Geometric properties of mixed operator involving Ruscheweyh derivative and Sălăgean operator

Rabha W. Ibrahim, Mayada T. Wazi and Nadia Al-Saidi

Abstract. Operator theory is a magnificent tool for studying the geometric behaviors of holomorphic functions in the open unit disk. Recently, a combination between two well known differential operators, Ruscheweyh derivative and Sălăgean operator are suggested by Lupas in [10]. In this effort, we shall follow the same principle, to formulate a generalized differential-difference operator. We deliver a new class of analytic functions containing the generalized operator. Applications are illustrated in the sequel concerning some differential subordinations of the operator.

Mathematics Subject Classification (2010): 30C45.

Keywords: Differential operator, conformable operator, fractional calculus, unit disk, univalent function, analytic function, subordination and superordination.

1. Introduction

Differential operators in a complex domain play a significant role in functions theory and its information. They have used to describe the geometric interpolation of analytic functions in a complex domain. Also, they have utilized to generate new formulas of holomorphic functions. Lately, Lupas [10] presented a amalgamation of two well-known differential operators prearranged by Ruscheweyh [12] and Sălăgean [13]. Later, these operators are investigated by researchers considering different classes and formulas of analytic functions [5, 8].

In this note, we consider a special class of functions in the open unit disk

$$\Box = \{\xi \in \mathbb{C} | |\xi| < 1\}$$

denoting by Σ and having the series

$$\varphi(\xi) = \xi + \sum_{n=2}^{\infty} \varphi_n \xi^n, \quad \xi \in \sqcup.$$

Let $\varphi \in \Sigma$, then the Ruscheweyh formula is indicated by the structure formula

$$\Phi^m \varphi(\xi) = \xi + \sum_{n=2}^{\infty} C_{m+n-1}^m \varphi_n \xi^n.$$

While, the Sălăgean operator admits the construction

$$\Psi^m \,\varphi(\xi) = \xi + \sum_{n=2}^{\infty} n^m \,\varphi_n \xi^n.$$

Lupas operator is formulated by the structure

$$\lambda_{\sigma}^{m}\varphi(\xi) = \xi + \sum_{n=2}^{\infty} \left[\sigma n^{m} + (1-\sigma) C_{m+n-1}^{m}\right]\varphi_{n}\xi^{n}, \quad \xi \in \sqcup, \, \sigma \in [0,1].$$

Newly, Ibrahim and Darus [7] considered the next differential operator

$$\begin{aligned} \Theta^0_{\kappa}\varphi(\xi) &= \varphi(\xi) \\ \Theta^1_{\kappa}\varphi(\xi) &= \xi \,\varphi(\xi)' + \frac{\kappa}{2} \left(\varphi(\xi) - \varphi(-\xi) - 2\xi\right), \quad \kappa \in \mathbb{R} \\ \vdots \\ \Theta^m_{\kappa}\varphi(\xi) &= \Theta_{\kappa}(\Theta^{m-1}_{\kappa}\varphi(\xi)) \\ &= \xi + \sum_{n=2}^{\infty} [n + \frac{\kappa}{2}(1 + (-1)^{n+1})]^m \,\varphi_n \xi^n. \end{aligned}$$

When $\kappa = 0$, we have $\Psi^m \varphi(\xi)$ In addition, it is a modified formula of the well-known Dunkl operator [2], where κ is known as the Dunkl order. Proceeding, we define a generalized formula of λ_{σ}^m , as follows:

$$J_{\sigma,\kappa}^{m}\varphi(\xi) = (1-\sigma)\Phi^{m}\varphi(\xi) + \sigma\Theta_{\kappa}^{m}\varphi(\xi) = \xi + \sum_{n=2}^{\infty} [(1-\sigma)C_{m+n-1}^{m} + \sigma\left(n + \frac{\kappa}{2}(1+(-1)^{n+1})\right)^{m}]\varphi_{n}\xi^{n}.$$
 (1.1)

Clearly, the operator $J^m_{\sigma,\kappa}\varphi(\xi) \in \Sigma$.

Remark 1.1.

