ +∞.
In the first step, we fix n ∈ N∗ and look for un solution of the following problem,
posed in finite dimension:

un ∈ Vn,∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ Vn. (3.4)
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The application v → 〈f, v〉H′,H is a linear mapping of Vn to R (it is also continuous

because dimVn < +∞). We denote by bn this application. So bn ∈ V ′n and

〈bn, v〉V ′n,Vn
= 〈f, v〉H′,H .

Let u ∈ Vn. We denote by Tn (u) the mapping of Vn into V ′n which has v ∈ Vn
associated ∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

This application is linear, so it is also an element of V
′

n and we have

〈Tn (u) , v〉
V ′n,Vn

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

We have thus defined an application T of Vn to V ′n. We shall show that T is continuous
and coercive. We can thus deduce by the lemma (3.5), that T is surjective, and
therefore that there exist un ∈ Vn satisfying T (un) = bn, that is to say un is the
solution of the problem (3.4).
Continuity of Tn. To ease the writing, we note V = Vn equipped with ‖u‖V = ‖u‖H
and note T = Tn. Let u, u ∈ V, we have:

‖T (u)− T (u)‖V ′ = max
v∈V, ‖v‖V =1

〈T (u)− T (u) , v〉V ′,V

= max
v∈V, ‖v‖H=1

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx,

≤ max
v∈H, ‖v‖H=1

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx.

Putting

a = ‖aijkh‖L∞(Ω) ,

we obtain by Hölder inequality

‖T (u)− T (u)‖V ′

≤ max
v∈H,‖v‖H=1

2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇u)− Ekh (∇u)‖Lp′(x)

∥∥∥∥ ∂vi∂xj

∥∥∥∥
Lp(x)(Ω)

≤ 2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇u)− Ekh (∇u)‖Lp′(x)(Ω) .

Thus if (un)n∈N is a sequence of V such that un → u in V , we have

‖T (un)− T (u)‖V ′ ≤ 2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇un)− Ekh (∇u)‖Lp′(x)(Ω) .

As the norm in H equivalent to the norm in
(
W 1,p(x) (Ω)

)3
, then un → u in V involves

un → u in
(
W 1,p(x) (Ω)

)3
.

In view of lemma (3.3), we obtain Ekh (∇un) → Ekh (∇u) in Lp
′(x) (Ω) , ∀k, h = 1
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to 3. We have thus shown that T (un)→ T (u) in V ′, so T is continuous.
Coercivity of Tn. Taking into account, definition and assumptions (3.2), we obtain:

〈T (u) .u〉V ′,V =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂ui
∂xj

dx,

≥ α0

∫
Ω

3∑
i,j=1

3∑
k,h=1

Ekh(∇u(x))
∂ui
∂xj

dx,

≥ α0αC1

∫
Ω

|∇u|p(x)
dx,

≥ α0αC1 min
{
‖∇u‖p−

Lp(x)(Ω)
, ‖∇u‖p+

Lp(x)(Ω)

}
≥ α0αC1 min

{
‖u‖p−V , ‖u‖p+V

}
.

Consequently, the operator T is coercive. This yields the existence of solution for
problem (3.4) .

Study of infinite dimension problem

The solution of the problem (3.4) is obtained.
So to show the existence of u a solution of (3.3), we will estimate un the solution of
(3.4) and then by crossing to the limit when n→ +∞ we will have the solution u of
our problem (3.3).
Therefore that technique used to show that the limit of the nonlinear term is the
desired term.
a. Estimation on un
In view of coercivity, if we substitute v by un in (3.4), we obtain:

α0αC1

∫
Ω

|∇un|p(x)
dx ≤ ‖f‖H′ ‖un‖H ,

on the other hand

α0αC1 min
{
‖un‖p−H , ‖un‖p+H

}
≤ ‖f‖H′ ‖un‖H .

b. Passage to the limit
Since (un)n∈N is bounded in H, which is reflexive (because H is a closed vector

subspace of
(
W 1,p(x) (Ω)

)3
, and

(
W 1,p(x) (Ω)

)3
is a reflexive Banach space), we deduce

that there exist a subsequence denoted again (un)n∈N such that un → u weakly in H.

By hypothesis (3), the sequence (Ekh (∇un))n∈N is bounded in Lp
′(x) (Ω), hence there

exist ρ ∈ Lp′(x) (Ω) such that, with a close subsequence,

Ekh (∇un)→ ρ weakly in Lp
′(x) (Ω) .

