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Equipolar meromorphic functions sharing a set

Arindam Sarkar

Abstract. Two meromorphic functions f and g having the same set of poles are
known as equipolar. In this paper we study some uniqueness results of equi-polar
meromorphic functions sharing a finite set and improve some recent results of
Bhoosnurmath-Dyavanal [4] and Banerjee-Mallick [3] by removing some unnec-
essary conditions on ramification indices as well as relaxing the condition on the
nature of sharing of the value ∞ by f and g from counting multiplicity to ignoring
multiplicity.
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1. Introduction, definitions and results

Let f and g and be two non-constant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with the same multiplicities, we say that f and g share the value a CM (Counting
Multiplicities) and if we do not consider the multiplicities, then f and g are said
to share the value a IM (Ignoring Multiplicities). We do not explain the standard
notations and definitions of the value distribution theory as these are available in [7].

Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1), the counting function of the
zeros of f − a of multiplicity one. We also denote by N(r, a; f |≥ l), the counting
function of those a-points of f whose multiplicities are ≥ l. Similarly we denote by
N(r, a; f |≥ l) the reduced counting function of the a-points of f of multiplicity ≥ l.
We put N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2). We put

Θ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
;

δ2(a; f) = 1− lim sup
r→∞

N2(r, a; f)

T (r, f)
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and

δ(2(a; f) = 1− lim sup
r→∞

N(r, a; f |≥ 2)

T (r, f)
.

Let S be a set of distinct elements of C ∪ {∞} and

Ef (S) =
⋃
a∈S
{(z, p) ∈ C× N : z is an a-point of f of multiplicity p},

and

Ef (S) =
⋃
a∈S
{(z, 1) ∈ C× N : z is an a-point of f}.

If Ef (S) = Eg(S), we say that f and g share the set S CM (Counting Multiplicity).

On the other hand if Ef (S) = Eg(S), we say that f and g share the set S IM (Ignoring
Multiplicity).

It will be convenient to denote by E, any subset of nonnegative real numbers of
finite measure not necessary the same in each of its occurrence.

In 1976, Gross [6] considered the uniqueness problem of meromorphic functions
when the functions under consideration share sets instead of values. In this direction
Gross raised the following question:
Can one find finite sets Sj, j = 1, 2 such that any two non-constant entire functions
f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical ?

To answer the Question of Gross [6], in 1995, Yi [13] obtained the following
results.

Theorem A. [13] Let S = {z : zn + azn−m + b = 0}, where n and m are two positive
integers such that m ≥ 2, n ≥ 2m + 7, with m and n having no common factor, a
and b be two nonzero constants such that zn + azn−m + b = 0 has no multiple root. If
f and g be two non-constant meromorphic functions having no simple poles such that
Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}), then f ≡ g.

Theorem B. [13] Let S = {z : zn + azn−1 + b = 0}, where n(≥ 9) be an integer and
a and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root.
If f and g be two non-constant meromorphic functions such that Ef (S) = Eg(S) and
Ef ({∞}) = Eg({∞}), then either f ≡ g or

f ≡ −ah(hn−1 − 1)

hn − 1
and g ≡ −a(hn−1 − 1)

hn − 1
,

where h is a non-constant meromorphic function.

Lahiri [8], in an attempt to investigate under which situation, f ≡ g, proved the
following result.

Theorem C. [8] Let S be defined as in Theorem B and n(≥ 8) be an integer. If f
and g be two non-constant meromorphic functions having no simple poles such that
Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}), then f ≡ g.

Fang and Lahiri [5], improved Theorem C by reducing the cardinality of the
same range set in the following result.
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Theorem D. [5] Let S = {z : zn + azn−1 + b = 0}, where n(≥ 7) be an integer and a
and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root. If
f and g be two non-constant meromorphic functions having no simple poles such that
Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}), then f ≡ g.

Below we give the definition of weighted sharing which will be required in the
sequel.

Definition 1.1. [9, 10] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞},
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k+ 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f and g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity
m(≤ k) and z0 is a zero of f − a of multiplicity m(> k) if and only if it is a zero of
g − a with multiplicity n(> k) where m is not necessarily equal to n.