•
$$m = 0 \Longrightarrow J^{0}_{\sigma,\kappa}\varphi(\xi) = \varphi(\xi);$$

• $\kappa = 0 \Longrightarrow J^{m}_{\sigma,0}\varphi(\xi) = \lambda^{m}_{\sigma}\varphi(\xi);$
• $\sigma = 0 \Longrightarrow J^{m}_{0,\kappa}\varphi(\xi) = \Phi^{m} \varphi(\xi);$
• $\sigma = 1 \Longrightarrow J^{m}_{1,\kappa}\varphi(\xi) = \Theta^{m}_{\kappa}\varphi(\xi);$
• $\kappa = 0, \sigma = 1 \Longrightarrow J^{m}_{1,0}\varphi(\xi) = \Psi^{m} \varphi(\xi)$

Definition 1.2. Consider the following data $\epsilon \in [0, 1), \sigma \in [0, 1], \kappa \ge 0$, and $m \in \mathbb{N}$. Then a function $\varphi \in \Sigma$ belongs to the set $\top_m(\sigma, \kappa, \epsilon)$ if and only if

$$\Re\left((J^m_{\sigma,\kappa}\varphi(\xi))'\right) > \epsilon, \quad \xi \in \sqcup.$$

Observe that the set $\top_m(\sigma, \kappa, \epsilon)$ is an extension of the well known class of bounded turning functions (see [1]-[14]). Next results are requested to prove our results depending on the subordination concept (see [11]).

Lemma 1.3. Suppose that \hbar is convex function such that $\hbar(0) = \flat$, and there is a complex number with a positive real part μ . If $\flat \in \mathfrak{H}[\flat, n]$, where

$$\mathfrak{H}[\flat,n]=\{\flat\in\mathfrak{H}:\flat(\xi)=\flat+\flat_n\xi^n+\flat_{n+1}\xi^{n+1}+\ldots\}$$

(the space of holomorphic functions) and

$$\flat(\xi) + \frac{1}{\mu} \xi \flat'(\xi) \prec \hbar(\xi), \quad \xi \in \sqcup,$$

then

$$\flat(\xi) \prec \iota(\xi) \prec \hbar(\xi),$$

with

$$\iota(\xi) = \frac{\mu}{n \, \xi^{\mu/n}} \int_0^{\xi} \hbar(\tau) \tau^{\frac{\mu}{(n-1)}} d\tau, \quad \xi \in \sqcup.$$

..

Lemma 1.4. Suppose that the convex function $b(\xi)$ satisfies the functional

$$\hbar(\xi) = \flat(\xi) + n\mu(\xi\,\flat'(\xi))$$

for $\mu > 0$ and n is a positive integer. If $\flat \in \mathfrak{H}[\hbar(0), n]$, and $\flat(\xi) + \mu \xi \flat'(\xi) \prec \hbar(\xi)$, $\xi \in \sqcup$ then $\flat(\xi) \prec \hbar(\xi)$, and this outcome is sharp.

Lemma 1.5. (i) If $\lambda > 0, \gamma > 0$, $\beta = \beta(\gamma, \lambda, n)$ and $\flat \in \mathfrak{H}[1, n]$ then

$$\flat(\xi) + \lambda \xi \flat'(\xi) \prec \left[\frac{1+\xi}{1-\xi}\right]^{\beta} \Rightarrow \flat(\xi) \prec \left[\frac{1+\xi}{1-\xi}\right]^{\gamma}.$$
(ii) If $\epsilon \in [0,1), \ \lambda = \lambda(\epsilon,n) \ and \ \flat \in \mathfrak{H}[1,n] \ then$

$$\Re \Big(\flat^2(\xi) + 2\flat(\xi).\xi \flat'(\xi) \Big) > \epsilon \Rightarrow \Re (\flat(\xi)) > \lambda.$$

2. Results

In this section, we investigate some geometric conducts of the operator (1.1).

Theorem 2.1. The set $\top_m(\sigma, \kappa, \epsilon)$ is convex.

Proof. Suppose that $\varphi_i, i = 1, 2$ are two functions belonging to $\top_m(\sigma, \kappa, \epsilon)$ satisfying

$$\varphi_1(\xi) = \xi + \sum_{n=2}^{\infty} \varphi_n \xi^n$$

and

$$\varphi_2(\xi) = \xi + \sum_{n=2}^{\infty} \phi_n \xi^n.$$

It is sufficient to prove that the function

$$\Pi(x_1) = \wp_1 \varphi_1(\xi) + \wp_2 \varphi_2(\xi), \quad \xi \in \sqcup$$

is in $\top_m(\sigma, \kappa, \epsilon)$, where $\wp_1 > 0, \wp_2 > 0$ and $\wp_1 + \wp_2 = 1$. The formula of $\Pi(z)$ yields

$$\Pi(\xi) = \xi + \sum_{n=2}^{\infty} (\wp_1 \varphi_n + \wp_2 \phi_n) \xi^n$$

Thus, under the operator (1.1), we get

$$J_{\sigma,\kappa}^{m}\Pi(\xi) = \xi + \sum_{n=2}^{\infty} (\wp_{1}\varphi_{n} + \wp_{2}\phi_{n}) [(1-\sigma)C_{m+n-1}^{m} + \sigma\left(n + \frac{\kappa}{2}(1+(-1)^{n+1})\right)^{m}]\xi^{n}.$$