Let v ∈ H, then there exist vn ∈ Vn, n ∈ N∗ such that

vn → v in H,

∇vn → ∇v in
(
Lp(x) (Ω)

)9

.
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We substitute v by vn in (3.4), we obtain:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

dx

= 〈f, vn〉H′,H , ∀v ∈ Vn.

Since 〈f, vn〉 → 〈f, v〉 , Ekh (∇un)→ ρ weakly in Lp
′(x) (Ω) and ∂vni

∂xj
→ ∂vi

∂xj
for i = 1

to 3 strongly in Lp(x) (Ω) (because ∇vn → ∇v in
(
Lp(x) (Ω)

)9
strongly), using the

lemma (3.2), we obtain∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ H. (3.5)

We tend to conclude that ρ is equal to Ekh (∇u). Unfortunately, this is not obvious
because the Ekh are nonlinear.
c. Limit of nonlinear term
Finally, it remains to prove that

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx =∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx, ∀v ∈ H.
(3.6)

(I) First, we have

lim
n→∞

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂ui
∂xj

dx.

Indeed ∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx = 〈f, un〉 → 〈f, u〉

(II) Proof of (3.6)
Let v ∈ H, there exist (vn)n∈N such that vn ∈ Vn for all n ∈ N and vn → v in H
when n→ +∞. We will pass to the limit in the term∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

dx,
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thanks to the hypothesis (4) of (3.2).
Indeed,

0 ≤
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇un)− Ekh (∇vn))

(
∂uni
∂xj

− ∂vni
∂xj

)
dx

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇un)
∂uni
∂xj

dx−
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇un)
∂vni
∂xj

dx

−
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇vn)
∂uni
∂xj

dx+

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇vn)
∂vni
∂xj

dx

= T1,n − T2,n − T3,n + T4,n.

It has been seen that in (I):

lim
n→+∞

T1,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂ui
∂xj

dx,

we have

lim
n→+∞

T2,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx,

by a product of a strong convergence in Lp(x) (Ω) and a weak convergence in Lp
′(x) (Ω)

(lemma (3.2)).
The same

lim
n→+∞

T3,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇v)
∂ui
∂xj

dx,

by a product of a strong convergence in Lp
′(x) (Ω) and a weak convergence in Lp(x) (Ω).

Finally, we have

lim
n→+∞

T4,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇v)
∂vi
∂xj

dx,

by the product of a strong convergence in Lp
′(x) (Ω) and a strong convergence in

Lp(x) (Ω).
The passage to the limit in inequality thus gives:∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇v))

(
∂ui
∂xj
− ∂vi
∂xj

)
dx ≥ 0 for all v ∈ H.

The function test v is now astutely chosen. We take v = u +
1

n
w with w ∈ H and

n ∈ N∗. We obtain

− 1

n

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≥ 0,
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so ∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≤ 0,

but u+
1

n
w → u in H, thus by the lemma (3.3),

Ekh

(
∇u+

1

n
∇w
)
→ Ekh (∇u) in Lp

′(x) (Ω) .

By passing to the limit when n→ +∞, we obtain then∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx ≤ 0, ∀w ∈ H.

By the linearity (we can change w in −w), we get:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx = 0, ∀w ∈ H,

we deduce that∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂wi
∂xj

dx =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇u)
∂wi
∂xj

dx, ∀w ∈ H.

We have thus proved that u is a solution of (3.3).

Uniqueness

We suppose that (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, if ξij 6= ηij , and f does not
depend to u. Let u1 and u2 be two solutions:∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇ul(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , l = 1, 2; ∀v ∈ H.

Subtracting term to term and substituting v by u1 − u2, we obtain:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u1)− Ekh(∇u2))(
∂u1i

∂xj
− ∂u2i

∂xj
)dx = 0.

Since

M =
3∑

i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u1)− Ekh(∇u2))(
∂u1i

∂xj
− ∂u2i

∂xj
) ≥ 0,

and M > 0 if
∂u1i

∂xj
6= ∂u2i

∂xj
; we get

∂u1i

∂xj
=
∂u2i

∂xj
a.e. ∀i, j = 1 to 3, and thus u1 = u2

a.e.
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5. Conclusion

In this work, we consider the nonlinear elasticity system as Leray–Lions’s oper-
ators with variable exponents, to study the existence and uniqueness of Neumann’s
problem solution by Galerkin techniques and monotone operator theory. It has been
found that these techniques adapt well to this type of problems with different bound-
ary conditions.
From a perspective of this work, first, we will consider the same problem with the
boundary conditions Robin, Tresca, and secondly, the boundary conditions no homo-
geneous of Dirichlet, Neumann, mixed and Robin.
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