We write f , g share (a, k) to mean f, g share the value a with weight k. Clearly if
f , g share (a, k) then f , g share (a, p) for all integers p , 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 1.2. [10] Let S ⊂ C∪ {∞} and k be a positive integer or ∞. We denote by
Ef (S, k) the set

⋃
a∈S Ek(a; f).

Recently Bhoosnurmath-Dyavanal [4] proved the following result as an improve-
ment of the above results by reducing the cardinality of the shared set S as well as
weakening the condition on ramification indices.

Theorem E. [4] Let S = {z : zn + azn−1 + b = 0}, where n(≥ 5) be an integer and a
and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root.
If f and g be two non-constant meromorphic functions such that Ef (S,∞) = Eg(S,∞)
and Ef ({∞},∞) = Eg({∞},∞). Also N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) =
S(r, g) and Θ(∞; f) > 2

n−1 and Θ(∞; g) > 2
n−1 , then f ≡ g.

With the aid of weighted sharing Banerjee-Mallick [3] improved Theorem E as
follows.

Theorem F. [3] Let S = {z : zn + azn−1 + b = 0}, where n(≥ 5) be an integer and a
and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root. If
f and g be two non-constant meromorphic functions satisfying Ef (S,m) = Eg(S,m)
and Ef ({∞},∞) = Eg({∞},∞). Also N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) =
S(r, g) and Θf + Θg >

4
n−1 . If

(i) m ≥ 2 and n ≥ 5 ;

(ii) or m = 1 and n ≥ 6 ;

(iii) or m = 0 and n ≥ 10,

then f ≡ g, where Θf = δ(2(0; f)+Θ(∞; f)+Θ(−an−1n ; f) and Θg is defined similarly.
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In this paper we give two-fold improvements to Theorem F as follows. Firstly we
show that we can reach the conclusion of Theorem F without assuming the condition

Θf + Θg >
4

n− 1
.

Secondly, we prove our theorem merely assuming that f and g share the value ∞
with weight 0. That is we reduce the CM sharing of ∞ by f and g to IM sharing. We
also show that the cardinality of the shared set S can be reduced to 9 from 10 when
m = 0. We state below our theorem.

Theorem 1.1. Let S = {z : zn + azn−1 + b = 0}, where n(≥ 5) be an integer and a
and b be two nonzero constants such that zn+azn−1 + b = 0 has no multiple root. Let
f and g be two non-constant meromorphic functions satisfying Ef (S,m) = Eg(S,m),
Ef ({∞}, 0) = Eg({∞}, 0) and N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g).
Then, f ≡ g, if any one of the following holds.

(i) m = 2, n ≥ 5;

(ii) m = 1, n ≥ 6;

(iii) m = 0, n ≥ 9.

Definition 1.3. [10] Let f and g be two non-constant meromorphic functions such that
f and g share (a, 0) for a ∈ C∪{∞}. Let z0 be an a-point of f with multiplicity p, and
an a-point of g of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the reduced
counting function of those a-points of f and g where p > q(q > p).We denote by
N∗(r, a; f, g) the reduced counting function of those a-points of f whose multiplicities
differ from the corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and

N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g). We also denote by N
1)
E (r, a; f) the count-

ing function of those a-points of f and g where p = q = 1. similarly we denote by

N
(2

E (r, a; f), the reduced counting function of those a-points of f such that p = q ≥ 2.

2. Lemmas

In this section we present some lemmas which will be required to establish our
results. Let f and g be two nonconstant meromorphic functions and we define

F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
. (2.1)

In the lemmas several times we use the function H defined by

H =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1
.

Lemma 2.1. [12] Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k∑m
j=0 bjf

j
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be an irreducible rational function in f with constant coefficients {ak} and {bj}, where
an 6= 0, bm 6= 0. Then T (r,R(f)) = dT (r, f) + S(r, f), where d = max{m,n}.
Lemma 2.2. [14] If F , G be two non-constant meromorphic functions such that they
share (1, 0) and H 6≡ 0 then,

N
1)
E (r, 1;F |= 1) = N

1)
E (r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.3. [2] Let f and g be two nonconstant meromorphic functions sharing (1,m),
0 ≤ m <∞. Then

N(r, 1; f)+N(r, 1; g)−N1)
E (r, 1; f)+

(
m− 1

2

)
N∗(r, 1; f, g) ≤ 1

2 [N(r, 1; f)+N(r, 1; g)].