By making a differentiation, we obtain

$$\Re\{(J_{\alpha,\kappa}^{m}\Pi(\xi))'\}$$

$$= 1 + \wp_{1}\Re\left\{\sum_{n=2}^{\infty}n[(1-\sigma)C_{m+n-1}^{m} + \sigma\left(n + \frac{\kappa}{2}(1+(-1)^{n+1})\right)^{m}]\varphi_{n}\xi^{n-1}\right\}$$

$$+\wp_{2}\Re\left\{\sum_{n=2}^{\infty}n[(1-\sigma)C_{m+n-1}^{m} + \sigma\left(n + \frac{\kappa}{2}(1+(-1)^{n+1})\right)^{m}]\phi_{n}\xi^{n-1}\right\} = \epsilon. \quad \Box$$

Theorem 2.2. Define the following functions: $\varphi \in \top_m(\sigma, \kappa, \epsilon)$, ϕ be convex and

$$F(\xi) = \frac{2+c}{\xi^{1+c}} \int_0^{\xi} t^c \varphi(t) dt, \quad \xi \in \sqcup.$$

Then

$$\left(J^m_{\alpha,\kappa}\varphi(\xi)\right)' \prec \phi(\xi) + \frac{\left(\xi\,\phi'(\xi)\right)}{2+c}, \quad c > 0,$$

yields

$$\left(J^m_{\sigma,\kappa}F(\xi)\right)' \prec \phi(\xi),$$

and this outcome is sharp.

Proof. By the assumptions, we have

$$\left(J^m_{\sigma,\kappa}F(\xi)\right)' + \frac{\left(J^m_{\sigma,\kappa}F(\xi)\right)''}{2+c} = \left(J^m_{\sigma,\kappa}\varphi(\xi)\right)'.$$

Consequently, we get

$$\left(J^m_{\sigma,\kappa}F(\xi)\right)' + \frac{\left(J^m_{\sigma,\kappa}F(\xi)\right)''}{2+c} \prec \phi(\xi) + \frac{\left(\xi\phi'(\xi)\right)}{2+c}.$$

Assuming

$$\flat(\xi) := \left(J^m_{\sigma,\kappa} F(\xi)\right)',$$

one can find

$$\flat(\xi) + \frac{(\xi \flat'(\xi))}{2+c} \prec \phi(\xi) + \frac{(\xi \phi'(\xi))}{2+c}.$$

In virtue of Lemma 1.3, we have

$$\left(J^m_{\sigma,\kappa}F(\xi)\right)' \prec \phi(\xi),$$

474

and ϕ is the best dominant.

Theorem 2.3. Assume the convex function ϕ achieving $\phi(0) = 1$ and for $\varphi \in \Sigma$

$$\left(J^m_{\sigma,\kappa}\varphi(\xi)\right)' \prec \phi(\xi) + \xi \,\phi'(\xi), \quad \xi \in \sqcup,$$

then

$$\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi}\prec \phi(\xi),$$

and this outcome is sharp.

Proof. Formulate the next functional

$$\flat(z) := \frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi} \in \mathfrak{H}[1,1]$$
(2.1)

Consequently, we get

$$J^m_{\sigma,\kappa}\varphi(\xi) = \xi \,\flat(\xi) \Longrightarrow \left(J^m_{\sigma,\kappa}\varphi(\xi)\right)' = \flat(\xi) + \,\xi\flat'(\xi).$$

Therefore, we obtain the inequality

$$\flat(\xi) + \xi \flat'(\xi) \prec \phi(\xi) + \xi \phi'(\xi).$$

According to Lemma 1.4, we attain

$$\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi} \prec \phi(\xi),$$

and ϕ is the best dominant.

Theorem 2.4. For $\varphi \in \Sigma$ if the inequality

$$(J^m_{\sigma,\kappa}\varphi(\xi))' \prec \left(\frac{1+\xi}{1-\xi}\right)^{\beta}, \quad \xi \in \sqcup, \ \beta > 0,$$

achieves then

$$\Re\Big(\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi}\Big) > \epsilon$$

for some $\epsilon \in [0,1)$.