Lemma 2.4. Let H 6≡ 0 and Ef (S, 0) = Eg(S, 0) and Ef ({∞}, 0) = Eg({∞}, 0).
Then, if F and G be given by (2.1),

N(r,H)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N(r, c;F |≥ 2) +N(r, c;G |≥ 2)

+ N∗(r, 1;F,G) +N∗(r,∞;F,G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F )

+ S(r,G),

for c ∈ C\{0, 1}. Here, N0(r, 0;F ′), denotes the reduced counting function of the zeros
of F ′, which are not the zeros of F (F − 1)(F − c). Similarly we define N0(r, 0;G′).

Proof. From the definition of H, it follows that that the poles of H occur at the
(i) multiple zeros of F and G;
(ii) poles of F and G of different multiplicities;
(iii) 1-points of F and G of different multiplicities;
(iv) multiple c-points of F and G;
(v) the zeros of F ′ which are not the zeros of F (F − 1)(F − c);
(vi) the zeros of G′ which are not the zeros of G(G− 1)(G− c).
Since the poles of H are all simple, the lemma follows easily. �

Lemma 2.5. [11] If two non-constant meromorphic functions f and g share (∞, 0).
Then fn−1(f + a)gn−1(g + a) 6≡ b2, for n ≥ 2.

Lemma 2.6. Let f and g be two non-constant meromorphic functions such that
fn−1(f + a) ≡ gn−1(g + a), where n ≥ 5 is an integer. If N (r, 1; f |= 1) = S (r, f)
and N (r, 1; g |= 1) = S (r, g), then f ≡ g.

Proof. Let

fn−1(f + a) ≡ gn−1(g + a). (2.2)

Clearly (2.2) implies that f and g share (∞,∞). Suppose f 6≡ g. Let y = g
f . Then

(2.2) implies that y 6≡ 1, yn−1 6≡ 1, yn 6≡ 1 and

f ≡ −a1− yn−1

1− yn
(2.3)

≡ a

(
yn−1

1 + y + y2 + . . .+ yn−1
− 1

)
= −a1 + y + y2 + . . .+ yn−2

1 + y + y2 + . . .+ yn−1
.
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Case 1. Let y = g
f =constant, then it follows from (2.3) that f is constant, which is

impossible.
Case 2. Let y = g

f be non-constant.

Using Lemma 2.1, we note from (2.2), T (r, f) = T (r, g) + O(1) and hence
S(r, f) = S(r, g) = S(r), say.

Let z0 be a zero of f + a. Then in view of (2.2), z0 must be a zero of either
g + a or g. If possible suppose that z0 is a zero of g + a. Then y(z0) = 1 and from
(2.3) we obtain f(z0) = −a(n−1n ) 6= −a, that is f(z0) + a = −a(n−1n ) 6= 0 which is a
contradiction to our assumption. Therefore z0 must be a zero of g. Thus we have

{z : f(z) + a = 0} ⊆ {z : g(z) = 0}. (2.4)

Suppose z0 be a zero of f+a of multiplicity p and a zero of g of multiplicity q. Then in
view of (2.2), p = (n−1)q. Thus p = n−1, if q = 1 or p ≥ 2(n−1), when q ≥ 2. Thus
the least multiplicity of a zero of f + a is n− 1 and f + a has no zero of multiplicity
m such that n− 1 < m < 2(n− 1).

We agree to denote by N(r, 0; f + a | g=1 = 0), the reduced counting function of
the zeros of f + a which are the zeros of g of multiplicity =1 and by N(r, 0; f + a |
g≥2 = 0), the reduced counting function of the zeros of f + a which are the zeros of

g of multiplicity ≥ 2. Also we denote by N(r, 0; f + a | g = 0) the reduced counting
function of the zeros of f + a, which are the zeros of g.

Now since N(r, 0; g |= 1) = S(r, g), we have from (2.4) and above analysis,

N(r, 0; f + a)

= N(r, 0; f + a | g = 0)

= N(r, 0; f + a | g=1 = 0) +N(r, 0; f + a | g≥2 = 0)

= S(r, g) +N(r, 0; f + a |≥ 2(n− 1))

= S(r, f) +N(r, 0; f + a |≥ 2(n− 1)).

Hence

(2n− 2)N(r, 0; f + a) ≤ T (r, f) + S(r, f).

From (2.3) we observe that T (r, f) = (n− 1)T (r, y) + S(r, y). Also

f + a
n− 1

n
(2.5)

= −a1− yn−1

1− yn
+ a

n− 1

n

= −a (n− 1)yn − nyn−1 + 1

n(1− yn)
.

If we put p(y) = (n− 1)yn − nyn−1 + 1, then p(0) 6= 0 and
p′(y) = n(n− 1)yn−2{y − 1} and p′′(y) = n(n− 1)yn−3{(n− 3)y − n+ 2}.
Thus p(1) = p′(1) = 0. Hence p(y) = 0 has only one repeated root at y = 1.
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Thus from (2.5) we obtain

n−1∑
i=1

N(r, ui; y) ≤ N(r,−an− 1

n
; f),

where ui, i = 1, . . . , n− 1 are the distinct zeros of p(y).
Also from (2.3) we have

n−1∑
j=1

N(r, vj ; y) ≤ N(r,∞; f) ≤ T (r, f).

Since by our assumption N(r, 0; f |= 1) = S(r, f), we have

N(r, 0; f) = N(r, 0; f |= 1) +N(r, 0; f |≥ 2) ≤ S(r, f) +
1

2
T (r, f).

Thus we have
n−2∑
j=1

N(r, wj ; y) +N(r,∞; y)

≤ N(r, 0; f) = N(r, 0; f |= 1) +N(r, 0; f |≥ 2) ≤ 1

2
T (r, f) + S(r, f),

where vjs, j = 1, 2, . . . , n− 1 are the distinct roots of 1 + y+ y2 + . . .+ yn−1 = 0 and
wjs, j = 1, 2, . . . , n− 2 are the distinct roots of 1 + y + y2 + . . .+ yn−2 = 0.
From (2.2) and (2.3) we note that the zeros of y occur at those zeros of g which are
the zeros of f + a. Hence N(r, 0; y) ≤ N(r, 0; f + a).
Also we have obtained (2n− 2)N(r, 0; f + a) ≤ T (r, f) + S(r, f). Thus, we obtain by
the second main theorem,

(3n− 4)T (r, y)

≤
n−1∑
j=1

N(r, vj ; y) +

n−2∑
j=1

N(r, wj ; y) +

n−1∑
i=1

N(r, ui; y) +N(r, 0; y)

+ N(r,∞; y) + S(r, y)

≤ N(r,∞; f) +N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r, 0; f + a)

+ S(r, f)

≤
{

1 +
1

2
+ 1 +

1

2n− 2

}
T (r, f) + S(r, f)

≤
(

5

2
+

1

2n− 2

)
(n− 1)T (r, y) + S(r, y),

which leads to a contradiction for n ≥ 5. This completes the proof of the Lemma. �

Lemma 2.7. Let S = {z : zn + azn−1 + b = 0}, where n(≥ 4) be an integer and
a and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple
root. If F and G are given by (2.1), then there exists an α ∈ C \ {0, a, b}, satisfying
N2(r, α;F ) ≤ (n − 1)T (r, f) + S(r, f), N2(r, α;G) ≤ (n − 1)T (r, g) + S(r, g), where
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|α| = (n−1)n−1

nn . |a|
n

|b| , argα = arg(a
n

b ) or argα = arg(−a
n

b ), according as n is even or

odd. Here arg z denotes the principal argument of z for any z ∈ C \ {0}.

Proof. Let p(z) = zn + azn−1 + b. Then p′(z) = zn−2{nz + a(n− 1)}. Thus p′(z) = 0

has roots at z = 0 and at z = −a(n−1)n . Thus p(z) = 0 will have a repeated root at

−a(n−1)n provided p
(
−a(n−1)n

)
= 0 and this yields b = (−1)n

(
a
n

)n
(n − 1)n−1. Note

that p′′
(
−a(n− 1)

n

)
6= 0.

Thus p(z) = 0 has a repeated root at −a(n−1)n and hence only n − 1 distinct roots

provided b = (−1)n( an )n(n− 1)n−1.

Let α be a nonzero complex number. Then

F − α =
fn−1(f + a)

−b
− α =

fn + afn−1 + αb

−b
.