Proof. For the function $\flat(\xi)$ in (2.1), we have

$$(J^m_{\sigma,\kappa}\varphi(\xi))' = \xi \flat'(\xi) + \flat(\xi) \prec \left(\frac{1+\xi}{1-\xi}\right)^{\beta}.$$

According to Lemma 1.5.i, there occurs a constant $\gamma > 0$ with $\beta = \beta(\gamma)$ with

$$\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi} \prec \left(\frac{1+\xi}{1-\xi}\right)^{\gamma}$$

This yields $\Re(J^m_{\sigma,\kappa}\varphi(\xi)/\xi) > \epsilon$, for some $\epsilon \in [0,1)$.

Theorem 2.5. Assume that $\varphi \in \Sigma$ achieves the inequality

$$\Re\Big((J^m_{\sigma,\kappa}\varphi(\xi))'\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi}\Big) > \frac{\sigma}{2}, \quad \xi \in \sqcup, \, \sigma \in [0,1).$$

Then $J^m_{\sigma,\kappa}\varphi(\xi) \in \top_m(\sigma,\kappa,\epsilon)$ for some $\epsilon \in [0,1)$. In addition, it is univalent of bounded turning in \sqcup .

Proof. Assume the function $b(\xi)$ as in (2.1). A Calculation implies that

$$\Re\left(\flat^2(\xi) + 2\flat(\xi).\xi\flat'(\xi)\right) = 2\Re\left((J^m_{\sigma,\kappa}\varphi(\xi))'\frac{J^m_{\sigma,\kappa}\varphi(\xi)}{\xi}\right) > \sigma.$$
(2.2)

Lemma 1.5.ii, implies that there occurs a constant $\lambda(\sigma)$ satisfying $\Re(\mathfrak{b}(\xi)) > \lambda(\sigma)$. Thus, we obtain $\Re(\mathfrak{b}(\xi)) > \epsilon$ for some $\epsilon \in [0,1)$. It yields from (2.2) that $\Re\left(J^m_{\sigma,\kappa}\varphi(\xi)\right)'\right) > \epsilon$ and by Noshiro-Warschawski and Kaplan Theorems (see [3]), we have that $J^m_{\sigma,\kappa}\varphi(\xi)$ is univalent and of bounded turning in \sqcup . \Box

References

- Darus, M., Ibrahim, R.W., Partial sums of analytic functions of bounded turning with applications, J. Comput. Appl. Math., 29(2010), 81-88.
- [2] Dunkl, C.F., Differential-difference operators associated with reflections groups, Trans. Am. Math. Soc., 311(1989), 167-183.
- [3] Duren, P., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag New York Inc., 1983.
- [4] Ibrahim, R.W., Geometric properties of the differential shift plus complex Volterra operator, Asian-Eur. J. Math., 11.01(2018), 1850013.
- [5] Ibrahim, R.W., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Gen. Math., 28(2020), 105-114.
- [6] Ibrahim, R.W., Darus M., Extremal bounds for functions of bounded turning, Int. Math. Forum, 6(2011), 1623-1630.
- [7] Ibrahim, R.W., Darus M., Subordination inequalities of a new Sălăgean-difference operator, Int. J. Math. Comput. Sci., 14(2019), 573-582.
- [8] Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Axioms, 9(2020), 1-13.
- [9] Krishna, D., et al., Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc., 34.2(2015), 121-127.
- [10] Lupaş Alb, A., On special differential subordinations using Sălăgean and Ruscheweyh operators, Math. Inequal. Appl., 12(2009), 781-790.
- [11] Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, CRC Press, 2000.
- [12] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
- [13] Sălăgean, G. St., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.
- [14] Tuneski, N., Bulboacă, T., Sufficient conditions for bounded turning of analytic functions, Ukr. Math. J., 70.8(2019), 1288-1299.

Rabha W. Ibrahim IEEE: 94086547, Kuala Lumpur, 59200, Malaysia e-mail: rabhaibrahim@yahoo.com

Mayada T. Wazi University of Technology, Department of Electromechanical Engineering, Iraq e-mail: mayada.t.wazi@uotechnology.edu.iq

Nadia Al-Saidi University of Technology, Department of Applied Sciences, Iraq e-mail: nadiamg08@gmail.com