We choose α in such a manner that the equation zn + azn−1 + αb = 0 has repeated
roots. It is clear from the above discussion that in this case we must have

αb = (−1)n
(a
n

)n
(n− 1)n−1.

This implies |α| = (n−1)n−1

nn · |a|
n

|b| , argα = arg(a
n

b ) or argα = arg(−a
n

b ), according as

n is even or odd. If w1, w2, . . . , wn−1, be the distinct roots of zn + azn−1 + αb = 0,
then we have

N2(r, α;F )

= N(r, α;F ) +N(r, α;F |≥ 2)

≤
n−1∑
i=1

N(r, wi; f) +

n−1∑
i=1

N(r, wi; f |≥ 2) + S(r, f)

=

n−1∑
i=1

{N(r, wi; f) +N(r, wi; f |≥ 2)}+ S(r, f)

=

n−1∑
i=1

N2(r, wi; f) + S(r, f)

≤ (n− 1)T (r, f) + S(r, f).

This completes the proof. �

Lemma 2.8. Let F , G be given by (2.1) and V = ( F ′

F−1 −
F ′

F ) − ( G′

G−1 −
G′

G ) 6≡ 0. If

N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g) and f , g share (∞, 0); F , G,
share (1, 0), then

{n− 1}N(r,∞; f) ≤
{

1

2
+ 1

}
{T (r, f) + T (r, g)}+N∗(r, 1;F,G) + S(r, f) + S(r, g).
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Proof. Let z0 be a pole of f and g of respective multiplicities p and q. Then from
(2.1), around z0, we have

F =
A(z)

(z − z0)np
, G =

B(z)

(z − z0)nq
. (2.6)

Where A(z) and B(z) are analytic at z0, and A(z0) 6= 0, B(z0) 6= 0.
Thus

F ′

F − 1
=

A′

A− (z − z0)np
− npA

(z − z0)[A− (z − z0)np]

and

F ′

F
=
A′

A
− np

z − z0
.

Therefore a simple calculation yields,

F ′

F − 1
− F ′

F
= (z − z0)np−1

{
A′

A
.

z − z0
A− (z − z0)np

− np

A− (z − z0)np

}
= (z − z0)np−1φ(z),

say, where φ(z) is analytic at z0 and φ(z0) 6= 0. Similarly we obtain,

G′

G− 1
− G′

G
= (z − z0)nq−1

{
B′

B
.

z − z0
B − (z − z0)nq

− nq

B − (z − z0)nq

}
= (z − z0)nq−1ψ(z),

say, where ψ(z) is analytic at z0 and ψ(z0) 6= 0. Therefore, around z0,

V = (z − z0)np−1φ(z)− (z − z0)nq−1ψ(z).

Thus V has a zero at z0, of order at least n− 1.
We note by Millux’s theorem

m(r, V )

= m

(
r,

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

))
≤ m

(
r,

F ′

F − 1

)
+m

(
r,

G′

G− 1

)
+m

(
r,
F ′

F

)
+m

(
r,
G′

G

)
= S(r, F ) + S(r,G) = S(r, f) + S(r, g).

Hence from above analysis and by the first fundamental theorem, we have

{n− 1}N(r,∞; f)

≤ N(r, 0;V )

≤ T (r, V ) +O(1)

≤ N(r,∞;V ) + S(r, f) + S(r, g)

≤ N(r, 0; f) +N(r, 0; g) +N(r, 0; f + a) +N(r, 0; g + a)

+ N∗(r, 1;F,G) + S(r, f) + S(r, g).
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Now since N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g), we have

N(r, 0; f) ≤ 1

2
T (r, f) + S(r, f)

and

N(r, 0; g) ≤ 1

2
T (r, g) + S(r, g).

Therefore from above, we have

{n− 1}N(r,∞; f)

≤
{

1

2
+ 1

}
{T (r, f) + T (r, g}+N∗(r, 1;F,G) + S(r, f) + S(r, g).

This completes the proof. �

Lemma 2.9. [1] Let F and G be defined by (2.1) and F and G share (1,m), 0 ≤ m <
∞. Also let w1, . . . , wn be the distinct roots of the equation zn + azn−1 + b = 0, where
b 6= (−1)n( an )n(n− 1)n−1, n ≥ 3. Then

NL(r, 1;F ) ≤ 1

m+ 1

{
N(r, 0; f) +N(r,∞; f)

}
−N⊙(r, 0; f ′) + S(r, f),

where N⊙(r, 0; f ′) = N(r, 0; f ′ | f 6= 0, w1, . . . , wn). Similar inequality holds for

NL(r, 1;G).

Lemma 2.10. Let F and G be defined by (2.1) and F and G share (1,m), 0 ≤ m <∞.
Also let N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g). Then

N∗(r, 1;F,G)

≤ 1

m+ 1

{
1

2
[T (r, f) + T (r, g)] +N(r,∞; f) +N(r,∞; g)

}
+ S(r, f) + S(r, g).

Proof. Since N∗(r, 1;F,G) = NL(r, 1;F ) +NL(r, 1;G) and from the condition of the
Lemma it follows that

N(r, 0; f) ≤ 1

2
T (r, f) + S(r, f)

and

N(r, 0; g) ≤ 1

2
T (r, g) + S(r, g),

the Lemma follows from Lemma 2.9. �

Lemma 2.11. Let F and G be defined by (2.1) and F and G share (1,m), 0 ≤ m <∞.
Also let N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g) and f and g share
(∞, 0). Then [

n− 1− 2

m+ 1

]
N(r,∞; f)

≤
[

3

2
+

1

2(m+ 1)

]
{T (r, f) + T (r, g)}

+ S(r, f) + S(r, g).
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Proof. From Lemmas 2.8 and 2.10, we have

{n− 1}N(r,∞; f)

≤
{

1

2
+ 1 +

1

2(m+ 1)

}
{T (r, f) + T (r, g}+

2

m+ 1
N(r,∞; f)

+ S(r, f) + S(r, g).

The lemma follows easily from above. �

3. Proof of theorem

Proof of Theorem 1.1. Case 1. H 6≡ 0. By Lemma 2.1, we obtain from the definitions
of F and G, T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g).

We denote by N0(r, 0;F ′), the counting function of the zeros of F ′ which are not
the zeros of F (F − 1)(F − c), for some c ∈ C \ {0, 1}. Similarly we define N0(r, 0;G′).

Now applying the second main theorem to F and G, we obtain for some c ∈ C\{0, 1},

2{T (r, F ) + T (r,G)}
≤ N(r, 0;F ) +N(r, c;F ) +N(r, 1;F ) +N(r,∞;F ) +N(r, 0;G) +N(r, c;G)

+ N(r, 1;G) +N(r,∞;G)−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, f) + S(r, g),

and hence

2n{T (r, f) + T (r, g)}
≤ N(r, 0;F ) +N(r, c;F ) +N(r, 1;F ) +N(r,∞;F ) +N(r, 0;G) +N(r, c;G)

+ N(r, 1;G) +N(r,∞;G)−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, f) + S(r, g).

Using Lemma 2.2, Lemma 2.3 and 2.4 and 2.9 we have from above,

2n{T (r, f) + T (r, g)} (3.1)

≤ N2(r, 0;F ) +N2(r, c;F ) + 3N(r,∞; f) +N2(r, 0;G) +N2(r, c;G)

+
n

2
{T (r, f) + T (r, g)}+

(
3

2
−m

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N2(r, 0; f + a) + (n− 1)T (r, f) + 3N(r,∞; f)

+ 2N(r, 0; g) +N2(r, 0; g + a) + (n− 1)T (r, g) +
n

2
{T (r, f) + T (r, g)}

+

(
3

2
−m

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).
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Subcase 1.1. m = 2. We obtain from (3.1) using Lemma 2.8,

(n
2
− 1
)
{T (r, f) + T (r, g)} (3.2)

≤ N(r,∞; f) +
2.3

2(n− 1)
{T (r, f) + T (r, g)}+

(
2

n− 1
− 1

2

)
N∗(r, 1;F,G)

+ S(r, f) + S(r, g).

≤ 1

2
{T (r, f) + T (r, g)}+

2.3

2(n− 1)
{T (r, f) + T (r, g)}

+

(
2

n− 1
− 1

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).

But this leads to a contradiction for n ≥ 5.

Subcase 1.2. m = 1. Then proceeding as in Subcase 1.1, the Lemma 2.2 with m = 1
and Lemma 2.3, yield the following.

2n{T (r, f) + T (r, g)}

≤ 2{T (r, f) + T (r, g}+ (n− 1){T (r, f) + T (r, g}+
n

2
{T (r, f) + T (r, g}

+ 3N(r,∞; f) +
1

2
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Using the Lemma 2.10 we obtain from above,

(n
2
− 1
)
{T (r, f) + T (r, g}

≤ 3N(r,∞; f) +
1

2
.

1

1 + 1

[
1

2
T (r, f) +

1

2
T (r, g) +N(r,∞; f) +N(r,∞; g)

]
+ S(r, f) + S(r, g)

=

{
3

2
+

1

4

}
[N(r,∞; f) +N(r,∞; g)] +

1

8
{T (r, f) + T (r, g}

+ S(r, f) + S(r, g)

≤
{

3

2
+

1

4
+

1

8

}
{T (r, f) + T (r, g}+ S(r, f) + S(r, g).

This leads to a contradiction for n ≥ 6.
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Subcase 1.3. m = 0. Proceeding as in Subcase 1.2., we obtain using Lemmas 2.10 and
2.11 with m = 0,{n

2
− 1
}
{T (r, f) + T (r, g}

≤ 3N(r,∞; f) +
3

2
N∗(r, 1;F,G)

≤ 3N(r,∞; f) +
3

2

{
1

2
T (r, f) +

1

2
T (r, f) +N(r,∞; f) +N(r,∞; g)

}
+ S(r, f) + S(r, g)

= 6.
2

n− 3
{T (r, f) + T (r, g)}+

3

4
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

=

(
12

n− 3
+

3

4

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

this leads to a contradiction for n ≥ 9.
Case 2. H ≡ 0. We have

F ≡ AG+B

CG+D
, (3.3)

where AD −BC 6= 0. Clearly from above and the definitions of F and G we have
T (r, F ) = T (r,G) +O(1) and T (r, f) = T (r, g) +O(1).
Subcase 2.1. AC 6= 0. Since f and g share {∞}, it follows from (3.2) that ∞ is an
exceptional value of f and g. So by the second main theorem we get,

nT (r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r,
A

C
;F ) + S(r, f)

≤ N(r, 0; f) +N(r, 0; f + a) +N(r,∞; f) +N(r,∞; g) + S(r, f)

≤ 2T (r, f) + S(r, f),

which leads to a contradiction for n ≥ 5.
Subcase 2.2. Let A 6= 0 and C = 0. Then F = γG+ β, where γ = A

D 6= 0 and β = B
D .

It is obvious that F and G cannot omit the value 1. For if F omits the value 1, then
f(and g as well) omits the distinct roots of the equation zn + azn−1 + b = 0, which
certainly leads to a contradiction for n ≥ 3.

Thus F and G assume the value 1 and we have from above

F = γG+ (1− γ). (3.4)

If γ = 1 we have F ≡ G and by Lemma 2.6, we have f ≡ g.
So let γ 6= 1. Since N(r, 0; f |= 1) = S(r, f) and N(r, 0; g |= 1) = S(r, g), we

have from (3.4) using the second main theorem,

nT (r, f)

≤ N(r, 0;F ) +N(r, 1− γ;F ) +N(r,∞;F ) + S(r, f)

≤ 1

2
T (r, f) +N(r, 0; f + a) +

1

2
T (r, g) +N(r, 0; g + a) +N(r,∞; f) + S(r, f)

≤ 4T (r, f) + S(r, f).
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This leads to a contradiction for n ≥ 5.
Subcase 2.3. A = 0, C 6= 0. Then clearly B 6= 0. Hence, F ≡ 1

ζG+η . We can show

as before that F and G cannot omit the value 1 and hence F ≡ 1
ζG+1−ζ . Let ζ = 1.

Then FG ≡ 1. This is a contradiction by Lemma 2.5.
So ζ 6= 1. Now since f and g share ∞, the relation F ≡ 1

ζG+1−ζ , at once implies

F cannot assume the values ∞ and 0, and therefore f cannot assume the values ∞,
0 and −a. This is impossible. This completes the proof of the theorem. �
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